1
|
Mullins L, Cartwright J, Dykstra SL, Evans K, Mareska J, Matich P, Plumlee JD, Sparks E, Drymon JM. Warming waters lead to increased habitat suitability for juvenile bull sharks (Carcharhinus leucas). Sci Rep 2024; 14:4100. [PMID: 38485970 PMCID: PMC10940676 DOI: 10.1038/s41598-024-54573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/14/2024] [Indexed: 03/18/2024] Open
Abstract
Coastal ecosystems are highly vulnerable to the impacts of climate change and other stressors, including urbanization and overfishing. Consequently, distributions of coastal fish have begun to change, particularly in response to increasing temperatures linked to climate change. However, few studies have evaluated how natural and anthropogenic disturbances can alter species distributions in conjunction with geophysical habitat alterations, such as changes to land use and land cover (LU/LC). Here, we examine the spatiotemporal changes in the distribution of juvenile bull sharks (Carcharhinus leucas) using a multi-decadal fishery-independent survey of coastal Alabama. Using a boosted regression tree (BRT) modeling framework, we assess the covariance of environmental conditions (sea surface temperature, depth, salinity, dissolved oxygen, riverine discharge, Chl-a) as well as historic changes to LU/LC to the distribution of bull sharks. Species distribution models resultant from BRTs for early (2003-2005) and recent (2018-2020) monitoring periods indicated a mean increase in habitat suitability (i.e., probability of capture) for juvenile bull sharks from 0.028 to 0.082, concomitant with substantial increases in mean annual temperature (0.058°C/yr), Chl-a (2.32 mg/m3), and urbanization (increased LU/LC) since 2000. These results align with observed five-fold increases in the relative abundance of juvenile bull sharks across the study period and demonstrate the impacts of changing environmental conditions on their distribution and relative abundance. As climate change persists, coastal communities will continue to change, altering the structure of ecological communities and the success of nearshore fisheries.
Collapse
Affiliation(s)
- Lindsay Mullins
- Coastal Research and Extension Center, Mississippi State University, Biloxi, MS, USA.
- Northern Gulf Institute, Starkville, MS, USA.
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Mississippi State, MS, USA.
| | | | - Steven L Dykstra
- College of Fisheries and Ocean Science, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Kristine Evans
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Mississippi State, MS, USA
| | - John Mareska
- Alabama Department of Conservation and Natural Resources, Dauphin Island, AL, USA
| | | | - Jeffrey D Plumlee
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Eric Sparks
- Coastal Research and Extension Center, Mississippi State University, Biloxi, MS, USA
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Mississippi State, MS, USA
- Mississippi-Alabama Sea Grant Consortium, Ocean Springs, MS, USA
| | - J Marcus Drymon
- Coastal Research and Extension Center, Mississippi State University, Biloxi, MS, USA
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Mississippi State, MS, USA
- Mississippi-Alabama Sea Grant Consortium, Ocean Springs, MS, USA
| |
Collapse
|
3
|
Hodge JR, Price SA. Biotic Interactions and the Future of Fishes on Coral Reefs: The Importance of Trait-Based Approaches. Integr Comp Biol 2022; 62:1734-1747. [PMID: 36138511 DOI: 10.1093/icb/icac147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 01/05/2023] Open
Abstract
Biotic interactions govern the structure and function of coral reef ecosystems. As environmental conditions change, reef-associated fish populations can persist by tracking their preferred niche or adapting to new conditions. Biotic interactions will affect how these responses proceed and whether they are successful. Yet, our understanding of these effects is currently limited. Ecological and evolutionary theories make explicit predictions about the effects of biotic interactions, but many remain untested. Here, we argue that large-scale functional trait datasets enable us to investigate how biotic interactions have shaped the assembly of contemporary reef fish communities and the evolution of species within them, thus improving our ability to predict future changes. Importantly, the effects of biotic interactions on these processes have occurred simultaneously within dynamic environments. Functional traits provide a means to integrate the effects of both ecological and evolutionary processes, as well as a way to overcome some of the challenges of studying biotic interactions. Moreover, functional trait data can enhance predictive modeling of future reef fish distributions and evolvability. We hope that our vision for an integrative approach, focused on quantifying functionally relevant traits and how they mediate biotic interactions in different environmental contexts, will catalyze new research on the future of reef fishes in a changing environment.
Collapse
Affiliation(s)
- Jennifer R Hodge
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Samantha A Price
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
4
|
Castro N, Gestoso I, Marques CS, Ramalhosa P, Monteiro JG, Costa JL, Canning-Clode J. Anthropogenic pressure leads to more introductions: Marine traffic and artificial structures in offshore islands increases non-indigenous species. MARINE POLLUTION BULLETIN 2022; 181:113898. [PMID: 35843167 DOI: 10.1016/j.marpolbul.2022.113898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic pressures such as the introduction of non-indigenous species (NIS) have impacted global biodiversity and ecosystems. Most marine species spreading outside their natural biogeographical limits are promoted and facilitated by maritime traffic through ballast water and hull biofouling. Propagule pressure plays a primary role in invasion success mixed with environmental conditions of the arrival port. Moreover, with the current ocean sprawl, new substrates are offered for potential NIS recruits. Here, differences in the fouling assemblages thriving inside three different ports/marinas facilities in Madeira Island were assessed for comparison. The locations showed significant differences concerning assemblage structure. Most NIS were detected in plastic floating pontoons. Funchal harbour receives most of the marine traffic in Madeira, acting as the main hub for primary NIS introductions, being recreational boating involved in NIS secondary transfers. Our results highlight the need for future management actions in island ecosystems, particularly monitoring and sampling of recreational boating.
Collapse
Affiliation(s)
- Nuno Castro
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | - Ignacio Gestoso
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; Department of Biology, Faculty of Marine and Environmental Sciences of University of Cádiz, Puerto Real, Spain; Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Carolina S Marques
- Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Patrício Ramalhosa
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; OOM - Oceanic Observatory of Madeira, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal
| | - João G Monteiro
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal
| | - José L Costa
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal; Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - João Canning-Clode
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; Smithsonian Environmental Research Center, Edgewater, MD, USA
| |
Collapse
|