1
|
Soto I, Ahmed DA, Beidas A, Oficialdegui FJ, Tricarico E, Angeler DG, Amatulli G, Briski E, Datry T, Dohet A, Domisch S, England J, Feio MJ, Forcellini M, Johnson RK, Jones JI, Larrañaga A, L'Hoste L, Murphy JF, Schäfer RB, Shen LQ, Kouba A, Haubrock PJ. Long-term trends in crayfish invasions across European rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161537. [PMID: 36640879 DOI: 10.1016/j.scitotenv.2023.161537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Europe has experienced a substantial increase in non-indigenous crayfish species (NICS) since the mid-20th century due to their extensive use in fisheries, aquaculture and, more recently, pet trade. Despite relatively long invasion histories of some NICS and negative impacts on biodiversity and ecosystem functioning, large spatio-temporal analyses of their occurrences are lacking. Here, we used a large freshwater macroinvertebrate database to evaluate what information on NICS can be obtained from widely applied biomonitoring approaches and how usable such data is for descriptions of trends in identified NICS species. We found 160 time-series containing NICS between 1983 and 2019, to infer temporal patterns and environmental drivers of species and region-specific trends. Using a combination of meta-regression and generalized linear models, we found no significant temporal trend for the abundance of any species (Procambarus clarkii, Pacifastacus leniusculus or Faxonius limosus) at the European scale, but identified species-specific predictors of abundances. While analysis of the spatial range expansion of NICS was positive (i.e. increasing spread) in England and negative (significant retreat) in northern Spain, no trend was detected in Hungary and the Dutch-German-Luxembourg region. The average invasion velocity varied among countries, ranging from 30 km/year in England to 90 km/year in Hungary. The average invasion velocity gradually decreased over time in the long term, with declines being fastest in the Dutch-German-Luxembourg region, and much slower in England. Considering that NICS pose a substantial threat to aquatic biodiversity across Europe, our study highlights the utility and importance of collecting high resolution (i.e. annual) biomonitoring data using a sampling protocol that is able to estimate crayfish abundance, enabling a more profound understanding of NICS impacts on biodiversity.
Collapse
Affiliation(s)
- Ismael Soto
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Danish A Ahmed
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally 32093, Kuwait
| | - Ayah Beidas
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally 32093, Kuwait
| | | | - Elena Tricarico
- Department of Biology, University of Florence, Sesto Fiorentino (FI), Italy
| | - David G Angeler
- Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Uppsala, Sweden; Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Victoria, Australia; University of Nebraska - Lincoln, School of Natural Resources, Lincoln, NE, USA; The PRODEO Institute, San Francisco, CA, USA
| | - Giuseppe Amatulli
- Yale University, School of the Environment, 195 Prospect St, New Haven, CT 06511, USA
| | | | - Thibault Datry
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, 5 rue de la Doua CS70077, 69626 Villeurbanne, Cedex, France
| | - Alain Dohet
- Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Sami Domisch
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Department of Community and Ecosystem Ecology, Müggelseedamm 310, 12587 Berlin, Germany
| | - Judy England
- Chief Scientists Group, Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK
| | - Maria J Feio
- MARE - Marine and Environmental Sciences Centre, Associate Laboratory ARNET, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Maxence Forcellini
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, 5 rue de la Doua CS70077, 69626 Villeurbanne, Cedex, France
| | - Richard K Johnson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - J Iwan Jones
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Aitor Larrañaga
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Lionel L'Hoste
- Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - John F Murphy
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ralf B Schäfer
- RPTU Kaiserslautern-Landau, Institute for Environmental Sciences, Landau, Germany
| | - Longzhu Q Shen
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Department of Community and Ecosystem Ecology, Müggelseedamm 310, 12587 Berlin, Germany; Carnegie Mellon University, Institute for Green Science, 4400 Forbes Ave., Pittsburgh, PA 15213, USA
| | - Antonín Kouba
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Phillip J Haubrock
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic; Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally 32093, Kuwait; Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany
| |
Collapse
|
2
|
Temperature and interspecific competition alter the impacts of two invasive crayfish species on a key ecosystem process. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Weir JL, Vacura K, Bagga J, Berland A, Hyder K, Skov C, Attby J, Venturelli PA. Big data from a popular app reveals that fishing creates superhighways for aquatic invaders. PNAS NEXUS 2022; 1:pgac075. [PMID: 36741432 PMCID: PMC9896924 DOI: 10.1093/pnasnexus/pgac075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
Abstract
Human activities are the leading cause of biological invasions that cause ecologic and economic damage around the world. Aquatic invasive species (AIS) are often spread by recreational anglers who visit two or more bodies of water within a short time frame. Movement data from anglers are, therefore, critical to predicting, preventing, and monitoring the spread of AIS. However, the lack of broad-scale movement data has restricted efforts to large and popular lakes or small geographic extents. Here, we show that recreational fishing apps are an abundant, convenient, and relatively comprehensive source of "big" movement data across the contiguous United States. Our analyses revealed a dense network of angler movements that was dramatically more interconnected and extensive than the network that is formed naturally by rivers and streams. Short-distanced movements by anglers combined to form invasion superhighways that spanned the contiguous United States. We also identified possible invasion fronts and invaded hub lakes that may be superspreaders for two relatively common aquatic invaders. Our results provide unique insight into the national network through which AIS may be spread, increase opportunities for interjurisdictional coordination that is essential to addressing the problem of AIS, and highlight the important role that anglers can play in providing accurate data and preventing invasions. The advantages of mobile devices as both sources of data and a means of engaging the public in their shared responsibility to prevent invasions are probably general to all forms of tourism and recreation that contribute to the spread of invasive species.
Collapse
Affiliation(s)
- Jessica L Weir
- Department of Biology, Ball State University, Muncie 47306, IN, USA
| | - Kirsten Vacura
- Department of Biology, Ball State University, Muncie 47306, IN, USA
| | - Jay Bagga
- Department of Computer Science, Ball State University, Muncie, IN 47306, USA
| | - Adam Berland
- Department of Geography, Ball State University, Muncie, IN 47306, USA
| | - Kieran Hyder
- Center for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk NR33 0HT, UK
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Christian Skov
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg 8600, Denmark
| | | | | |
Collapse
|
4
|
Sharma A, Dubey VK, Johnson JA, Rawal YK, Sivakumar K. Dendritic prioritization through spatial stream network modeling informs targeted management of Himalayan riverscapes under brown trout invasion. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Larsen S, Comte L, Filipa Filipe A, Fortin MJ, Jacquet C, Ryser R, Tedesco PA, Brose U, Erős T, Giam X, Irving K, Ruhi A, Sharma S, Olden JD. The geography of metapopulation synchrony in dendritic river networks. Ecol Lett 2021; 24:791-801. [PMID: 33619868 PMCID: PMC8049041 DOI: 10.1111/ele.13699] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/30/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Dendritic habitats, such as river ecosystems, promote the persistence of species by favouring spatial asynchronous dynamics among branches. Yet, our understanding of how network topology influences metapopulation synchrony in these ecosystems remains limited. Here, we introduce the concept of fluvial synchrogram to formulate and test expectations regarding the geography of metapopulation synchrony across watersheds. By combining theoretical simulations and an extensive fish population time‐series dataset across Europe, we provide evidence that fish metapopulations can be buffered against synchronous dynamics as a direct consequence of network connectivity and branching complexity. Synchrony was higher between populations connected by direct water flow and decayed faster with distance over the Euclidean than the watercourse dimension. Likewise, synchrony decayed faster with distance in headwater than mainstem populations of the same basin. As network topology and flow directionality generate fundamental spatial patterns of synchrony in fish metapopulations, empirical synchrograms can aid knowledge advancement and inform conservation strategies in complex habitats.
Collapse
Affiliation(s)
- Stefano Larsen
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, San Michele all'Adige, 38010, Italy.,Department of Civil Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Lise Comte
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98105, USA.,School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Ana Filipa Filipe
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Marie-Josée Fortin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Claire Jacquet
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland.,Complex Systems Lab, INRAE - Centre Clermont-Auvergne-Rhône-Alpes, 9 avenue Blaise Pascal, Aubière,, 63170, France.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany.,Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, 07743, Germany
| | - Pablo A Tedesco
- UMR EDB, CNRS 5174, UPS, Université Paul Sabatier, IRD 253, Toulouse, France
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany.,Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, 07743, Germany
| | - Tibor Erős
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3, Tihany, 8237, Hungary
| | - Xingli Giam
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Katie Irving
- Biology Department, Southern California Coastal Water Research Project, Costa Mesa, CA, 92626, USA.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Albert Ruhi
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Sapna Sharma
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Julian D Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98105, USA
| |
Collapse
|
6
|
Mota‐Ferreira M, Filipe AF, Filomena Magalhães M, Carona S, Beja P. Spatial modelling of temporal dynamics in stream fish communities under anthropogenic change. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Mário Mota‐Ferreira
- CIBIO/InBio Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
- CIBIO/InBio Instituto Superior de Agronomia Universidade de Lisboa Lisboa Portugal
| | - Ana Filipa Filipe
- CIBIO/InBio Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
- CIBIO/InBio Instituto Superior de Agronomia Universidade de Lisboa Lisboa Portugal
| | - Maria Filomena Magalhães
- cE3c Centro de Ecologia, Evolução e Alterações Ambientais Faculdade de Ciências Universidade de Lisboa Lisboa Portugal
| | - Sara Carona
- cE3c Centro de Ecologia, Evolução e Alterações Ambientais Faculdade de Ciências Universidade de Lisboa Lisboa Portugal
| | - Pedro Beja
- CIBIO/InBio Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
- CIBIO/InBio Instituto Superior de Agronomia Universidade de Lisboa Lisboa Portugal
| |
Collapse
|
7
|
Leach A, Leach H. Characterizing the spatial distributions of spotted lanternfly (Hemiptera: Fulgoridae) in Pennsylvania vineyards. Sci Rep 2020; 10:20588. [PMID: 33239707 PMCID: PMC7688957 DOI: 10.1038/s41598-020-77461-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/11/2020] [Indexed: 11/20/2022] Open
Abstract
Spotted lanternfly (SLF) is an invasive insect in the Northeastern U.S. projected to spread nationally and globally. While SLF is a significant pest of vineyards, little is known about the pest in grape agroecosystems including its spatial ecology. SLF spatial patterns were analyzed using a combination of approaches including generalized linear mixed effect models, Moran’s I statistic for spatial clustering, and Empirical Bayesian Kriging. Analysis revealed that SLF displayed significantly clumped distributions in monitored vineyards. Approximately 54% and 44% of the respective adult and egg mass populations were observed within the first 15 m of the vineyard edge. Importantly, the spatial concentration of adults at the edge was consistent temporally, both between years and weeks. Moreover, high populations of SLF on vines were significantly correlated with reduced fruit production in the following year. Mark-release-recapture of SLF revealed that higher proportions of SLF were recaptured on vines with high pre-existing SLF populations, indicating that SLF may exhibit aggregation behavior along vineyard perimeters. Monitoring and management efforts for SLF should be prioritized around vineyard edges as it may significantly reduce infestations and subsequent damage.
Collapse
Affiliation(s)
- Ashley Leach
- Entomology Department, Purdue University, West Lafayette, IN, USA
| | - Heather Leach
- Entomology Department, Penn State University, University Park, PA, USA.
| |
Collapse
|
8
|
Predicting geographic distributions of fishes in remote stream networks using maximum entropy modeling and landscape characterizations. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Kattwinkel M, Szöcs E, Peterson E, Schäfer RB. Preparing GIS data for analysis of stream monitoring data: The R package openSTARS. PLoS One 2020; 15:e0239237. [PMID: 32941523 PMCID: PMC7498020 DOI: 10.1371/journal.pone.0239237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/01/2020] [Indexed: 11/21/2022] Open
Abstract
Stream monitoring data provides insights into the biological, chemical and physical status of running waters. Additionally, it can be used to identify drivers of chemical or ecological water quality, to inform related management actions, and to forecast future conditions under land use and global change scenarios. Measurements from sites along the same stream may not be statistically independent, and the R package SSN provides a way to describe spatial autocorrelation when modelling relationships between measured variables and potential drivers. However, SSN requires the user to provide the stream network and sampling locations in a certain format. Likewise, other applications require catchment delineation and intersection of different spatial data. We developed the R package openSTARS that provides the functionality to derive stream networks from a digital elevation model, delineate stream catchments and intersect them with land use or other GIS data as potential predictors. Additionally, locations for model predictions can be generated automatically along the stream network. We present an example workflow of all data preparation steps. In a case study using data from water monitoring sites in Southern Germany, the resulting stream network and derived site characteristics matched those constructed using STARS, an ArcGIS custom toolbox. An advantage of openSTARS is that it relies on free and open-source GRASS GIS and R functions, unlike the original STARS toolbox which depends on proprietary ArcGIS. openSTARS also comes without a graphical user interface, to enhance reproducibility and reusability of the workflow, thereby harmonizing and simplifying the data pre-processing prior to statistical modelling. Overall, openSTARS facilitates the use of spatial regression and other applications on stream networks and contributes to reproducible science with applications in hydrology, environmental sciences and ecology.
Collapse
Affiliation(s)
- Mira Kattwinkel
- Institute for Environmental Sciences (iES), University of Koblenz-Landau, Landau, Germany
- * E-mail:
| | - Eduard Szöcs
- Institute for Environmental Sciences (iES), University of Koblenz-Landau, Landau, Germany
| | - Erin Peterson
- Institute for Future Environments, Queensland University of Technology, Brisbane, Australia
- Australian Research Council Centre of Excellence in Mathematical and Statistical Frontiers (ACEMS), Brisbane, Australia
| | - Ralf B. Schäfer
- Institute for Environmental Sciences (iES), University of Koblenz-Landau, Landau, Germany
| |
Collapse
|
10
|
Mota‐Ferreira M, Beja P. Combining geostatistical and biotic interaction model to predict amphibian refuges under crayfish invasion across dendritic stream networks. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Mário Mota‐Ferreira
- EDP Biodiversity Chair CIBIO/InBio Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vila do Conde Portugal
- CIBIO/InBio Centro de Investigação em Biodiversidade e Recursos Genéticos Instituto Superior de Agronomia Universidade de Lisboa Lisboa Portugal
| | - Pedro Beja
- EDP Biodiversity Chair CIBIO/InBio Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vila do Conde Portugal
- CIBIO/InBio Centro de Investigação em Biodiversidade e Recursos Genéticos Instituto Superior de Agronomia Universidade de Lisboa Lisboa Portugal
| |
Collapse
|
11
|
McGill L, Steel E, Brooks J, Edwards R, Fullerton A. Elevation and spatial structure explain most surface-water isotopic variation across five Pacific Coast basins. JOURNAL OF HYDROLOGY 2020; 583:10.1016/j.jhydrol.2020.124610. [PMID: 33746290 PMCID: PMC7970517 DOI: 10.1016/j.jhydrol.2020.124610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The stable isotope ratios of stream water can be used to trace water sources within river basins; however, drivers of variation in water isotopic spatial patterns across basins must be understood before ecologically relevant and isotopically distinct water sources can be identified and this tool efficiently applied. We measured the isotope ratios of surface-water samples collected during summer low-flow across five basins in Washington and southeast Alaska (Snoqualmie, Green, Skagit, and Wenatchee Rivers, and Cowee Creek) and compared models (isoscapes) describing the spatial variation in surface-water isotope ratios across a range of hydraulic and climatic conditions. We found strong correlations between mean watershed (MWE) elevation and surface-water isotopic ratios on the windward west side of the Cascades and in Alaska, explaining 48-90% of variation in δ18O values. Conversely, in the Wenatchee basin, located leeward of the Cascade Range, MWE alone had no predicative power. The elevation relationship and predictive isoscapes varied between basins, even those adjacent to each other. Applying spatial stream network models (SSNMs) to the Snoqualmie and Wenatchee Rivers, we found incorporating Euclidean and flow-connected spatial autocovariance improved explanatory power. SSNMs improved the accuracy of river water isoscapes in all cases; however, their utility was greater for the Wenatchee basin, where covariates explained only a small proportion of total variation. Our study provides insights into why basinscale surface-water isoscapes may vary even in adjacent basins and the importance of incorporating spatial autocorrelation in isoscapes. For determining source water contributions to downstream waters, our results indicate that surface water isoscapes should be developed for each basin of interest.
Collapse
Affiliation(s)
- L.M. McGill
- Quantitative Ecology and Resource Management, University of Washington, Seattle, WA 98105, USA
| | - E.A. Steel
- Pacific Northwest Research Station, USDA Forest Service, 400 NW 34th Street, Suite 201, Seattle, WA 98103, USA
| | - J.R. Brooks
- Western Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, 200 SW 35th Street, Corvallis, Oregon 97333, USA
| | - R.T Edwards
- Pacific Northwest Research Station, USDA Forest Service, 11175 Auke Lake Way, Juneau, AK 99801, USA
| | - A.H. Fullerton
- Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| |
Collapse
|
12
|
Erős T, Lowe WH. The Landscape Ecology of Rivers: from Patch-Based to Spatial Network Analyses. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40823-019-00044-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Purpose of Review
We synthesize recent methodological and conceptual advances in the field of riverscape ecology, emphasizing areas of synergy with current research in landscape ecology.
Recent Findings
Recent advances in riverscape ecology highlight the need for spatially explicit examinations of how network structure influences ecological pattern and process, instead of the simple linear (upstream-downstream) view. Developments in GIS, remote sensing, and computer technologies already offer powerful tools for the application of patch- and gradient-based models for characterizing abiotic and biotic heterogeneity across a range of spatial and temporal scales. Along with graph-based analyses and spatial statistical stream network models (i.e., geostatistical modelling), these approaches offer improved capabilities for quantifying spatial and temporal heterogeneity and connectivity relationships, thereby allowing for rigorous and high-resolution analyses of pattern, process, and scale relationships.
Summary
Spatially explicit network approaches are able to quantify and predict biogeochemical, hydromorphological, and ecological patterns and processes more precisely than models based on longitudinal or lateral riverine gradients alone. Currently, local habitat characteristics appear to be more important than spatial effects in determining population and community dynamics, but this conclusion may change with direct quantification of the movement of materials, energy, and organisms along channels and across ecosystem boundaries—a key to improving riverscape ecology. Coupling spatially explicit riverscape models with optimization approaches will improve land protection and water management efforts, and help to resolve the land sharing vs. land sparing debate.
Collapse
|
13
|
Kaylor MJ, White SM, Saunders WC, Warren DR. Relating spatial patterns of stream metabolism to distributions of juveniles salmonids at the river network scale. Ecosphere 2019. [DOI: 10.1002/ecs2.2781] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Matthew J. Kaylor
- Department of Fisheries and Wildlife Oregon State University Corvallis Oregon USA
| | - Seth M. White
- Columbia River Inter‐Tribal Fish Commission Portland Oregon USA
| | - W. Carl Saunders
- Department of Watershed Sciences Utah State University Logan Utah USA
| | - Dana R. Warren
- Department of Fisheries and Wildlife Oregon State University Corvallis Oregon USA
- Department of Forest Ecosystems and Society Oregon State University Corvallis Oregon USA
| |
Collapse
|
14
|
Anastácio PM, Ribeiro F, Capinha C, Banha F, Gama M, Filipe AF, Rebelo R, Sousa R. Non-native freshwater fauna in Portugal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1923-1934. [PMID: 30286358 DOI: 10.1016/j.scitotenv.2018.09.251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
We present the most updated list of non-native freshwater fauna established in Portugal, including the Azores and Madeira archipelagos. This list includes 67 species at national level but corresponds to 84 species records, of which 53 are in the mainland, 23 in the Azores and 8 in Madeira archipelagos. We also discuss the progression of the cumulative number of introductions since 1800 and identify the most probable vectors of introduction, main taxonomic groups and their regions of origin. Furthermore, we review the existing knowledge about ecological and economic impacts, invasion risk and potential distribution of invaders, under present and future climatic conditions, and the applied management actions, including the production of legislation. Along the 20th century the number of successful introductions increased at an approximate rate of two new species per decade until the beginning of 1970s. Since then, this rate increased to about 14 new species per decade. These introductions were mainly a result of fisheries, as contaminants or for ornamental purposes. Fish and mollusks are the taxonomic groups with more established species, representing more than half of the total. Most species (>70%) are native from other regions of Europe and North America. Studies about ecological or socioeconomic impacts are more common for fish, crustaceans and mollusks. Impacts for most amphibians, reptiles and mammals are not thoroughly studied. A few studies on the impacts and management actions of health-threatening mosquitoes are also available. The potential distribution in the Portuguese territory was modelled for 26 species. Only a minority of these models provides projections of distributions under scenarios of future climate change. A comparison of the Portuguese and EU legislation shows large discrepancies in the invasive species lists. Using the EU list and a ranking procedure for the national context, we identify freshwater species of high national concern for which actions are urgently needed.
Collapse
Affiliation(s)
- Pedro M Anastácio
- MARE - Marine and Environmental Sciences Centre, Departamento de Paisagem Ambiente e Ordenamento, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal.
| | - Filipe Ribeiro
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - César Capinha
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Campus Agrário de Vairão, R. Padre Armando Quintas, 4485-661 Vairão, Portugal; CEABN/InBIO, Centro de Ecologia Aplicada, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Filipe Banha
- MARE - Marine and Environmental Sciences Centre, Departamento de Paisagem Ambiente e Ordenamento, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal
| | - Mafalda Gama
- MARE - Marine and Environmental Sciences Centre, Departamento de Paisagem Ambiente e Ordenamento, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal
| | - Ana F Filipe
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Campus Agrário de Vairão, R. Padre Armando Quintas, 4485-661 Vairão, Portugal; CEABN/InBIO, Centro de Ecologia Aplicada, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Rui Rebelo
- Department of Animal Biology and Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa (cE3c-FCUL), Lisbon, Portugal
| | - Ronaldo Sousa
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
15
|
Meira A, Lopes-Lima M, Varandas S, Teixeira A, Arenas F, Sousa R. Invasive crayfishes as a threat to freshwater bivalves: Interspecific differences and conservation implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:938-948. [PMID: 30179822 DOI: 10.1016/j.scitotenv.2018.08.341] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/06/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Freshwater bivalves have suffered major global declines, being the introduction of invasive alien species (IAS) an important, but not well studied, mechanism of threat. This study assessed the predator-prey relationship between two non-native crayfish species (Procambarus clarkii and Pacifastacus leniusculus) and three native (Anodonta anatina, Potomida littoralis and Unio delphinus) and one non-native (Corbicula fluminea) freshwater bivalve species through experiments in laboratory and validation under natural conditions (Sabor River basin, Portugal). All native bivalve species were preyed both in laboratory and in the field; however, both crayfish species were unable to prey C. fluminea. Predation was dependent on crayfish and bivalve species but was not affected neither by crayfish nor bivalve sizes. In the laboratory, the most preyed species by both crayfishes was A. anatina. On average, this species was preyed at least 12% more than other species, when crayfishes had a choice. Similar results were found in the field. We also found signs of competition between both crayfishes, being P. clarkii more dominant and aggressive as this species, on average, manipulated the bivalves 63.6% more times and 24:33 min longer than P. leniusculus, and initiated 55.8% more agnostic bouts. Our results support the idea that P. clarkii and P. leniusculus can affect native freshwater bivalves, but clear interspecific differences were detected. Both crayfishes may have direct and indirect impacts on bivalve populations by increasing mortality or by reducing their fitness. In addition, since both crayfishes do not prey C. fluminea, they offer this IAS another advantage over native bivalves. Given the widespread distribution of both P. clarkii and P. leniusculus and the threatened status of many freshwater bivalves, the dynamics and impacts of this relationship should be taken in account in the implementation of management measures devoted to the conservation of native freshwater bivalves.
Collapse
Affiliation(s)
- Alexandra Meira
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| | - Manuel Lopes-Lima
- CIBIO/InBIO - Research Center in Biodiversity and Genetic Resources, University of Porto, Campus Agrário de Vairão, Vairão, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Simone Varandas
- CITAB-UTAD - Centre for Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes and Alto Douro, Forestry Department, Vila Real, Portugal
| | - Amílcar Teixeira
- CIMO-ESA-IPB - Mountain Research Centre, School of Agriculture, Polytechnic Institute of Bragança, Bragança, Portugal
| | - Francisco Arenas
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Ronaldo Sousa
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
16
|
Detection and Control of Invasive Freshwater Crayfish: From Traditional to Innovative Methods. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11010005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Invasive alien species are widespread in freshwater systems compared to terrestrial ecosystems. Among crustaceans, crayfish in particular have been widely introduced and are considered a major threat to freshwater ecosystem functioning. New emerging techniques for detecting and controlling invasive crayfish and protecting endangered native species are; thus, now highly desirable and several are under evaluation. Important innovations have been developed in recent years for detection of both invasive and native crayfish, mainly through eDNA, which allows for the detection of the target species even at low abundance levels and when not directly observable. Forecasting models have also moved towards the creation of realistic invasion scenarios, allowing effective management plans to be developed in advance of invasions. The importance of monitoring the spread and impacts of crayfish and pathogens in developing national data and research networks is emphasised; here “citizen science” can also play a role. Emerging techniques are still being considered in the field of invasive crayfish control. Although for decades the main traditional techniques to manage invasive crayfish were solely based on trapping, since 2010 biological, biocidal, autocidal controls and sexual attractants, monosex populations, RNA interference, the sterile male release technique and oral delivery have all also been investigated for crayfish control. In this review, ongoing methodologies applied to the detection and management of invasive crayfish are discussed, highlighting their benefits and limitations.
Collapse
|
17
|
Quaglietta L, Porto M. SiMRiv: an R package for mechanistic simulation of individual, spatially-explicit multistate movements in rivers, heterogeneous and homogeneous spaces incorporating landscape bias. MOVEMENT ECOLOGY 2019; 7:11. [PMID: 30984401 PMCID: PMC6444552 DOI: 10.1186/s40462-019-0154-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/04/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Lack of suitable analytical software and computational power constrains the comprehension of animal movement. In particular, we are aware of no tools allowing simulating spatially-explicit multistate Markovian movements constrained to linear features or conditioned by landscape heterogeneity, which hinders movement ecology research in linear/dendritic (e.g. river networks) and heterogeneous landscapes.SiMRiv is a novel, fast and intuitive R package we designed to fill such gap. It does so by allowing continuous-space mechanistic spatially-explicit simulation of multistate Markovian individual movements incorporating landscape bias on local behavior. RESULTS We present SiMRiv and its main functionalities, illustrate its simulation capabilities and easy-of-use, and discuss its limitations and potential improvements. We further provide examples of use and a preliminary evaluation, using real and simulated data, of a parameter approximation experimental method. SiMRiv allowed us to generate increasingly complex movements of three theoretical species (aquatic, semiaquatic and terrestrial), showing the effects of input parameters and water-dependence on emerging movement patterns, and to parameterize a high-frequency simulation model from real, low-frequency movement (telemetry) data. Typical running times for conducting 1000 simulations with 10,000 steps each, of two-state movement trajectories in a river network, were of ca. 3 min in an Intel Core i7 CPU X990 @ 3.47 GHz. CONCLUSIONS SiMRiv allows simulation of movements constrained to linear habitats or conditioned by landscape heterogeneity, therefore enhancing the application of movement ecology to linear/dendritic and heterogeneous landscapes. Importantly, the software is flexible enough to be used in linear, heterogeneous, as well as homogeneous landscapes. Using the same software, algorithm and approach, one can therefore use SiMRiv to study the movement of different organisms in a variety of landscapes, facilitating comparative research.SiMRiv balances ease and speed with high realism of the movement models obtainable, constituting a fast, powerful, yet intuitive tool, which should contribute exploring several movement-related questions. Its applications depart from the generation of mechanistic null movement models, up to population level (e.g. landscape connectivity) analyses, holding potential for all fields requiring the simulation of random trajectories.
Collapse
Affiliation(s)
- Lorenzo Quaglietta
- 1CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
- 2CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Miguel Porto
- 1CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
- 2CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Laboratório Associado, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| |
Collapse
|
18
|
Quaglietta L, Beja P. Direct observations of vertebrate killing and consumption by the endangered Pyrenean desman (Galemys pyrenaicus). MAMMALIA 2018. [DOI: 10.1515/mammalia-2018-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The Pyrenean desman (Galemys pyrenaicus) is a globally endangered semiaquatic mammal species restricted to Southwest Europe. It is thought to mostly predate on aquatic prey, particularly macroinvertebrates; yet anecdotal information and recent genetic-based findings suggest higher flexibility in its trophic niche. Here, we report on direct observations of wild-caught Pyrenean desmans attacking, killing and consuming live fish (trout – Salmo trutta fario) and amphibians (Iberian frog – Rana iberica) in semi-captivity conditions providing unquestionable evidence (photos and videos) of vertebrate attack, killing, handling and consumption by the species. This illustrates the species’ ability to kill and eat vertebrates, corroborating recent evidence on its trophic flexibility.
Collapse
Affiliation(s)
- Lorenzo Quaglietta
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos , Universidade do Porto , Vairão, 4485-661 Vairão , Portugal
- CEABN/InBIO, Centro de Ecologia Aplicada “Prof Baeta Neves”, Instituto Superior de Agronomia , Universidade de Lisboa , Lisbon , Portugal
| | - Pedro Beja
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos , Universidade do Porto , Vairão, 4485-661 Vairão , Portugal
- CEABN/InBIO, Centro de Ecologia Aplicada “Prof Baeta Neves”, Instituto Superior de Agronomia , Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|
19
|
Quaglietta L, Paupério J, Martins FMS, Alves PC, Beja P. Recent range contractions in the globally threatened Pyrenean desman highlight the importance of stream headwater refugia. Anim Conserv 2018. [DOI: 10.1111/acv.12422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- L. Quaglietta
- CIBIO/InBio; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
- CEABN/InBio; Centro de Ecologia Aplicada “Professor Baeta Neves”; Instituto Superior de Agronomia; Universidade de Lisboa; Tapada da Ajuda; Lisboa Portugal
| | - J. Paupério
- CIBIO/InBio; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
| | - F. M. S. Martins
- CIBIO/InBio; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
| | - P. C. Alves
- CIBIO/InBio; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
- Departamento de Biologia; Faculdade de Ciências da Universidade do Porto; Porto Portugal
- Wildlife Biology Program; University of Montana; Missoula MT USA
| | - P. Beja
- CIBIO/InBio; Centro de Investigação em Biodiversidade e Recursos Genéticos; Universidade do Porto; Vairão Portugal
- CEABN/InBio; Centro de Ecologia Aplicada “Professor Baeta Neves”; Instituto Superior de Agronomia; Universidade de Lisboa; Tapada da Ajuda; Lisboa Portugal
| |
Collapse
|