1
|
Clemente KJE, Thomsen MS. Co-occurring foundation species increase habitat heterogeneity across estuarine intertidal environments on the South Island of New Zealand. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107150. [PMID: 40252593 DOI: 10.1016/j.marenvres.2025.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/21/2025]
Abstract
Estuaries are traditionally considered sedimentary 'bare' ecosystems, dominated by infauna that bury into sediments to avoid being eaten by fish or birds. However, estuaries can be converted to biogenic complex 'hard' habitats, like seagrass beds, seaweed patches or surface-deposits of live or dead shells. Furthermore, habitat heterogeneity is enhanced if these foundation species co-occur. Still, few studies have quantified abundances and co-occurrences of different types of foundation species along spatiotemporal stress gradients. We therefore quantified abundances of seagrasses (Zostera muelleri), seaweeds (Ulva spp., Gracilaria chilensis), surface deposited dead shells and densities of dominant and partly buried cockles (Austrovenus stutchburyi) in estuaries on the South Island of New Zealand. A total of 927 large-scale drone images, 1264 small-scale camera images, and 160 sediment-quadrats were collected from 32 common estuarine environments (fully crossed 5-factorial surveys with 2 latitudes x 2 sites x 2 intertidal elevations x 2 seasons x 2 intra-seasonal sampling months). Across the 32 environments, seagrass was most abundant (19-22 % cover, depending on sampling method), followed by shells (9-13 %) and seaweed (4 %). Scattered seaweed and shells were, despite their low cover, ubiquitous in the 32 environments, and seagrasses always co-occurred with shells and/or seaweed. The spatial gradients had a stronger influence on abundances of foundation species than temporal factors, that mainly affected seaweed and live cockles, with high (70 %), medium (50 %) and low (30 %) statistical agreement between analysis of drone vs. camera images for seaweed, shells and seagrass, respectively. Finally, correlation analysis revealed negative associations between seagrasses and both shells and seaweed, but with large variation between seasons. Our study highlights that foundation species rarely occur as single-species stands, and that the ecological impacts of scattered seaweeds and dead surface-deposited shells within seagrass beds should be studied in more detail. Our findings also underscore the critical role of spatiotemporal stressors in shaping estuarine ecosystems and highlight the importance of using supplementary sampling methods to inform management strategies for estuaries in the face of environmental change.
Collapse
Affiliation(s)
- Ken Joseph E Clemente
- Marine Ecology Research Group, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; University of Santo Tomas, Manila, Philippines.
| | - Mads S Thomsen
- Marine Ecology Research Group, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA, Australia; Department of Ecoscience, Aarhus University, Roskilde, Denmark
| |
Collapse
|
2
|
Caulerpa cylindracea Spread on Deep Rhodolith Beds Can Be Influenced by the Morphostructural Composition of the Bed. DIVERSITY 2023. [DOI: 10.3390/d15030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The green alga Caulerpa cylindracea Sonder (Chlorophyta; Bryopsidales) is one of the most invasive alien macroalgae in the Mediterranean Sea, where it is also spreading on rhodolith beds, an important biogenic assemblage typical of deep substrates. Despite the importance of rhodoliths, data on the competitive interactions with C. cylindracea are still scarce. To deepen the knowledge on the topic, C. cylindracea occurrence on the rhodolith bed of Capo Carbonara Marine Protected Area (Italy) was explored. Quantitative analyses of videoframes obtained from Remote Operated Vehicle records in three different MPA sites, Is Piscadeddus, Santa Caterina, and Serpentara, allow for estimates of both the cover of rhodoliths (considering the main morphotypes) and of C. cylindracea, as well as their competition. All sites showed a well-developed rhodolith bed, although some differences were highlighted in their composition in terms of morphotype, shape, and dimension of rhodoliths, as well as in the C. cylindracea cover. In particular, Santa Caterina appeared to be the site with the highest mean total cover of rhodoliths (68%), and of C. cylindracea (25%). The obtained results suggest that different competitive interactions occur between C. cylindracea and rhodolith beds, in relation to the morphostructural composition of the latter and in response to environmental conditions that affect rhodolith bed composition.
Collapse
|
3
|
Jiménez-Ramos R, Tomas F, Reynés X, Romera-Castillo C, Pérez-Lloréns JL, Egea LG. Carbon metabolism and bioavailability of dissolved organic carbon (DOC) fluxes in seagrass communities are altered under the presence of the tropical invasive alga Halimeda incrassata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156325. [PMID: 35649455 DOI: 10.1016/j.scitotenv.2022.156325] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Seagrass beds act as blue carbon sinks globally as they enhance the trapping of recalcitrant (i.e., low biodegradability) organic carbon in their sediments. Recent studies also show that the recalcitrant fraction of the dissolved organic carbon (DOC) pool in seawater has an important role as long-term carbon sequestration in oceans. Although seagrasses are known for the large amount of DOC they export, little attention has been given to its biodegradability, which ultimately determinates its fate in the coastal carbon cycle. In turn, invasive algae are a major global concern in seagrass ecosystems since they can deeply modify their structure and functions, which may affect carbon metabolism and DOC release. This work assesses how the presence of Halimeda incrassata, an invasive tropical calcareous macroalga, modifies carbon metabolism and DOC fluxes in invaded areas dominated by the seagrass Cymodocea nodosa. Our results show that stands with the presence of this seagrass (i.e., both monospecific and mixed meadow) had the highest production values, acting as high DOC producers in both winter (mainly of labile DOC; DOCL) and summer (mainly as recalcitrant DOC; DOCR). In contrast, monospecific H. incrassata beds exhibited low production values, and the presence of this macroalga (either as monospecific beds or mixed with C. nodosa) triggered the shift from a net DOC-producing-system in summer (mainly DOCL) to a net DOC-consuming-system in winter. This work thus suggests that C. nodosa meadows have the potential to export a significant fraction of both labile and recalcitrant DOC, and that the spread of this invasive alga might decrease the C export capacity of seagrass meadows. Such shift would imply the reduction of a quick and efficient transfer of carbon and energy to higher trophic levels, and might reduce the blue carbon potential of seagrasses as dissolved form in the water column.
Collapse
Affiliation(s)
- R Jiménez-Ramos
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, International Campus of Excellence of the Sea (CEI·MAR), 11510 Puerto Real, Cádiz, Spain; Institut Mediterrani d'Estudis Avançats, IMEDEA, UIB-CSIC, Mallorca, Spain.
| | - F Tomas
- Institut Mediterrani d'Estudis Avançats, IMEDEA, UIB-CSIC, Mallorca, Spain.
| | - X Reynés
- Institut Mediterrani d'Estudis Avançats, IMEDEA, UIB-CSIC, Mallorca, Spain
| | | | - J L Pérez-Lloréns
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, International Campus of Excellence of the Sea (CEI·MAR), 11510 Puerto Real, Cádiz, Spain.
| | - L G Egea
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, International Campus of Excellence of the Sea (CEI·MAR), 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
4
|
Aguilar S, Moore PJ, Uribe RA. Habitat formed by the invasive macroalga Caulerpa filiformis (Suhr) Hering (Caulerpales, Chlorophyta) alters benthic macroinvertebrate assemblages in Peru. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Reeves SE, Kriegisch N, Johnson CR, Ling SD. Kelp habitat fragmentation reduces resistance to overgrazing, invasion and collapse to turf dominance. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- S. E. Reeves
- Institute for Marine and Antarctic Studies University of Tasmania, 20 Castray Esplanade, Battery Point Tasmania Australia
| | - N. Kriegisch
- Institute for Marine and Antarctic Studies University of Tasmania, 20 Castray Esplanade, Battery Point Tasmania Australia
| | - C. R. Johnson
- Institute for Marine and Antarctic Studies University of Tasmania, 20 Castray Esplanade, Battery Point Tasmania Australia
| | - S. D. Ling
- Institute for Marine and Antarctic Studies University of Tasmania, 20 Castray Esplanade, Battery Point Tasmania Australia
| |
Collapse
|
6
|
The joint influence of environmental and anthropogenic factors on the invasion of two alien caulerpae in northwestern Mediterranean. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02654-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Bevilacqua S, Airoldi L, Ballesteros E, Benedetti-Cecchi L, Boero F, Bulleri F, Cebrian E, Cerrano C, Claudet J, Colloca F, Coppari M, Di Franco A, Fraschetti S, Garrabou J, Guarnieri G, Guerranti C, Guidetti P, Halpern BS, Katsanevakis S, Mangano MC, Micheli F, Milazzo M, Pusceddu A, Renzi M, Rilov G, Sarà G, Terlizzi A. Mediterranean rocky reefs in the Anthropocene: Present status and future concerns. ADVANCES IN MARINE BIOLOGY 2021; 89:1-51. [PMID: 34583814 DOI: 10.1016/bs.amb.2021.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Global change is striking harder and faster in the Mediterranean Sea than elsewhere, where high levels of human pressure and proneness to climate change interact in modifying the structure and disrupting regulative mechanisms of marine ecosystems. Rocky reefs are particularly exposed to such environmental changes with ongoing trends of degradation being impressive. Due to the variety of habitat types and associated marine biodiversity, rocky reefs are critical for the functioning of marine ecosystems, and their decline could profoundly affect the provision of essential goods and services which human populations in coastal areas rely upon. Here, we provide an up-to-date overview of the status of rocky reefs, trends in human-driven changes undermining their integrity, and current and upcoming management and conservation strategies, attempting a projection on what could be the future of this essential component of Mediterranean marine ecosystems.
Collapse
Affiliation(s)
- Stanislao Bevilacqua
- Dipartimento di Scienze della Vita, University of Trieste, Trieste, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy.
| | - Laura Airoldi
- Stazione Idrobiologica di Chioggia "Umberto D'Ancona", Dipartimento di Biologia, University of Padova, Padova, Italy; Dipartimento di Beni Culturali, University of Bologna, Ravenna, Italy
| | | | - Lisandro Benedetti-Cecchi
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Ferdinando Boero
- Dipartimento di Biologia, University of Napoli Federico II, Napoli, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy; National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), Genoa, Italy
| | - Fabio Bulleri
- Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Emma Cebrian
- Centre d'Estudis Avançats de Blanes-CSIC, Girona, Spain
| | - Carlo Cerrano
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy; Dipartimento di Scienze della Vita e dell'Ambiente, Polytechnic University of Marche, Ancona, Italy
| | - Joachim Claudet
- National Center for Scientific Research, PSL Université Paris, CRIOBE, USR 3278 CNRS-EPHE-UPVD, Maison des Océans, Paris, France
| | - Francesco Colloca
- Department of Integrative Ecology, Stazione Zoologica A. Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Rome, Italy
| | - Martina Coppari
- Dipartimento di Scienze della Vita e dell'Ambiente, Polytechnic University of Marche, Ancona, Italy
| | - Antonio Di Franco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily, Palermo, Italy
| | - Simonetta Fraschetti
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Dipartimento di Biologia, University of Napoli Federico II, Napoli, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Joaquim Garrabou
- Institut de Ciències del Mar, CSIC, Barcelona, Spain; Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Giuseppe Guarnieri
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, Italy
| | | | - Paolo Guidetti
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), Genoa, Italy; Department of Integrative Marine Ecology, Stazione Zoologica A. Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
| | - Benjamin S Halpern
- National Center for Ecological Analysis & Synthesis, University of California, Santa Barbara, CA, United States; Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, United States
| | | | - Maria Cristina Mangano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily, Palermo, Italy
| | - Fiorenza Micheli
- Hopkins Marine Station and Center for Ocean Solutions, Stanford University, Pacific Grove, CA, United States
| | - Marco Milazzo
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
| | - Antonio Pusceddu
- Dipartimento di Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| | - Monia Renzi
- Dipartimento di Scienze della Vita, University of Trieste, Trieste, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
| | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Gianluca Sarà
- Dipartimento di Scienze della Terra e del Mare, University of Palermo, Palermo, Italy
| | - Antonio Terlizzi
- Dipartimento di Scienze della Vita, University of Trieste, Trieste, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
8
|
Pusceddu A, Mikhno M, Giglioli A, Secci M, Pasquini V, Moccia D, Addis P. Foraging of the sea urchin Paracentrotus lividus (Lamarck, 1816) on invasive allochthonous and autochthonous algae. MARINE ENVIRONMENTAL RESEARCH 2021; 170:105428. [PMID: 34325276 DOI: 10.1016/j.marenvres.2021.105428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Attempts to control marine invasive alien species (IAS) with native predators gained contrasting results, so far. To explore the feasibility of this approach to control the invasive marine alga Caulerpa cylindracea, we investigated the foraging behaviour of the sea urchin Paracentrotus lividus on three native macroalgae (Ulva sp., Penicillus capitatus and Cystoseira compressa) and on C. cylindracea. The consumption rate of C. cylindracea fresh biomass resulted larger than that of the other algae, when offered separately or in combination. C. cylindracea, however, was not the most attractive food item. The larger consumption rates of C. cylindracea can be explained by its specific caloric content (as assessed by its biochemical composition) that is lower than that of the other algae. Our results confirm that P. lividus can feed on C. cylindracea, but do not fully support its use to control C. cylindracea, unless in conditions where this alga is largely dominant because of other factors.
Collapse
Affiliation(s)
- Antonio Pusceddu
- Department of Life and Environmental Sciences, University of Cagliari, Via T. Fiorelli, 1, 09126, Cagliari, Italy.
| | - Marta Mikhno
- Department of Life and Environmental Sciences, University of Cagliari, Via T. Fiorelli, 1, 09126, Cagliari, Italy
| | - Angelica Giglioli
- Department of Life and Environmental Sciences, University of Cagliari, Via T. Fiorelli, 1, 09126, Cagliari, Italy
| | - Marco Secci
- Department of Life and Environmental Sciences, University of Cagliari, Via T. Fiorelli, 1, 09126, Cagliari, Italy
| | - Viviana Pasquini
- Department of Life and Environmental Sciences, University of Cagliari, Via T. Fiorelli, 1, 09126, Cagliari, Italy
| | - Davide Moccia
- Department of Life and Environmental Sciences, University of Cagliari, Via T. Fiorelli, 1, 09126, Cagliari, Italy
| | - Pierantonio Addis
- Department of Life and Environmental Sciences, University of Cagliari, Via T. Fiorelli, 1, 09126, Cagliari, Italy
| |
Collapse
|
9
|
Double Trouble: Synergy between Habitat Loss and the Spread of the Alien Species Caulerpa cylindracea (Sonder) in Three Mediterranean Habitats. WATER 2021. [DOI: 10.3390/w13101342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The role of habitat degradation on the spread of the alien green alga Caulerpa cylindracea is reported here by comparing observations achieved through a multi-year assessment on three Mediterraneans habitats, namely Posidonia oceanica meadows, Phyllophora crispa turf, and coralligenous reefs. Due to the peculiarity of the study site, both natural-reference and impacted conditions were investigated. C. cylindracea occurred in all the studied habitats under impacted conditions. High susceptibility to the invasion characterized impacted P. oceanica, where Caulerpa cover reached 70.0% in summer months. C. cylindracea cover did not differ significantly among conditions in P. crispa turf, where values never exceeded 5.0%. Conversely, the invasive green algae was low in abundance and patchily distributed in coralligenous reefs. Our results confirmed that habitat loss enhances the spread of C. cylindracea, although with different magnitudes among habitats. Dead matte areas of P. oceanica represented the most vulnerable habitat among those analyzed, whereas coralligenous reefs were less susceptible to the invasion under both the studied conditions.
Collapse
|
10
|
Menicagli V, Balestri E, Vallerini F, De Battisti D, Lardicci C. Plastics and sedimentation foster the spread of a non-native macroalga in seagrass meadows. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143812. [PMID: 33246728 DOI: 10.1016/j.scitotenv.2020.143812] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Plastics are found in marine environments worldwide, and their effects on macrophytes (seagrasses and macroalgae) colonizing sandy bottoms are still poorly known. Seagrass meadows are valuable but declining ecosystems due to local and global-change related stressors, including sediment disturbance and introduced macroalgae. Understanding whether plastics pose a further threat to seagrasses is critically important. In two simultaneous additive experiments performed in an aquaculture tank, we examined the individual and combined effects of macroplastics (non-biodegradable high-density polyethylene and biodegradable starch-based) and sedimentation (no and repeated sedimentation) on the performance (in terms of biomass and architectural variables) of a native Mediterranean seagrass (Cymodocea nodosa) and an introduced macroalga (Caulerpa cylindracea), and on the intensity of their interactions. Macroplastics were still present in sediments after 18 months. Cymodocea nodosa produced a greater biomass and longer horizontal rhizome internodes forming clones with more spaced shoots probably to escape from plastics. Plastics prevented C. nodosa to react to sedimentation by increasing vertical rhizome growth. Under C. cylindracea invasion, C. nodosa allocated more biomass to roots, particularly to fine roots. In the presence of C. nodosa, C. cylindracea performance was reduced. High-density polyethylene (HDPE) plastic and sedimentation shifted species interactions from competitive to neutral. These results suggest that both HDPE and biodegradable starch-based macroplastics, if deposited on marine bottoms, could make seagrasses vulnerable to sedimentation and reduce plant cover within meadows. HDPE plastic and sedimentation could contribute to the decline of seagrass habitats by facilitating the spread of non-native macroalgae within meadows. Overall, the study highlights the urgent need to implement more effective post-marketing management actions to prevent a further entering of plastics in natural environments in the future, as well as to establish to conservation measures specifically tailored to protect seagrass habitats from plastic pollution.
Collapse
Affiliation(s)
- Virginia Menicagli
- Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy
| | - Elena Balestri
- Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy.
| | - Flavia Vallerini
- Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy
| | - Davide De Battisti
- Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy
| | - Claudio Lardicci
- Department of Earth Sciences, University of Pisa, via S. Maria 53, 56126 Pisa, Italy; Centre for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa 56124, Italy
| |
Collapse
|
11
|
Uyà M, Bulleri F, Gribben PE. Propagules are not all equal: traits of vegetative fragments and disturbance regulate invasion success. Ecology 2018; 99:957-965. [DOI: 10.1002/ecy.2168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/09/2017] [Accepted: 01/16/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Marc Uyà
- Dipartimento di Biologia Università di Pisa Via Derna 1 Pisa 56126 Italy
- Centre for Marine Bio‐Innovation School of Biological, Earth and Environmental Sciences University of New South Wales New South Wales 2052 Australia
| | - Fabio Bulleri
- Dipartimento di Biologia Università di Pisa Via Derna 1 Pisa 56126 Italy
- CoNISMa Consorzio Nazionale Interuniversitario per le Scienze del Mare Piazzale Flaminio 9 Roma 00196 Italy
| | - Paul E. Gribben
- Centre for Marine Bio‐Innovation School of Biological, Earth and Environmental Sciences University of New South Wales New South Wales 2052 Australia
- Sydney Institute of Marine Science 19 Chowder Bay Road Mosman New South Wales 2088 Australia
| |
Collapse
|
12
|
Fragment quality and sediment organic loading regulate the survival of an invasive, clonal seaweed. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1685-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Luigi P, Giulia C. Eutrophication affects the resistance of fucoids to an introduced alga spread. MARINE ENVIRONMENTAL RESEARCH 2017; 129:189-194. [PMID: 28619595 DOI: 10.1016/j.marenvres.2017.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/31/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
This study investigates whether eutrophication can affect the capacity of the canopy alga Cystoseira brachycarpa to impede or limit the spread of the introduced species Caulerpa cylindracea. By means of a manipulative field study (16 months long), the effects of nutrient enrichment and C. cylindracea removal were tested on the canopy-alga and the associated macroalgal community. Results highlighted deep changes through time due to nutrient enrichment, as C. brachycarpa decreased and Halopteris scoparia increased in cover. Furthermore, C. brachycarpa was also affected by the presence of the introduced species Caulerpa cylindracea which, in turn, was found significantly advantaged by nutrient enrichment. Overall, our findings suggest that eutrophication can drive the substitution of Cystoseira with H. scoparia, leading to the shift from canopy to opportunistic species, which are unable to avoid the spread of C. cylindracea.
Collapse
Affiliation(s)
- Piazzi Luigi
- Dipartimento di Scienze della Natura e del Territorio, Università di Sassari, Via Piandanna 4, 07100 Sassari, Italy.
| | - Ceccherelli Giulia
- Dipartimento di Scienze della Natura e del Territorio, Università di Sassari, Via Piandanna 4, 07100 Sassari, Italy
| |
Collapse
|
14
|
A few is enough: a low cover of a non-native seaweed reduces the resilience of Mediterranean macroalgal stands to disturbances of varying extent. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1442-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Ferramosca A, Conte A, Guerra F, Felline S, Rimoli MG, Mollo E, Zara V, Terlizzi A. Metabolites from invasive pests inhibit mitochondrial complex II: A potential strategy for the treatment of human ovarian carcinoma? Biochem Biophys Res Commun 2016; 473:1133-1138. [PMID: 27091429 DOI: 10.1016/j.bbrc.2016.04.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/22/2022]
Abstract
The red pigment caulerpin, a secondary metabolite from the marine invasive green algae Caulerpa cylindracea can be accumulated and transferred along the trophic chain, with detrimental consequences on biodiversity and ecosystem functioning. Despite increasing research efforts to understand how caulerpin modifies fish physiology, little is known on the effects of algal metabolites on mammalian cells. Here we report for the first time the mitochondrial targeting activity of both caulerpin, and its closely related derivative caulerpinic acid, by using as experimental model rat liver mitochondria, a system in which bioenergetics mechanisms are not altered. Mitochondrial function was tested by polarographic and spectrophotometric methods. Both compounds were found to selectively inhibit respiratory complex II activity, while complexes I, III, and IV remained functional. These results led us to hypothesize that both algal metabolites could be used as antitumor agents in cell lines with defects in mitochondrial complex I. Ovarian cancer cisplatin-resistant cells are a good example of cell lines with a defective complex I function on which these molecules seem to have a toxic effect on proliferation. This provided novel insight toward the potential use of metabolites from invasive Caulerpa species for the treatment of human ovarian carcinoma cisplatin-resistant cells.
Collapse
Affiliation(s)
- Alessandra Ferramosca
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy.
| | - Annalea Conte
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
| | - Flora Guerra
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
| | - Serena Felline
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
| | | | - Ernesto Mollo
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Vincenzo Zara
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
| | - Antonio Terlizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy; Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
16
|
Bulleri F, Benedetti‐Cecchi L, Jaklin A, Iveša L. Linking disturbance and resistance to invasion via changes in biodiversity: a conceptual model and an experimental test on rocky reefs. Ecol Evol 2016; 6:2010-21. [PMID: 27066222 PMCID: PMC4767907 DOI: 10.1002/ece3.1956] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 11/08/2022] Open
Abstract
Biological invasions threaten biodiversity worldwide. Nonetheless, a unified theory linking disturbance and resistance to invasion through a mechanistic understanding of the changes caused to biodiversity is elusive. Building on different forms of the disturbance-biodiversity relationship and on the Biotic Resistance Hypothesis (BRH), we constructed conceptual models showing that, according to the main biodiversity mechanism generating invasion resistance (complementary vs. identity effects), disturbance can either promote or hinder invasion. Following the Intermediate Disturbance Hypothesis (IDH), moderate levels of disturbance (either frequency or intensity) are expected to enhance species richness. This will promote invasion resistance when complementarity is more important than species identity. Negative effects of severe disturbance on invasion resistance, due to reductions in species richness, can be either overcompensated or exacerbated by species identity effects, depending on the life-traits becoming dominant within the native species pool. Different invasion resistance scenarios are generated when the diversity-disturbance relationship is negative or positive monotonic. Predictions from these models were experimentally tested on rocky reefs. Macroalgal canopies differing in species richness (1 vs. 2 vs. 3) and identity, were exposed to either a moderate or a severe pulse disturbance. The effects of different canopy-forming species on the seaweed, Caulerpa cylindracea, varied from positive (Cystoseira crinita) to neutral (Cystoseira barbata) to negative (Cystoseira compressa). After 2 years, severely disturbed plots were monopolized by C. compressa and supported less C. cylindracea. Our study shows that the effects of disturbance on invasion depend upon its intensity, the main mechanism through which biodiversity generates invasion resistance and the life-traits selected within the native species pool. Disturbance can sustain invasion resistance when promoting the dominance of competitively subordinate species possessing traits that allow outperforming invaders.
Collapse
Affiliation(s)
- Fabio Bulleri
- Dipartimento di BiologiaUniversità di PisaVia Derna 156126PisaItaly
| | | | - Andrej Jaklin
- Ruđer Bošković InstituteCenter for Marine ResearchG. Paliaga 552210RovinjCroatia
| | - Ljiljana Iveša
- Ruđer Bošković InstituteCenter for Marine ResearchG. Paliaga 552210RovinjCroatia
| |
Collapse
|
17
|
Cullen-Unsworth LC, Unsworth RKF. Strategies to enhance the resilience of the world's seagrass meadows. J Appl Ecol 2016. [DOI: 10.1111/1365-2664.12637] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Leanne C. Cullen-Unsworth
- Sustainable Places Research Institute; Cardiff University; Cardiff UK
- Project Seagrass; 33 Park Place Cardiff CF10 3BA UK
| | - Richard K. F. Unsworth
- Project Seagrass; 33 Park Place Cardiff CF10 3BA UK
- Seagrass Ecosystem Research Group; College of Science; Swansea University; Swansea UK
| |
Collapse
|
18
|
Caronni S, Calabretti C, Delaria MA, Bernardi G, Navone A, Occhipinti-Ambrogi A, Panzalis P, Ceccherelli G. Consumer depletion alters seagrass resistance to an invasive macroalga. PLoS One 2015; 10:e0115858. [PMID: 25723466 PMCID: PMC4344340 DOI: 10.1371/journal.pone.0115858] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/02/2014] [Indexed: 11/18/2022] Open
Abstract
Few field studies have investigated how changes at one trophic level can affect the invasibility of other trophic levels. We examined the hypothesis that the spread of an introduced alga in disturbed seagrass beds with degraded canopies depends on the depletion of large consumers. We mimicked the degradation of seagrass canopies by clipping shoot density and reducing leaf length, simulating natural and anthropogenic stressors such as fish overgrazing and water quality. Caulerpa racemosa was transplanted into each plot and large consumers were excluded from half of them using cages. Potential cage artifacts were assessed by measuring irradiance, scouring by leaf movement, water flow, and sedimentation. Algal invasion of the seagrass bed differed based on the size of consumers. The alga had higher cover and size under the cages, where the seagrass was characterized by reduced shoot density and canopy height. Furthermore, canopy height had a significant effect depending on canopy density. The alteration of seagrass canopies increased the spread of C. racemosa only when large consumers were absent. Our results suggest that protecting declining habitats and/or restoring fish populations will limit the expansion of C. racemosa. Because MPAs also enhance the abundance and size of fish consuming seagrass they can indirectly promote algal invasion. The effects of MPAs on invasive species are context dependent and require balancing opposing forces, such as the conservation of seagrass canopy structure and the protection of fish grazing the seagrass.
Collapse
Affiliation(s)
- Sarah Caronni
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio14, I-27100 Pavia, Italy
| | - Chiara Calabretti
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio14, I-27100 Pavia, Italy
| | - Maria Anna Delaria
- Department of Science for Nature and Environmental Resources, University of Sassari, Via Piandanna 4, I-07100 Sassari, Italy
| | - Giuseppe Bernardi
- Marine Protected Area Tavolara Punta Coda Cavallo, Via Dante 1, I-07026 Olbia (OT), Italy
| | - Augusto Navone
- Marine Protected Area Tavolara Punta Coda Cavallo, Via Dante 1, I-07026 Olbia (OT), Italy
| | - Anna Occhipinti-Ambrogi
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio14, I-27100 Pavia, Italy
| | - Pieraugusto Panzalis
- Marine Protected Area Tavolara Punta Coda Cavallo, Via Dante 1, I-07026 Olbia (OT), Italy
| | - Giulia Ceccherelli
- Department of Science for Nature and Environmental Resources, University of Sassari, Via Piandanna 4, I-07100 Sassari, Italy
| |
Collapse
|
19
|
La Manna G, Donno Y, Sarà G, Ceccherelli G. The detrimental consequences for seagrass of ineffective marine park management related to boat anchoring. MARINE POLLUTION BULLETIN 2015; 90:160-166. [PMID: 25467874 DOI: 10.1016/j.marpolbul.2014.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 11/01/2014] [Indexed: 06/04/2023]
Abstract
Posidonia oceanica (L.) Delile meadows are recognized as priority habitat for conservation by the EU Habitats Directive. The La Maddalena Archipelago National Park (Mediterranean Sea) P. oceanica meadow, the dominant coastal habitat of the area, is mostly threatened by boat anchoring. 12 years after the establishment of mooring fields and anchoring restrictions, a study was conducted to measure their effectiveness on the conservation of seagrass and the mitigation of anchoring damage. We found that: (i) the condition of P. oceanica was disturbed, both in the mooring fields and in control locations; (ii) mooring fields and anchoring restrictions did not show to be an efficient system for the protection of seagrass, in fact anchor scars increased after the tourist season; (iii) the mooring systems had an impact on the surrounding area of the meadow, probably due to their misuse. On the basis of these results, management recommendations for marine parks are proposed.
Collapse
Affiliation(s)
- G La Manna
- Parco Nazionale Arcipelago di La Maddalena, La Maddalena, OT, Italy; MareTerra Onlus, Alghero, SS, Italy.
| | - Y Donno
- Parco Nazionale Arcipelago di La Maddalena, La Maddalena, OT, Italy
| | - G Sarà
- Dipartimento di Scienze della Terra e del Mare, Università degli studi di Palermo, Palermo, Italy
| | - G Ceccherelli
- Dipartimento di Scienze della Natura e del Territorio, Università degli Studi di Sassari, Sassari, Italy
| |
Collapse
|