1
|
Watchorn DJ, Doherty TS, Wilson BA, Garkaklis MJ, Driscoll DA. How do invasive predators and their native prey respond to prescribed fire? Ecol Evol 2024; 14:e11450. [PMID: 38783847 PMCID: PMC11112300 DOI: 10.1002/ece3.11450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Fire shapes animal communities by altering resource availability and species interactions, including between predators and prey. In Australia, there is particular concern that two highly damaging invasive predators, the feral cat (Felis catus) and European red fox (Vulpes vulpes), increase their activity in recently burnt areas and exert greater predation pressure on the native prey due to their increased exposure. We tested how prescribed fire occurrence and extent, along with fire history, vegetation, topography, and distance to anthropogenic features (towns and farms), affected the activity (detection frequency) of cats, foxes, and the native mammal community in south-eastern Australia. We used camera traps to quantify mammal activity before and after a prescribed burn and statistically tested how the fire interacted with these habitat variables to affect mammal activity. We found little evidence that the prescribed fire influenced the activity of cats and foxes and no evidence of an effect on kangaroo or small mammal (<800 g) activity. Medium-sized mammals (800-2000 g) were negatively associated with prescribed fire extent, suggesting that prescribed fire has a negative impact on these species in the short term. The lack of a clear activity increase from cats and foxes is likely a positive outcome from a fire management perspective. However, we highlight that their response is likely dependent upon factors like fire size, severity, and prey availability. Future experiments should incorporate GPS-trackers to record fine-scale movements of cats and foxes in temperate ecosystems immediately before and after prescribed fire to best inform management within protected areas.
Collapse
Affiliation(s)
- Darcy J. Watchorn
- School of Life and Environmental Sciences (Burwood Campus)Deakin UniversityGeelongVictoriaAustralia
| | - Tim S. Doherty
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Biodiversity and Conservation ScienceDepartment of Biodiversity, Conservation and AttractionsWoodvaleWestern AustraliaAustralia
| | - Barbara A. Wilson
- School of Life and Environmental Sciences (Burwood Campus)Deakin UniversityGeelongVictoriaAustralia
| | | | - Don A. Driscoll
- School of Life and Environmental Sciences (Burwood Campus)Deakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
2
|
Fleming PA, Stobo-Wilson AM, Crawford HM, Dawson SJ, Dickman CR, Doherty TS, Fleming PJS, Newsome TM, Palmer R, Thompson JA, Woinarski JCZ. Distinctive diets of eutherian predators in Australia. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220792. [PMID: 36312571 PMCID: PMC9554524 DOI: 10.1098/rsos.220792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/16/2022] [Indexed: 06/01/2023]
Abstract
Introduction of the domestic cat and red fox has devastated Australian native fauna. We synthesized Australian diet analyses to identify traits of prey species in cat, fox and dingo diets, which prey were more frequent or distinctive to the diet of each predator, and quantified dietary overlap. Nearly half (45%) of all Australian terrestrial mammal, bird and reptile species occurred in the diets of one or more predators. Cat and dingo diets overlapped least (0.64 ± 0.27, n = 24 location/time points) and cat diet changed little over 55 years of study. Cats were more likely to have eaten birds, reptiles and small mammals than foxes or dingoes. Dingo diet remained constant over 53 years and constituted the largest mammal, bird and reptile prey species, including more macropods/potoroids, wombats, monotremes and bandicoots/bilbies than cats or foxes. Fox diet had greater overlap with both cats (0.79 ± 0.20, n = 37) and dingoes (0.73 ± 0.21, n = 42), fewer distinctive items (plant material, possums/gliders) and significant spatial and temporal heterogeneity over 69 years, suggesting the opportunity for prey switching (especially of mammal prey) to mitigate competition. Our study reinforced concerns about mesopredator impacts upon scarce/threatened species and the need to control foxes and cats for fauna conservation. However, extensive dietary overlap and opportunism, as well as low incidence of mesopredators in dingo diets, precluded resolution of the debate about possible dingo suppression of foxes and cats.
Collapse
Affiliation(s)
- Patricia A. Fleming
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Alyson M. Stobo-Wilson
- NESP Threatened Species Recovery Hub, Charles Darwin University, Casuarina, Northern Territory 0909, Australia
- CSIRO Land and Water, PMB 44, Winnellie, Northern Territory 0822, Australia
| | - Heather M. Crawford
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
| | - Stuart J. Dawson
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, Western Australia 6151, Australia
| | - Chris R. Dickman
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building A08, Camperdown, New South Wales 2006, Australia
| | - Tim S. Doherty
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building A08, Camperdown, New South Wales 2006, Australia
| | - Peter J. S. Fleming
- Vertebrate Pest Research Unit, NSW Department of Primary Industries, Orange Agricultural Institute, 1447 Forest Road, Orange, New South Wales 2800, Australia
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
- Institute for Agriculture and the Environment, Centre for Sustainable Agricultural Systems, University of Southern Queensland, Toowoomba, Queensland 4350, Australia.
| | - Thomas M. Newsome
- School of Life and Environmental Sciences, The University of Sydney, Heydon-Laurence Building A08, Camperdown, New South Wales 2006, Australia
| | - Russell Palmer
- Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983, Australia
| | - Jim A. Thompson
- Queensland Museum Network, PO Box 3300, South Brisbane BC, Queensland 4101, Australia
| | - John C. Z. Woinarski
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory 0909, Australia
| |
Collapse
|
3
|
Moseby K, McGregor H. Feral Cats Use Fine Scale Prey Cues and Microhabitat Patches of Dense Vegetation When Hunting Prey in Arid Australia. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
4
|
Pearson DE, Clark TJ, Hahn PG. Evaluating unintended consequences of intentional species introductions and eradications for improved conservation management. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13734. [PMID: 33734489 PMCID: PMC9291768 DOI: 10.1111/cobi.13734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 02/19/2021] [Accepted: 03/05/2021] [Indexed: 05/19/2023]
Abstract
Increasingly intensive strategies to maintain biodiversity and ecosystem function are being deployed in response to global anthropogenic threats, including intentionally introducing and eradicating species via assisted migration, rewilding, biological control, invasive species eradications, and gene drives. These actions are highly contentious because of their potential for unintended consequences. We conducted a global literature review of these conservation actions to quantify how often unintended outcomes occur and to elucidate their underlying causes. To evaluate conservation outcomes, we developed a community assessment framework for systematically mapping the range of possible interaction types for 111 case studies. Applying this tool, we quantified the number of interaction types considered in each study and documented the nature and strength of intended and unintended outcomes. Intended outcomes were reported in 51% of cases, a combination of intended outcomes and unintended outcomes in 26%, and strictly unintended outcomes in 10%. Hence, unintended outcomes were reported in 36% of all cases evaluated. In evaluating overall conservations outcomes (weighing intended vs. unintended effects), some unintended effects were fairly innocuous relative to the conservation objective, whereas others resulted in serious unintended consequences in recipient communities. Studies that assessed a greater number of community interactions with the target species reported unintended outcomes more often, suggesting that unintended consequences may be underreported due to insufficient vetting. Most reported unintended outcomes arose from direct effects (68%) or simple density-mediated or indirect effects (25%) linked to the target species. Only a few documented cases arose from more complex interaction pathways (7%). Therefore, most unintended outcomes involved simple interactions that could be predicted and mitigated through more formal vetting. Our community assessment framework provides a tool for screening future conservation actions by mapping the recipient community interaction web to identify and mitigate unintended outcomes from intentional species introductions and eradications for conservation.
Collapse
Affiliation(s)
- Dean E. Pearson
- Rocky Mountain Research StationU.S. Department of Agriculture Forest ServiceMissoulaMontanaUSA
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Tyler J. Clark
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and ConservationUniversity of MontanaMissoulaMontanaUSA
| | - Philip G. Hahn
- Department of Entomology and NematologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
5
|
Rendall AR, Sutherland DR, Cooke R, White JG. Does the foraging ecology of feral cats change after the eradication of foxes? Biol Invasions 2022. [DOI: 10.1007/s10530-021-02718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
McGregor H, Moseby K, Johnson CN, Legge S. Effectiveness of thermal cameras compared to spotlights for counts of arid zone mammals across a range of ambient temperatures. AUSTRALIAN MAMMALOGY 2022. [DOI: 10.1071/am20040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Effective monitoring of mammal species is critical to their management. Thermal cameras may enable more accurate detection of nocturnal mammals than visual observation with the aid of spotlights. We aimed to measure improvements in detection provided by thermal cameras, and to determine how these improvements depended on ambient temperatures and mammal species. We monitored small to medium sized mammals in central Australia, including small rodents, bettongs, bilbies, European rabbits, and feral cats. We conducted 20 vehicle-based camera transects using both a spotlight and thermal camera under ambient temperatures ranging from 10°C to 35°C. Thermal cameras resulted in more detections of small rodents and medium sized mammals. There was no increased benefit for feral cats, likely due to their prominent eyeshine. We found a strong relationship between increased detections using thermal cameras and environmental temperature: thermal cameras detected 30% more animals than conventional spotlighting at approximately 15°C, but produced few additional detections above 30°C. Spotlighting may be more versatile as it can be used in a greater range of ambient temperatures, but thermal cameras are more accurate than visual surveys at low temperatures, and can be used to benchmark spotlight surveys.
Collapse
|
7
|
Long-Distance Movements of Feral Cats in Semi-Arid South Australia and Implications for Conservation Management. Animals (Basel) 2021; 11:ani11113125. [PMID: 34827857 PMCID: PMC8614416 DOI: 10.3390/ani11113125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/05/2022] Open
Abstract
Simple Summary To efficiently control invasive animals, it is vital to have knowledge about their behaviour, their movements and how they use the landscape. Unusual behaviour is normally excluded from datasets, as it is considered to be an outlier that may distort analyses. In our study, we present movement data from feral cats in the arid and semi-arid zones of Australia. Feral cats are a serious problem to the native wildlife of Australia and in many parts of the world. Cats are known to show fidelity to geographic areas and may defend them against other cats. Until now, research has focused on these areas, home ranges or territories, that feral cats need to survive and reproduce. We argue that a part of their movement behaviour, large journeys away from the area they normally use, has been overlooked and has been considered to be unusual behaviour. We explain why we think that this is the case and present examples from other studies additional to our data set to show that these long-distance movements are a regular occurrence. To achieve a better protection of native wildlife from predation by feral cats, we believe that these long-distance movements should be considered as part of the normal behaviour of feral cats when planning cat control operations. Abstract Movements that extend beyond the usual space use of an animal have been documented in a range of species and are particularly prevalent in arid areas. We present long-distance movement data on five feral cats (Felis catus) GPS/VHF-collared during two different research projects in arid and semi-arid Australia. We compare these movements with data from other feral cat studies. Over a study period of three months in the Ikara-Flinders Ranges National Park, 4 out of 19 collared cats moved to sites that were 31, 41, 53 and 86 km away. Three of the cats were males, one female; their weight was between 2.1 and 4.1 kg. Two of the cats returned to the area of capture after three and six weeks. During the other study at Arid Recovery, one collared male cat (2.5 kg) was relocated after two years at a distance of 369 km from the area of collar deployment to the relocation area. The movements occurred following three years of record low rainfall. Our results build on the knowledge base of long-distance movements of feral cats reported at arid study sites and support the assertion that landscape-scale cat control programs in arid and semi-arid areas need to be of a sufficiently large scale to avoid rapid reinvasion and to effectively reduce cat density. Locally, cat control strategies need to be adjusted to improve coverage of areas highly used by cats to increase the efficiency of control operations.
Collapse
|
8
|
Finlayson G, Taggart P, Cooke B. Recovering Australia's arid‐zone ecosystems: learning from continental‐scale rabbit control experiments. Restor Ecol 2021. [DOI: 10.1111/rec.13552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Graeme Finlayson
- Bush Heritage Australia Flinders Lane Melbourne Victoria 3009 Australia
- School of Biological Sciences The University of Adelaide Adelaide South Australia 5005 Australia
- Rabbit Free Australia PO Box 145 Collinswood South Australia 5081 Australia
| | - Patrick Taggart
- Department of Primary Industries NSW Vertebrate Pest Research Unit Queanbeyan New South Wales 2620 Australia
- School of Animal and Veterinary Sciences The University of Adelaide Roseworthy South Australia 5371 Australia
| | - Brian Cooke
- Rabbit Free Australia PO Box 145 Collinswood South Australia 5081 Australia
- Institute for Applied Ecology University of Canberra Bruce Australian Capital Territory 2617 Australia
| |
Collapse
|
9
|
Rendall AR, Sutherland DR, Baker CM, Raymond B, Cooke R, White JG. Managing ecosystems in a sea of uncertainty: invasive species management and assisted colonizations. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02306. [PMID: 33595860 DOI: 10.1002/eap.2306] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/22/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Managing ecosystems in the face of complex species interactions, and the associated uncertainty, presents a considerable ecological challenge. Altering those interactions via actions such as invasive species management or conservation translocations can result in unintended consequences, supporting the need to be able to make more informed decisions in the face of this uncertainty. We demonstrate the utility of ecosystem models to reduce uncertainty and inform future ecosystem management. We use Phillip Island, Australia, as a case study to investigate the impacts of two invasive species management options and consider whether a critically endangered mammal is likely to establish a population in the presence of invasive species. Qualitative models are used to determine the effects of apex predator removal (feral cats) and invasive prey removal (rabbits, rats, and mice). We extend this approach using Ensemble Ecosystem Models to consider how suppression, rather than eradication influences the species community; and consider whether an introduction of the critically endangered eastern barred bandicoot is likely to be successful in the presence of invasive species. Our analysis revealed the potential for unintended outcomes associated with feral cat control operations, with rats and rabbits expected to increase in abundance. A strategy based on managing prey species appeared to have the most ecosystem-wide benefits, with rodent control showing more favorable responses than a rabbit control strategy. Eastern barred bandicoots were predicted to persist under all feral cat control levels (including no control). Managing ecosystems is a complex and imprecise process. However, qualitative modeling and ensemble ecosystem modeling address uncertainty and are capable of improving and optimizing management practices. Our analysis shows that the best conservation outcomes may not always be associated with the top-down control of apex predators, and land managers should think more broadly in relation to managing bottom-up processes as well. Challenges faced in continuing to conserve biodiversity mean new, bolder, conservation actions are needed. We suggest that endangered species are capable of surviving in the presence of feral cats, potentially opening the door for more conservation translocations.
Collapse
Affiliation(s)
- Anthony R Rendall
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3220, Australia
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Faculty of Science, Engineering and the Built Environment, Burwood Campus, Burwood, Victoria, 3125, Australia
| | - Duncan R Sutherland
- Conservation Department, Phillip Island Nature Parks, Cowes, Victoria, 3922, Australia
| | - Christopher M Baker
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, 3010, Australia
- Melbourne Centre for Data Science, The University of Melbourne, Melbourne, Victoria, 3010, Australia
- Centre of Excellence for Biosecurity Risk Analysis, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Ben Raymond
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, Kingston, Tasmania, 7050, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7000, Australia
| | - Raylene Cooke
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3220, Australia
| | - John G White
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3220, Australia
| |
Collapse
|
10
|
Causes and consequences of lags in basic and applied research into feral wildlife ecology: the case for feral horses. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Fleming PA, Crawford HM, Stobo‐Wilson AM, Dawson SJ, Dickman CR, Dundas SJ, Gentle MN, Newsome TM, O’Connor J, Palmer R, Riley J, Ritchie EG, Speed J, Saunders G, Stuart JD, Thompson E, Turpin JM, Woinarski JC. Diet of the introduced red fox
Vulpes vulpes
in Australia: analysis of temporal and spatial patterns. Mamm Rev 2021. [DOI: 10.1111/mam.12251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Patricia A. Fleming
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute Murdoch University 90 South Street Murdoch, Perth WA6150Australia
| | - Heather M. Crawford
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute Murdoch University 90 South Street Murdoch, Perth WA6150Australia
| | - Alyson M. Stobo‐Wilson
- NESP Threatened Species Recovery Hub Charles Darwin University Casuarina NT0909Australia
| | - Stuart J. Dawson
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute Murdoch University 90 South Street Murdoch, Perth WA6150Australia
| | - Christopher R. Dickman
- NESP Threatened Species Recovery Hub, Desert Ecology Research Group School of Life and Environmental Sciences University of Sydney Sydney NSW2006Australia
| | - Shannon J. Dundas
- NSW Department of Primary Industries 1447 Forest Rd Orange NSW2800Australia
| | - Matthew N. Gentle
- Pest Animal Research Centre Invasive Plants and Animals Biosecurity Queensland Toowoomba Qld4350Australia
| | - Thomas M. Newsome
- Global Ecology Lab School of Life and Environmental Sciences University of Sydney Sydney NSW2006Australia
| | - Julie O’Connor
- Sunshine Coast Regional Council 1 Omrah Avenue Caloundra Qld4551Australia
| | - Russell Palmer
- Science and Conservation Division Department of Biodiversity, Conservation and Attractions Bentley WA6983Australia
| | - Joanna Riley
- School of Biological Sciences University of Bristol BristolBS8 1THUK
| | - Euan G. Ritchie
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Burwood Vic3125Australia
| | - James Speed
- Pest Animal Research Centre Invasive Plants and Animals Biosecurity Queensland Toowoomba Qld4350Australia
| | - Glen Saunders
- NSW Department of Primary Industries 1447 Forest Rd Orange NSW2800Australia
| | - John‐Michael D. Stuart
- Centre for Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute Murdoch University 90 South Street Murdoch, Perth WA6150Australia
| | - Eilysh Thompson
- Centre for Integrative Ecology, School of Life and Environmental Sciences Deakin University Burwood Vic3125Australia
| | - Jeff M. Turpin
- School of Environmental and Rural Science University of New England Armidale NSW2351Australia
| | - John C.Z. Woinarski
- NESP Threatened Species Recovery Hub Charles Darwin University Casuarina NT0909Australia
| |
Collapse
|
12
|
Doherty TS, Hall ML, Parkhurst B, Westcott V. Experimentally testing the response of feral cats and their prey to poison baiting. WILDLIFE RESEARCH 2021. [DOI: 10.1071/wr21008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Baker CM, Bode M. Recent advances of quantitative modeling to support invasive species eradication on islands. CONSERVATION SCIENCE AND PRACTICE 2020. [DOI: 10.1111/csp2.246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Christopher M. Baker
- School of Mathematics and Statistics, The University of Melbourne Melbourne Victoria Australia
- Melbourne Centre for Data Science, The University of Melbourne Melbourne Victoria Australia
- Centre of Excellence for Biosecurity Risk Analysis The University of Melbourne Melbourne Victoria Australia
| | - Michael Bode
- School of Mathematical Sciences, Queensland University of Technology Brisbane Queensland Australia
| |
Collapse
|
14
|
Berris KK, Cooper SJB, Breed WG, Berris JR, Carthew SM. A comparative study of survival, recruitment and population growth in two translocated populations of the threatened greater bilby (Macrotis lagotis). WILDLIFE RESEARCH 2020. [DOI: 10.1071/wr19194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Context Translocations have been widely used to re-establish populations of threatened Australian mammalian species. However, they are limited by the availability of sites where key threats can be effectively minimised or eliminated. Outside of ‘safe havens’, threats such as exotic predators, introduced herbivores and habitat degradation are often unable to be completely eliminated. Understanding how different threats affect Australian mammal populations can assist in prioritising threat-management actions outside of safe havens.
AimsWe sought to determine whether translocations of the greater bilby to two sites in the temperate zone of South Australia could be successful when human-induced threats, such as prior habitat clearance, historic grazing, the presence of feral cats and European rabbits, could not be completely eliminated.
Methods Greater bilbies were regularly cage trapped at two translocation sites and a capture–mark–recapture study was used to determine survival, recruitment and population growth at both sites.
Key results Our study showed that bilbies were successfully translocated to an offshore island with a previous history of grazing and habitat clearance, but which was free of exotic predators. At a second site, a mainland exclosure with feral cats and European rabbits present, the bilby population declined over time. Adult bilbies had similar survival rates in both populations; however, the mainland bilby population had low recruitment rates and low numbers of subadults despite high adult female fecundity.
ConclusionsThe results indicated that past grazing and habitat clearance did not prevent the bilby population on the offshore island establishing and reaching a high population density. In the mainland exclosure, the low recruitment is probably due to feral cats predating on subadult bilbies following pouch emergence.
Implications The results demonstrated that the bilby, an ecologically flexible Australian marsupial, can be successfully translocated to sites with a history of habitat degradation if exotic predators are absent. At the mainland exclosure site, threat mitigation for bilbies should focus on control or eradication of the feral cats. The control of European rabbits without control of feral cats could lead to prey-switching by feral cats, further increasing predation pressure on the small bilby population.
Collapse
|
15
|
Stobo-Wilson AM, Brandle R, Johnson CN, Jones ME. Management of invasive mesopredators in the Flinders Ranges, South Australia: effectiveness and implications. WILDLIFE RESEARCH 2020. [DOI: 10.1071/wr19237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
ContextSignificant resources have been devoted to the control of introduced mesopredators in Australia. However, the control or removal of one pest species, such as, for example, the red fox (Vulpes vulpes), may inadvertently benefit other invasive species, namely feral cats (Felis catus) and rabbits (Oryctolagus cuniculus), potentially jeopardising native-species recovery.
AimsTo (1) investigate the impact of a large-scale, long-term fox-baiting program on the abundance of foxes, feral cats and introduced and native prey species in the Flinders Ranges, South Australia, and (2) determine the effectiveness of a short time period of cat removal in immediately reducing feral cat abundance where foxes are absent.
MethodsWe conducted an initial camera-trap survey in fox-baited and unbaited sites in the Flinders Ranges, to quantify the impact of fox baiting on the relative abundance of foxes, feral cats and their prey. We then conducted a secondary survey in sites where foxes were absent, following an intensive, but short, time period of cat removal, in which 40 cats were shot and killed.
Key resultsNo foxes were detected within baited sites, but were frequently detected in unbaited sites. We found a corresponding and significant increase in several native prey species in fox-baited sites where foxes were absent. Feral cats and rabbits were also more frequently detected within baited sites, but fox baiting did not singularly predict the abundance of either species. Rather, feral cats were less abundant in open habitat where foxes were present (unbaited), and rabbits were more abundant within one predominantly open-habitat site, where foxes were absent (fox-baited). We found no effect of short-term cat removal in reducing the local abundance of feral cats. In both camera-trap surveys, feral cat detections were positively associated with rabbits.
ConclusionsLong-term fox baiting was effective in fox removal and was associated with a greater abundance of native and introduced prey species in the Flinders Ranges. To continue to recover and conserve regional biodiversity, effective cat control is required.
ImplicationsOur study showed fox removal has likely resulted in the local release of rabbits and an associated increase in cats. Because feral cat abundance seemingly fluctuated with rabbits, we suggest rabbit control may provide an alternative and more effective means to reduce local feral cat populations than short-term removal programs.
Collapse
|