1
|
McHaskell DA. Half a Century of Global Invasion: How Global Trends Can Inform the Spread and Phenology of the Non-Native Kelp, Undaria Pinnatifida, in California, United States. Integr Comp Biol 2024; 64:1087-1101. [PMID: 39288999 DOI: 10.1093/icb/icae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
The potential for non-native species to outcompete native species, change ecosystem dynamics, and decrease biodiversity necessitates an understanding of their ecological role. Non-native seaweed species (NNSS) can be particularly impactful due to their cryptic life cycles, high fecundity, and tolerance to stressors, which could allow rapid spread across coastlines. This literature review summarizes a few well-known NNSS in California with a focus on using global literature on Undaria pinnatifida to inform potential trends of habitat use, dispersal, and phenology in this region. Globally, we found that Undaria is widely documented in bays and harbors, but there are documented cases of it establishing populations in coastal habitats in exposed rocky reef ecosystems, including California. Using data on thermal tolerance for U. pinnatifida in its native range, I found the sea surface temperatures (SST) throughout the west coast of the USA during 2019 are within the thermal tolerance of Undaria with the best SST for gametophytes occurring most frequently in southern California. Using data from the literature, I estimated the potential for Undaria to disperse from known populations in San Diego, CA, USA. These data suggest that Undaria has the potential to disperse into open coastal habitats in this region. This study provides a case for further using pre-existing literature from other regions to guide research conducted in regions of interest that can inform management decisions.
Collapse
|
2
|
Fang J, Hu Y, Hu Z. Comparative analysis of codon usage patterns in 16 chloroplast genomes of suborder Halimedineae. BMC Genomics 2024; 25:945. [PMID: 39379800 PMCID: PMC11459826 DOI: 10.1186/s12864-024-10825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
The Halimedineae are marine green macroalgae that play crucial roles as primary producers in various habitats, including coral reefs, rocky shores, embayments, lagoons, and seagrass beds. Several tropical species have calcified thalli, which contribute significantly to the formation of coral reefs. In this study, we investigated the codon usage patterns and the main factors influencing codon usage bias in 16 chloroplast genomes of the suborder Halimedineae. Nucleotide composition analysis revealed that the codons of these species were enriched in A/U bases and preferred to end in A/U bases, and the distribution of GC content followed a trend of GC1 > GC2 > GC3. 30 optimal codons encoding 17 amino acids were identified, and most of the optimal codons and all of the over-expressed codons preferentially ended with A/U. The neutrality plot, effective number of codons (ENc) plot, and parity rule 2 (PR2) plot analysis indicated that natural selection played a major role in shaping codon usage bias of the most Halimedineae species. The genetic relationships based on their RSCU values and chloroplast protein-coding genes showed the closely related species have similar codon usage patterns. This study describes, for the first time, the codon usage patterns and characterization of Halimedineae chloroplast genomes, and provides new insights into the evolution of this suborder.
Collapse
Affiliation(s)
- Jiao Fang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei, China.
| | - Yuquan Hu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, College of Life Science, Jianghan University, Wuhan, Hubei, China
| | - Zhangfeng Hu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei, China.
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, College of Life Science, Jianghan University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Gallo E, Oprandi A, Bianchi CN, Morri C, Azzola A, Montefalcone M. Unexpected slow recovery of seagrass leaf epiphytes after the impact of a summer heat wave and concomitant mucilage bloom. MARINE ENVIRONMENTAL RESEARCH 2023; 189:106034. [PMID: 37290233 DOI: 10.1016/j.marenvres.2023.106034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
The epiphytes of seagrass leaves constitute a peculiar community, comprised of a number of species specialized for this living substrate. Several studies report on the response of epiphytes to different pressures but no information exists about the effects of summer heatwaves, which have become frequent events in the last decades. This paper represents the first attempt to investigate the change in the leaf epiphyte community of the Mediterranean seagrass Posidonia oceanica due to the heatwave occurred in summer 2003. Thanks to a series of data collected seasonally between 2002 and 2006, and punctual data in the summers of 2014 and 2019, we assessed the change over time in the leaf epiphyte community. Temperature data trends were analysed through linear regression, while multivariate analyses (i.e., nMDS and SIMPER) were applied to cover data in order to assess changes over time in the epiphyte community. As a whole, the two most abundant taxa were the crustose coralline alga Hydrolithon and the encrusting bryozoan Electra posidoniae, which displayed the highest average cover values in summer (around 19%) and spring (around 9%), respectively. Epiphytes proved to be sensitive to temperature highs, displaying different effects on cover, biomass, diversity and community composition. Cover and biomass exhibited a dramatic reduction (more than 60%) after the disturbance. In particular, Hydrolithon more than halved, while E. posidoniae dropped sevenfold during summer 2003. While the former recovered comparatively quickly, the latter, as well as the whole community composition, apparently required 16 years to return to a condition similar to that of 2002.
Collapse
Affiliation(s)
- Elena Gallo
- SEL (Seascape Ecology Laboratory), DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Corso Europa 26, I-16132, Genova, Italy
| | - Alice Oprandi
- SEL (Seascape Ecology Laboratory), DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Corso Europa 26, I-16132, Genova, Italy.
| | - Carlo Nike Bianchi
- SEL (Seascape Ecology Laboratory), DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Corso Europa 26, I-16132, Genova, Italy; Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Genoa Marine Centre (GMC), Villa del Principe, Piazza Principe 4, I-16126, Genova, Italy
| | - Carla Morri
- SEL (Seascape Ecology Laboratory), DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Corso Europa 26, I-16132, Genova, Italy; Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Genoa Marine Centre (GMC), Villa del Principe, Piazza Principe 4, I-16126, Genova, Italy
| | - Annalisa Azzola
- SEL (Seascape Ecology Laboratory), DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Corso Europa 26, I-16132, Genova, Italy; NBFC, National Biodiversity Future Center, I-90133, Palermo, Italy
| | - Monica Montefalcone
- SEL (Seascape Ecology Laboratory), DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Corso Europa 26, I-16132, Genova, Italy; NBFC, National Biodiversity Future Center, I-90133, Palermo, Italy
| |
Collapse
|
4
|
Caulerpa cylindracea Spread on Deep Rhodolith Beds Can Be Influenced by the Morphostructural Composition of the Bed. DIVERSITY 2023. [DOI: 10.3390/d15030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The green alga Caulerpa cylindracea Sonder (Chlorophyta; Bryopsidales) is one of the most invasive alien macroalgae in the Mediterranean Sea, where it is also spreading on rhodolith beds, an important biogenic assemblage typical of deep substrates. Despite the importance of rhodoliths, data on the competitive interactions with C. cylindracea are still scarce. To deepen the knowledge on the topic, C. cylindracea occurrence on the rhodolith bed of Capo Carbonara Marine Protected Area (Italy) was explored. Quantitative analyses of videoframes obtained from Remote Operated Vehicle records in three different MPA sites, Is Piscadeddus, Santa Caterina, and Serpentara, allow for estimates of both the cover of rhodoliths (considering the main morphotypes) and of C. cylindracea, as well as their competition. All sites showed a well-developed rhodolith bed, although some differences were highlighted in their composition in terms of morphotype, shape, and dimension of rhodoliths, as well as in the C. cylindracea cover. In particular, Santa Caterina appeared to be the site with the highest mean total cover of rhodoliths (68%), and of C. cylindracea (25%). The obtained results suggest that different competitive interactions occur between C. cylindracea and rhodolith beds, in relation to the morphostructural composition of the latter and in response to environmental conditions that affect rhodolith bed composition.
Collapse
|
5
|
Mert-Ozupek N, Calibasi-Kocal G, Olgun N, Basbinar Y, Cavas L, Ellidokuz H. In-silico molecular interactions among the secondary metabolites of Caulerpa spp. and colorectal cancer targets. Front Chem 2022; 10:1046313. [PMID: 36561138 PMCID: PMC9763605 DOI: 10.3389/fchem.2022.1046313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Caulerpa spp. secrete more than thirty different bioactive chemicals which have already been used in cancer treatment research since they play a pivotal role in cancer metabolism. Colorectal cancer is one of the most common cancer types, thus using novel and effective chemicals for colorectal cancer treatment is crucial. In the cheminformatics pipeline of this study, ADME-Tox and drug-likeness tests were performed for filtering the secondary metabolites of Caulerpa spp. The ligands which were selected from the ADME test were used for in silico molecular docking studies against the enzymes of the oxidative branch of the pentose phosphate pathway (glucose-6-phosphate dehydrogenase and 6-phosphoglutarate dehydrogenase), which is of great importance for colorectal cancer, by using AutoDock Vina. Pharmacophore modeling was carried out to align the molecules. Molecular dynamic simulations were performed for each target to validate the molecular docking studies and binding free energies were calculated. According to the ADME test results, 13 different secondary metabolites were selected as potential ligands. Molecular docking studies revealed that vina scores of caulerpin and monomethyl caulerpinate for G6PDH were found as -10.6 kcal mol-1, -10.5 kcal mol-1, respectively. Also, the vina score of caulersin for 6PGD was found as -10.7 kcal mol-1. The highest and the lowest binding free energies were calculated for monomethyl caulerpinate and caulersin, respectively. This in silico study showed that caulerpin, monomethyl caulerpinate, and caulersin could be evaluated as promising marine phytochemicals against pentose phosphate pathway enzymes and further studies are recommended to investigate the detailed activity of these secondary metabolites on these targets.
Collapse
Affiliation(s)
- Nazli Mert-Ozupek
- Department of Basic Oncology, Institute of Health Sciences, Dokuz Eylül University, İzmir, Türkiye
| | - Gizem Calibasi-Kocal
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylül University, İzmir, Türkiye
| | - Nur Olgun
- Department of Pediatric Oncology, Institute of Oncology, Dokuz Eylül University, İzmir, Türkiye
| | - Yasemin Basbinar
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylül University, İzmir, Türkiye
| | - Levent Cavas
- Department of Chemistry, Faculty of Sciences, Dokuz Eylül University, İzmir, Türkiye
| | - Hulya Ellidokuz
- Department of Preventive Oncology, Institute of Oncology, Dokuz Eylül University, İzmir, Türkiye,*Correspondence: Hulya Ellidokuz,
| |
Collapse
|
6
|
Aguilar S, Moore PJ, Uribe RA. Habitat formed by the invasive macroalga Caulerpa filiformis (Suhr) Hering (Caulerpales, Chlorophyta) alters benthic macroinvertebrate assemblages in Peru. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Rindi F, Gavio B, Pezzolesi L, Pica D, Ponti M, Torsani F, Cerrano C. Spring composition of the macroalgal vegetation of a small offshore island in the north-western Mediterranean (Gallinara Island, Ligurian Sea). ITALIAN BOTANIST 2022. [DOI: 10.3897/italianbotanist.13.81812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gallinara Island, a small island located 1.5 km off the shore of Liguria (Italy, north-western Mediterranean Sea) was included in a list of proposed Marine Protected Areas (MPA) in the early 90s. Since then, its benthic assemblages have been studied in detail and the main macrophytic communities have been mapped. A detailed assessment of its benthic macroalgal flora, however, has never been made. Gallinara was visited in the course of 5 consecutive years and its macroalgal flora was studied based on collections made by snorkelling and SCUBA diving. Overall, 141 macroalgal taxa were collected and identified (23 Chlorophyta, 94 Rhodophyta, 24 Ochrophyta); 91 of them represent new records for the island. One of the most notable new records is the non-indigenous red alga Womersleyella setacea, previously unreported from the island and widely distributed, particularly on the south-eastern shore. Observations made in the course of the surveys confirm the rarefaction of some large-sized brown algae (particularly Sargassum vulgare) but indicate also that others previously reported as rare (Cystoseira compressa, Dictyopteris polypodioides) are still common on the island.
Collapse
|
8
|
Bachir Bouiadjra B, Ghellai M, Daoudi M, Behmene IE, Bachir Bouiadjra MEA. Impacts of the invasive species Caulerpa cylindracea Sonder, 1845 on the algae flora of the west coast of Algeria. Biodivers Data J 2021; 9:e64535. [PMID: 34093055 PMCID: PMC8175330 DOI: 10.3897/bdj.9.e64535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/10/2021] [Indexed: 12/05/2022] Open
Abstract
The assessment of the impacts of the expansion of the invasive species on taxonomic diversity, the abundance and dominance of groups of algae, the presence and/or absence of species of ecological interest that may or may not be indicative of water quality well mentioned, through the installation of a 20 × 20 cm quadrat representing the minimum area. The observation stations were visited monthly, during a repetitive three-year cycle, during the spring, summer and autumn seasons, periods of maximum growth and development of the algal flora and the results suggest the following facts. The invasive alga Caulerpacylindracea Sonder, 1845 tends to colonise disturbed ecosystems reflecting a reduction in native algal diversity; in fact, we note a drastic impoverishment of the invaded algal community, represented by a limited number of Macrophyte algae accompanying the invasive taxon in phytosociological surveys and a Shannon-Weaver Diversity Index (H’) and Equitability reduced by 4.49 and 0.77 n the heavily affected station. The number of macroalgal species accompanying the invasive species has dropped by 52% in Salamandre. In addition, the multidimensional analysis, represented by the Hierarchical Ascendant Clustering applied to this case, confirms our results.
Collapse
Affiliation(s)
- Benabdallah Bachir Bouiadjra
- Laboratory of Animal Production Sciences and Techniques (LSTPA), University of Mostaganem, Mostaganem, Algeria Laboratory of Animal Production Sciences and Techniques (LSTPA), University of Mostaganem Mostaganem Algeria
| | - Malika Ghellai
- University of Relizane, Relizane, Algeria University of Relizane Relizane Algeria
| | - Mohamed Daoudi
- Laboratory of Animal Production Sciences and Techniques (LSTPA), University of Mostaganem, Mostaganem, Algeria Laboratory of Animal Production Sciences and Techniques (LSTPA), University of Mostaganem Mostaganem Algeria
| | - Ibrahim Elkhalil Behmene
- Laboratory of Animal Production Sciences and Techniques (LSTPA), University of Mostaganem, Mostaganem, Algeria Laboratory of Animal Production Sciences and Techniques (LSTPA), University of Mostaganem Mostaganem Algeria
| | | |
Collapse
|
9
|
Double Trouble: Synergy between Habitat Loss and the Spread of the Alien Species Caulerpa cylindracea (Sonder) in Three Mediterranean Habitats. WATER 2021. [DOI: 10.3390/w13101342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The role of habitat degradation on the spread of the alien green alga Caulerpa cylindracea is reported here by comparing observations achieved through a multi-year assessment on three Mediterraneans habitats, namely Posidonia oceanica meadows, Phyllophora crispa turf, and coralligenous reefs. Due to the peculiarity of the study site, both natural-reference and impacted conditions were investigated. C. cylindracea occurred in all the studied habitats under impacted conditions. High susceptibility to the invasion characterized impacted P. oceanica, where Caulerpa cover reached 70.0% in summer months. C. cylindracea cover did not differ significantly among conditions in P. crispa turf, where values never exceeded 5.0%. Conversely, the invasive green algae was low in abundance and patchily distributed in coralligenous reefs. Our results confirmed that habitat loss enhances the spread of C. cylindracea, although with different magnitudes among habitats. Dead matte areas of P. oceanica represented the most vulnerable habitat among those analyzed, whereas coralligenous reefs were less susceptible to the invasion under both the studied conditions.
Collapse
|
10
|
Occhipinti-Ambrogi A. Biopollution by Invasive Marine Non-Indigenous Species: A Review of Potential Adverse Ecological Effects in a Changing Climate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4268. [PMID: 33920576 PMCID: PMC8074152 DOI: 10.3390/ijerph18084268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022]
Abstract
Biopollution by alien species is considered one of the main threats to environmental health. The marine environment, traditionally less studied than inland domains, has been the object of recent work that is reviewed here. Increasing scientific evidence has been accumulated worldwide on ecosystem deterioration induced by the development of massive non-indigenous population outbreaks in many coastal sites. Biopollution assessment procedures have been proposed, adopting criteria already used for xenochemical compounds, adjusting them to deal with alien species invasions. On the other hand, prevention and mitigation measures to reduce biopollution impact cannot always mimic the emission countermeasures that have been successfully applied for chemical pollutants. Nevertheless, in order to design comprehensive water-quality criteria, risk assessment and management strategies, based on scientific knowledge, have been developed in a similar way as for chemical pollution. The Mediterranean Sea is a well-known case of alien species invasion, mainly linked to the opening of the Suez Canal. Non-indigenous species have caused well-documented changes in many coastal ecosystems, favoured by concomitant changes induced by global warming and by the heavy load of nutrients and pollutants by various anthropogenic activities. Naval commercial traffic and leisure boats are among the most active vectors of spread for alien species inside the Mediterranean, and also towards other ocean regions. The scientific evidence gathered and summarized in this review suggests that effective management actions, under a precautionary approach, should be put in place in order to control introductions of species in new areas. These management measures are already established in international treaties and national legislations, but should be enforced to prevent the disruption of the dynamic ecological equilibria in the receiving environment and to control the direct adverse effects of alien species.
Collapse
Affiliation(s)
- Anna Occhipinti-Ambrogi
- Department of Earth and Environmental Sciences, University of Pavia, Via Sant'Epifanio, 14, 27100 Pavia, Italy
| |
Collapse
|
11
|
Rizzo L, Pusceddu A, Bianchelli S, Fraschetti S. Potentially combined effect of the invasive seaweed Caulerpa cylindracea (Sonder) and sediment deposition rates on organic matter and meiofaunal assemblages. MARINE ENVIRONMENTAL RESEARCH 2020; 159:104966. [PMID: 32662427 DOI: 10.1016/j.marenvres.2020.104966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/21/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
The seaweed Caulerpa cylindracea (Sonder) is one of the most successful marine bioinvaders worldwide. Caulerpa cylindracea can influence the quantity and biochemical composition of sedimentary organic matter (OM). However, it is still unknown if the effects of C. cylindracea on both OM and small metazoans (i.e. meiofauna) can change according to different sediment deposition rates. To provide insights on this, we investigated the biochemical composition of sediments along with the abundance and composition of meiofaunal assemblages in sediments colonized and not-colonized by the seaweed C. cylindracea under different regimes of sediment deposition. Our results show that the presence of the invasive alga C. cylindracea could alter quantity, biochemical composition, and nutritional quality of organic detritus and influence the overall functioning of the benthic system, but also that the observed effects could be context-dependent. In particular, we show that the presence of C. cylindracea could have a positive effect on meiofaunal abundance wherever the sediment deposition rates are low, whereas the contextual presence of high to medium sedimentation rates can provoke an accumulation of sedimentary organic matter, less favourable bioavailability of food for the benthos, and consequent negative effects on meiofauna.
Collapse
Affiliation(s)
- Lucia Rizzo
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy; CoNISMa, Piazzale Flaminio, 9 Roma, Italy.
| | - Antonio Pusceddu
- CoNISMa, Piazzale Flaminio, 9 Roma, Italy; Department of Life and Environmental Sciences, University of Cagliari, Via T. Fiorelli 1, Cagliari, Italy
| | - Silvia Bianchelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy
| | - Simonetta Fraschetti
- Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy; CoNISMa, Piazzale Flaminio, 9 Roma, Italy; Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Napoli, Italy
| |
Collapse
|
12
|
Bianchi CN, Azzola A, Bertolino M, Betti F, Bo M, Cattaneo-Vietti R, Cocito S, Montefalcone M, Morri C, Oprandi A, Peirano A, Bavestrello G. Consequences of the marine climate and ecosystem shift of the 1980-90s on the Ligurian Sea biodiversity (NW Mediterranean). EUROPEAN ZOOLOGICAL JOURNAL 2019. [DOI: 10.1080/24750263.2019.1687765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- C. N. Bianchi
- DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Genova, Italy
| | - A. Azzola
- DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Genova, Italy
| | - M. Bertolino
- DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Genova, Italy
| | - F. Betti
- DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Genova, Italy
| | - M. Bo
- DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Genova, Italy
| | - R. Cattaneo-Vietti
- DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Genova, Italy
| | - S. Cocito
- ENEA (Italian Agency for New Technologies, Energy and Sustainable Economic Development), Marine Environment Research Centre, La Spezia, Italy
| | - M. Montefalcone
- DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Genova, Italy
| | - C. Morri
- DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Genova, Italy
| | - A. Oprandi
- DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Genova, Italy
| | - A. Peirano
- ENEA (Italian Agency for New Technologies, Energy and Sustainable Economic Development), Marine Environment Research Centre, La Spezia, Italy
| | - G. Bavestrello
- DiSTAV (Department of Earth, Environmental and Life Sciences), University of Genoa, Genova, Italy
| |
Collapse
|
13
|
Abrupt Change in a Subtidal Rocky Reef Community Coincided with a Rapid Acceleration of Sea Water Warming. DIVERSITY 2019. [DOI: 10.3390/d11110215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Seawater warming is impacting marine ecosystems, but proper evaluation of change requires the availability of long-term biological data series. Mesco Reef (Ligurian Sea, Italy) offers one of the longest Mediterranean data series on sessile epibenthic communities, based on underwater photographic surveys. Photographs taken in four stations between 20 m and 40 m depth allowed calculating the percent cover of conspicuous species in 1961, 1990, 1996, 2008, and 2017. Multivariate analysis evidenced an abrupt compositional change between 1990 and 1996. A parallel change was observed in Ligurian Sea temperatures. Two invasive macroalgae (Caulerpa cylindracea and Womersleyella setacea) became dominant after 1996. Community diversity was low in 1961 to 1996, rapidly increased between 1996 and 2008, and exhibited distinctly higher values in 2008–2017. A novel community emerged from the climate shift of the 1990s, with many once characteristic species lost, reduced complexity, biotic homogenization, greater diversity and domination by aliens. Only continued monitoring will help envisage the possibility for a reversal of the present phase shift or for further transformations driven by global change.
Collapse
|
14
|
Giakoumi S, Katsanevakis S, Albano PG, Azzurro E, Cardoso AC, Cebrian E, Deidun A, Edelist D, Francour P, Jimenez C, Mačić V, Occhipinti-Ambrogi A, Rilov G, Sghaier YR. Management priorities for marine invasive species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:976-982. [PMID: 31726580 DOI: 10.1016/j.scitotenv.2019.06.282] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Managing invasive alien species is particularly challenging in the ocean mainly because marine ecosystems are highly connected across broad spatial scales. Eradication of marine invasive species has only been achieved when species were detected early, and management responded rapidly. Generalized approaches, transferable across marine regions, for prioritizing actions to control invasive populations are currently lacking. Here, expert knowledge was elicited to prioritize 11 management actions for controlling 12 model species, distinguished by differences in dispersion capacity, distribution in the area to be managed, and taxonomic identity. Each action was assessed using five criteria (effectiveness, feasibility, acceptability, impacts on native communities, and cost), which were combined in an 'applicability' metric. Raising public awareness and encouraging the commercial use of invasive species were highly prioritized, whereas biological control actions were considered the least applicable. Our findings can guide rapid decision-making on prioritizing management options for the control of invasive species especially at early stages of invasion, when reducing managers' response time is critical.
Collapse
Affiliation(s)
- Sylvaine Giakoumi
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Parc Valrose, 28 Avenue Valrose, 06108 Nice, France; ARC Centre of Excellence for Environmental Decisions, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| | - Stelios Katsanevakis
- University of the Aegean, Department of Marine Sciences, University Hill, 81100 Mytilene, Greece.
| | - Paolo G Albano
- University of Vienna, Department of Palaeontology, Vienna, Austria.
| | - Ernesto Azzurro
- Institute for Environmental Protection and Research (ISPRA), Via del Cedro 38, 57122 Livorno, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoles, Italy.
| | | | - Emma Cebrian
- Institut d'Ecologia Aquàtica, Universitat de Girona, E-17071 Girona, Catalonia, Spain; Centre d'Estudis Avançats de Blanes (CEAB-CSIC) Blanes, Girona, Spain.
| | - Alan Deidun
- Physical Oceanography Research Group, Department of Geosciences, University of Malta, Msida MSD 2080, Malta.
| | - Dor Edelist
- University of Haifa, School of Marine Sciences, 199 Aba Khoushy Ave., Mt. Carmel, Haifa, Israel.
| | - Patrice Francour
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Parc Valrose, 28 Avenue Valrose, 06108 Nice, France.
| | - Carlos Jimenez
- Enalia Physis Environmental Research Centre (ENALIA), Acropoleos 2, Aglantzia 2101, Nicosia, Cyprus.
| | - Vesna Mačić
- Institute of Marine Biology, University of Montenegro, Dobrota b.b., 85330 Kotor, Montenegro.
| | - Anna Occhipinti-Ambrogi
- University of Pavia, Department of Earth and Environmental Sciences, Via S. Epifanio 14, 27100 Pavia, Italy.
| | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research (ILOR), Haifa 3108001, Israel.
| | - Yassine Ramzi Sghaier
- Regional Activity Centre for Specially Protected Areas, Boulevard du Leader Yasser Arafet, B.P. 337, 1080 Tunis Cedex, Tunisia.
| |
Collapse
|
15
|
A new record of the invasive seaweed Caulerpa cylindracea Sonder in the South Adriatic Sea. Heliyon 2019; 5:e02449. [PMID: 31687554 PMCID: PMC6819781 DOI: 10.1016/j.heliyon.2019.e02449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/13/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022] Open
Abstract
The green alga Caulerpa cylindracea Sonder is one of the most infamous and threatening invasive species in the Mediterranean Sea. Since 1985, it started rapidly spreading to all Mediterranean regions causing many ecological changes on natural communities. In the present study, we present an example of this proliferation with the first record in the Marine Protected Area of Tremiti Island (MPATI) in the South Adriatic Sea. Fifteen sites along the coast and 5 different depths have been investigated. Our results provide eveidence of a wide invasion of this pest in three islands, San Domino, San Nicola and Capraia. This study fills a particular data gap in the ongoing biomonitoring of invasive seaweeds in the Mediterranean Sea representing a base line of this invasive species for the MPATI.
Collapse
|
16
|
An Alien Invader is the Cause of Homogenization in the Recipient Ecosystem: A Simulation-Like Approach. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11090146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biotic homogenization is an expected effect of biological invasions. Invasive alien species typically show great adaptability to a wide range of environmental conditions and may expand into different habitats, thus reducing the dissimilarity among the recipient communities. We tested this assumption by analyzing a comprehensive database (78 species × 229 samples) collected between 2012 and 2017 in the marine protected area of Portofino (NW Italy), where Caulerpa cylindracea, one of the worst invaders in the Mediterranean Sea, exhibits high substratum cover at depths between 1 m and 45 m in 14 different communities (identified according to the European Nature Information System EUNIS for habitat classification). Five samples for each of the eight depth zones (i.e., 5 m, 10 m, 15 m, 20 m, 25 m, 30 m, 35 m, and 40 m) were randomly re-sampled from the comprehensive database to produce a dataset of 67 species × 40 samples. Then, a second dataset of 66 species × 40 samples was simulated by excluding Caulerpa cylindracea. Both re-sampled datasets underwent multivariate analysis. In the presence of C. cylindracea, the overall similarity among samples was higher, thus indicating homogenization of the rocky reef communities of Portofino Marine Protected Area. Continued monitoring activity is needed to understand and assess the pattern and extent of C. cylindracea’s inclusion in the recipient ecosystems.
Collapse
|
17
|
Are the ecological effects of the "worst" marine invasive species linked with scientific and media attention? PLoS One 2019; 14:e0215691. [PMID: 30998797 PMCID: PMC6472817 DOI: 10.1371/journal.pone.0215691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/06/2019] [Indexed: 11/20/2022] Open
Abstract
Non-native species are a major driver of environmental change. In this study we assessed the ecological impact of the “worst” non-native species and the associated scientific and media publications through time to understand what influences interest in these species. Ecological effect was based on a qualitative assessment reported in research publications and additional searches of the scientific and media attention were conducted to determine published articles and assess attention. We did not detect a relationship between the number of publications for a non-native species and the magnitude of the ecological effects of that species or the number of citations. Media coverage on non-native species was low, only evident for less than 50% of the non-native species assessed. Media coverage was initially related to the number of scientific publications, but was short-lived. In contrast, the attention to individual non-native species in the scientific literature was sustained through time and often continued to increase over time. Time between detection of the non-native species and the scientific/media attention were reduced with each successive introduction to a new geographic location. Tracking publications on non-native species indicated that media attention does seem to be associated with the production of scientific research while scientific attention was not related to the magnitude of the ecological effects.
Collapse
|
18
|
Mehra R, Bhushan S, Bast F, Singh S. Marine macroalga Caulerpa: role of its metabolites in modulating cancer signaling. Mol Biol Rep 2019; 46:3545-3555. [PMID: 30980271 DOI: 10.1007/s11033-019-04743-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/05/2019] [Indexed: 12/22/2022]
Abstract
Cancer, the leading causes of death worldwide, causes multiple metabolic and physiological alterations, leading to an unregulated proliferation of cells. The existing anticancer therapies are usually nonspecific with side effects and or are extremely expensive, thus hunt for better therapeutics is still on, specially efforts are made to look for naturally occurring molecules. Sea harbors several organisms which are unexplored for their biological potentials. Green macroalga genus, Caulerpa, is one such invaluable repository of bioactive metabolites like alkaloids, terpenoids, flavonoids, steroids and tannins with reported bioactivities against many diseases including cancer. Anti-cancerous metabolites of Caulerpa like caulerpenyne (Cyn), caulerpin, caulersin, and racemosin C, possess unique structural moieties and are known to exhibit distinct effects on cancer cells. Theses metabolites are reported to affect microtubule dynamics, unfolded protein response, mitochondrial health, cell cycle progression, metabolic and stress pathways by their cross-talk with signalling proteins like AMPK, GRP78, GADD153, Bid, Bax, AIF, Bcl2, P21, cyclin D, cyclin E, caspase 9, and PTP1B. Targeting of multiple cancer hallmarks by Caulerpa metabolites, with concomitant modulations of multiple signalling cascades, displays its multifactorial approach against cancer. Evaluation of anti-cancer properties of this genus is particularly important as Caulerpa species are widely edible and utilized in several delicacies in the coastal countries. This is the first review article providing a consolidated information about the role of Caulerpa in cancer with major contributing metabolites and plausible modulations in cancer signaling and prospects.
Collapse
Affiliation(s)
- Richa Mehra
- Centre for Biosciences, Central University of Punjab, Mansa Road, Bathinda, Punjab, 151001, India
- Advanced Technology Platform Centre, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Satej Bhushan
- Centre for Biosciences, Central University of Punjab, Mansa Road, Bathinda, Punjab, 151001, India
- Computational Biology Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Felix Bast
- Department of Plant Sciences, Central University of Punjab, Mansa Road, Bathinda, Punjab, 151001, India
| | - Sandeep Singh
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Mansa Road, Bathinda, Punjab, 151001, India.
| |
Collapse
|
19
|
Cattaneo-Vietti R. Structural changes in Mediterranean marine communities: lessons from the Ligurian Sea. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0670-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Marić P, Ahel M, Senta I, Terzić S, Mikac I, Žuljević A, Smital T. Effect-directed analysis reveals inhibition of zebrafish uptake transporter Oatp1d1 by caulerpenyne, a major secondary metabolite from the invasive marine alga Caulerpa taxifolia. CHEMOSPHERE 2017; 174:643-654. [PMID: 28199941 DOI: 10.1016/j.chemosphere.2017.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 06/06/2023]
Abstract
Caulerpa taxifolia is a marine alga of tropical and subtropical distribution and a well-known invasive species in several temperate regions. Its invasiveness mainly stems from the production of secondary metabolites, some of which are toxic or repellent substances. In this study we investigated the possible inhibitory effects of C. taxifolia secondary metabolites on the activity of two zebrafish (Danio rerio) uptake transporters that transport organic anions (Oatp1d1) and cations (Oct1). Both transporters were transiently transfected and overexpressed in human embryonic kidney HEK293T cells. Transport activity assays using lucifer yellow (LY) and 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP+) as model substrates were applied for the determination of Oatp1d1 and Oct1 interactors. A two-step Effect-Directed Analysis (EDA) procedure was applied for the separation and identification of compounds. We identified caulerpenyne (CYN) as the major metabolite in C. taxifolia and reveal its potent inhibitory effect towards zebrafish Oatp1d1 as well as weak effect on zebrafish Oct1 transport. The observed effect was confirmed by testing CYN purified from C. taxifolia, resulting in an IC50 of 17.97 μM, and a weak CYN interaction was also determined for the zebrafish Oct1 transporter. Finally, using Michaelis-Menten kinetics experiments, we identified CYN as a non-competitive inhibitor of the zebrafish Oatp1d1. In conclusion, this study describes a novel mechanism of biological activity in C. taxifolia, shows that CYN was a potent non-competitive inhibitor of zebrafish Oatp1d1, and demonstrates that EDA can be reliably used for characterization of environmentally relevant complex biological samples.
Collapse
Affiliation(s)
- P Marić
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, 10 000 Zagreb, Croatia.
| | - M Ahel
- Laboratory for Analytical Chemistry and Biogeochemistry of Organic Compounds, Division for Marine and Environmental Research, Ruđer Bošković Institute, 10 000 Zagreb, Croatia.
| | - I Senta
- Laboratory for Analytical Chemistry and Biogeochemistry of Organic Compounds, Division for Marine and Environmental Research, Ruđer Bošković Institute, 10 000 Zagreb, Croatia.
| | - S Terzić
- Laboratory for Analytical Chemistry and Biogeochemistry of Organic Compounds, Division for Marine and Environmental Research, Ruđer Bošković Institute, 10 000 Zagreb, Croatia.
| | - I Mikac
- Laboratory for Analytical Chemistry and Biogeochemistry of Organic Compounds, Division for Marine and Environmental Research, Ruđer Bošković Institute, 10 000 Zagreb, Croatia.
| | - A Žuljević
- Laboratory for Benthos, Institute of Oceanography and Fisheries, 21 000 Split, Croatia.
| | - T Smital
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Ruđer Bošković Institute, 10 000 Zagreb, Croatia.
| |
Collapse
|
21
|
Arnaud-Haond S, Aires T, Candeias R, Teixeira SJL, Duarte CM, Valero M, Serrão EA. Entangled fates of holobiont genomes during invasion: nested bacterial and host diversities in Caulerpa taxifolia. Mol Ecol 2017; 26:2379-2391. [PMID: 28133884 DOI: 10.1111/mec.14030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/08/2016] [Accepted: 11/29/2016] [Indexed: 11/30/2022]
Abstract
Successful prevention and mitigation of biological invasions requires retracing the initial steps of introduction, as well as understanding key elements enhancing the adaptability of invasive species. We studied the genetic diversity of the green alga Caulerpa taxifolia and its associated bacterial communities in several areas around the world. The striking congruence of α and β diversity of the algal genome and endophytic communities reveals a tight association, supporting the holobiont concept as best describing the unit of spreading and invasion. Both genomic compartments support the hypotheses of a unique accidental introduction in the Mediterranean and of multiple invasion events in southern Australia. In addition to helping with tracing the origin of invasion, bacterial communities exhibit metabolic functions that can potentially enhance adaptability and competitiveness of the consortium they form with their host. We thus hypothesize that low genetic diversities of both host and symbiont communities may contribute to the recent regression in the Mediterranean, in contrast with the persistence of highly diverse assemblages in southern Australia. This study supports the importance of scaling up from the host to the holobiont for a comprehensive understanding of invasions.
Collapse
Affiliation(s)
- S Arnaud-Haond
- IFREMER, Station de Sète, UMR MARBEC, Avenue Jean Monnet, CS 30171, 34203, Sète Cedex, France.,OREME - Station Marine, Université Montpellier, 2 rue des Chantiers - CC 99009, 34200, Sète, France.,CCMAR-CIMAR, MAREE, Universidade do Algarve, Campus de Gambelas, 8005 - 139, Faro, Portugal
| | - T Aires
- CCMAR-CIMAR, MAREE, Universidade do Algarve, Campus de Gambelas, 8005 - 139, Faro, Portugal
| | - R Candeias
- CCMAR-CIMAR, MAREE, Universidade do Algarve, Campus de Gambelas, 8005 - 139, Faro, Portugal
| | - S J L Teixeira
- CCMAR-CIMAR, MAREE, Universidade do Algarve, Campus de Gambelas, 8005 - 139, Faro, Portugal
| | - C M Duarte
- RSRC (Red Sea Research Center), King Abdullah University of Science and Technology (KAUST), Building 2, Level 3, Room 3219, Thuwal, 23955-6900, Saudi Arabia
| | - M Valero
- UMI EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, UPMC, PUCCh, UACH, Station Biologique de Roscoff, Sorbonne Universités, CS 90074, Place Georges Teissier, 29688, Roscoff Cedex, France
| | - E A Serrão
- CCMAR-CIMAR, MAREE, Universidade do Algarve, Campus de Gambelas, 8005 - 139, Faro, Portugal
| |
Collapse
|