1
|
Talukdar P, Bordoloi P, Bora PP, Yadav A, Saikia R, Geed SR. Assessment of oily sludge biodegradation in lab scale composting and slurry bioreactor by bacterial consortium. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118360. [PMID: 37315467 DOI: 10.1016/j.jenvman.2023.118360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
The present study aimed to investigate biodegradability of oily sludge in lab scale composting and slurry bioreactor using a potential bacterial consortium isolated from petroleum-contaminated sites. The consortium used in the study consisted of bacterial genera, including Enterobacter, Bacillus, Microbacterium, Alcaligenes Pseudomonas, Ochrobactrum, Micrococcus, and Shinella which were obtained after rigorous screening using different hydrocarbons. The meticulously designed lab scale composting experiments were carried out and showed that the combination of 10% oily sludge (A1) exhibited the highest total carbon (TC) removal, which was 40.33% within 90 days. To assess the composting experiments' efficiency, the first (k1) and second (k2) order rate constants were evaluated and was found to be 0.0004-0.0067 per day and second (k2) 0.0000008-0.00005 g/kg. day respectively. To further enhance the biodegradation rate of A1 combination, a slurry bioreactor was used. The maximum total petroleum hydrocarbon (TPH) removals in a slurry bioreactor for cycle-I and -II were 48.8% and 46.5%, respectively, on the 78th and 140th days of the treatment. The results obtained in the study will be a technological platform for the development of slurry phase treatment of petroleum waste in a sustainable and eco-friendly manner.
Collapse
Affiliation(s)
- Pooja Talukdar
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palakshi Bordoloi
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Priyankush Protim Bora
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Archana Yadav
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Ratul Saikia
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sachin Rameshrao Geed
- CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Murungi PI, Sulaimon AA. Petroleum sludge treatment and disposal techniques: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40358-40372. [PMID: 35325382 DOI: 10.1007/s11356-022-19614-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Petroleum sludge is a solid emulsified waste and contaminant commonly produced in the petroleum industry. In the recent past, there has been increased business growth in the oil sector, resulting in increased volumes of oily sludge characterized by high viscosity and toxicity. Therefore, sludge treatment before discarding is extremely necessary. This review seeks to highlight various conventional and evolving approaches in the treatment, recovery, and disposal of petroleum sludge and assess their suitability under various conditions.
Collapse
Affiliation(s)
- Pearl Isabellah Murungi
- Department of Petroleum Engineering, University Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia.
| | - Aliyu Adebayo Sulaimon
- Department of Petroleum Engineering, University Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| |
Collapse
|
3
|
Bergsveinson J, Perry BJ, Simpson GL, Yost CK, Schutzman RJ, Hall BD, Cameron ADS. Spatial analysis of a hydrocarbon waste-remediating landfarm demonstrates influence of management practices on bacterial and fungal community structure. Microb Biotechnol 2019; 12:1199-1209. [PMID: 30927344 PMCID: PMC6801160 DOI: 10.1111/1751-7915.13397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 11/27/2022] Open
Abstract
Cultivation of dedicated soil plots called 'landfarms' is an effective technology for bioremediation of hydrocarbon waste generated by various industrial practices. To understand the influence of soil conditions on landfarm microbial communities, analysis of bacterial and fungal community structure using next-generation sequencing at different sections and depths was performed across a hydrocarbon-waste landfarm in Regina, Saskatchewan, Canada. While a core set of hydrocarbon-associated bacterial and fungal taxa are present throughout the landfarm, unique bacterial and fungal operational taxonomic units are differentially abundant at sections within the landfarm, which correlate with differences in soil physiochemical properties and management practices. Increased frequency of waste application resulted in strong positive correlations between bacterial community assemblages and elevated amounts of oil, grease and F3 - F4 hydrocarbon fractions. In areas of standing water and lower application of hydrocarbon, microbial community structure correlated with soil pH, trace nutrients and metals. Overall, diversity and structure of bacterial communities remain relatively stable across the landfarm, while in contrast, fungal community structure appears more responsive to soil oxygen conditions. Results are consistent with the hypothesis that years of bioremediation activity have shaped microbial communities; however, several management practices can be undertaken to increase efficiency of remediation, including the removal of standing water and soil tilling across the landfarm.
Collapse
Affiliation(s)
- Jordyn Bergsveinson
- Department of BiologyUniversity of ReginaReginaSKCanada
- Institute for Microbial Systems and SocietyUniversity of ReginaReginaSKCanada
| | - Benjamin J. Perry
- Department of BiologyUniversity of ReginaReginaSKCanada
- Present address:
Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Gavin L. Simpson
- Department of BiologyUniversity of ReginaReginaSKCanada
- Institute of Environmental Change and SocietyUniversity of ReginaReginaSKCanada
| | - Christopher K. Yost
- Department of BiologyUniversity of ReginaReginaSKCanada
- Institute for Microbial Systems and SocietyUniversity of ReginaReginaSKCanada
| | | | - Britt D. Hall
- Department of BiologyUniversity of ReginaReginaSKCanada
| | - Andrew D. S. Cameron
- Department of BiologyUniversity of ReginaReginaSKCanada
- Institute for Microbial Systems and SocietyUniversity of ReginaReginaSKCanada
| |
Collapse
|
4
|
Genome-Guided Characterization of Ochrobactrum sp. POC9 Enhancing Sewage Sludge Utilization-Biotechnological Potential and Biosafety Considerations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071501. [PMID: 30013002 PMCID: PMC6069005 DOI: 10.3390/ijerph15071501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/07/2018] [Accepted: 07/12/2018] [Indexed: 11/17/2022]
Abstract
Sewage sludge is an abundant source of microorganisms that are metabolically active against numerous contaminants, and thus possibly useful in environmental biotechnologies. However, amongst the sewage sludge isolates, pathogenic bacteria can potentially be found, and such isolates should therefore be carefully tested before their application. A novel bacterial strain, Ochrobactrum sp. POC9, was isolated from a sewage sludge sample collected from a wastewater treatment plant. The strain exhibited lipolytic, proteolytic, cellulolytic, and amylolytic activities, which supports its application in biodegradation of complex organic compounds. We demonstrated that bioaugmentation with this strain substantially improved the overall biogas production and methane content during anaerobic digestion of sewage sludge. The POC9 genome content analysis provided a deeper insight into the biotechnological potential of this bacterium and revealed that it is a metalotolerant and a biofilm-producing strain capable of utilizing various toxic compounds. The strain is resistant to rifampicin, chloramphenicol and β-lactams. The corresponding antibiotic resistance genes (including blaOCH and cmlA/floR) were identified in the POC9 genome. Nevertheless, as only few genes in the POC9 genome might be linked to pathogenicity, and none of those genes is a critical virulence factor found in severe pathogens, the strain appears safe for application in environmental biotechnologies.
Collapse
|
5
|
Firdous S, Iqbal S, Anwar S, Jabeen H. Identification and analysis of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from glyphosate-resistant Ochrobactrum intermedium Sq20. PEST MANAGEMENT SCIENCE 2018; 74:1184-1196. [PMID: 28544077 DOI: 10.1002/ps.4624] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/10/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Glyphosate is a herbicide that acts by inhibition of the enzyme, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), involved in the catalysis of an essential step in the biosynthesis of aromatic amino acids. The objective of this study was the isolation of glyphosate-resistant bacterial strains and subsequent characterization of the gene(s) encoding glyphosate resistance in these isolates. Using an enrichment culture technique, a glyphosate-resistant bacterium, Ochrobactrum intermedium Sq20 was isolated from glyphosate-contaminated indigenous soil and characterized. RESULTS An open reading frame (ORF) comprising of 1353 bp potentially encoding aroAO. intermediumSq20 was amplified from O. intermedium Sq20. It showed 97% homology with aroA genes from other Ochrobactrum spp. Physicochemical characterization revealed that aroAO. intermediumSq20 encodes a polypeptide of 450 amino acids with a calculated molecular mass of 48.9782 kDa and an isoelectric point of 5.21. Secondary structure prediction of AroAO. intermediumSq20 demonstrated a high percentage of random coils and α helices. Methodical optimization and validation of the protein structure helped to build a reliable protein model indicating the presence of 91.8% amino acid residues in most favoured regions. In addition, strain Sq20 was found to be capable of complete degradation of glyphosate at 500 mg L-1 initial concentration as the sole carbon and energy source within 4 days. CONCLUSION A glyphosate-resistant bacterial strain O. intermedium Sq20 was discovered. Sequence analysis and structure modelling demonstrated that AroAO. intermediumSq20 closely resembles class II EPSPS and possesses high glyphosate resistance. This provides a good foundation for functional analysis of experimentally derived crystal structures. The cloning and characterization of AroAO. intermediumSq20 will further help in understanding its role at the molecular level and its potential use in the production of glyphosate-resistant transgenic crops. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sadiqa Firdous
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Samina Iqbal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Samina Anwar
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Hina Jabeen
- Department of Microbiology, Women University Mardan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
6
|
He W, Hu ZH, Yuan S, Zhong WH, Mei YZ, Dai CC. Bacterial Bioreporter-Based Mercury and Phenanthrene Assessment in Yangtze River Delta Soils of China. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:562-570. [PMID: 29864184 DOI: 10.2134/jeq2017.07.0286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Genetically engineered bacterial whole-cell bioreporters were deployed to investigate bioavailable mercury (b-Hg) and phenanthrene (b-PHE). Characterized by high sensitivity and specificity in aqueous solutions, the bioreporter system could detect in amended soils the concentrations of b-Hg and b-PHE in the ranges of 19.6 to 111.6 and 21.5 to 110.9 μg kg, respectively. The sensitivity of the system allowed for the combined analysis of b-Hg and b-PHE from real environmental samples. Therefore, soil samples from three large refinery facilities were tested, and the results from the instrumental analysis strongly correlated with the ones obtained with the bioreporter method. Large-scale and fast screening of soil contamination across the Yangtze River Delta in Eastern China was conducted. More than 36% of the samples contained b-Hg, whereas the fractions of b-PHE were below the detection limit for all the samples. These results indicated a higher toxicity and more hazardous condition for Hg contamination than for PHE. Population densities and airborne 10-μm particulate matter (PM10) concentrations were used as parameters for comparison with the spatial distribution of the b-Hg and b-PHE fractions. The results revealed that the bioreporters could offer a rapid and cost-efficient method to test soil samples from contaminated areas and provide a screening tool for environmental risk assessment.
Collapse
|
7
|
Anwar Y, El-Hanafy AA, Sabir JSM, Al-Garni SMS, Al-Ghamdi K, Almehdar H, Waqas M. Characterization of Mesophilic Bacteria Degrading Crude Oil from Different Sites of Aramco, Saudi Arabia. Polycycl Aromat Compd 2017. [DOI: 10.1080/10406638.2017.1382542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amr A. El-Hanafy
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Nucleic Acid Research, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research &Technology Applications, Borg El-Arab, Alexandria, Egypt
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh M. S. Al-Garni
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid Al-Ghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hussein Almehdar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Waqas
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Obi LU, Atagana HI, Adeleke RA. Isolation and characterisation of crude oil sludge degrading bacteria. SPRINGERPLUS 2016; 5:1946. [PMID: 27933233 PMCID: PMC5102992 DOI: 10.1186/s40064-016-3617-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/28/2016] [Indexed: 11/23/2022]
Abstract
Background The use of microorganisms in remediating environmental contaminants such as crude oil sludge has become a promising technique owing to its economy and the fact it is environmentally friendly. Polycyclic aromatic hydrocarbons (PAHs), as the major components of oil sludge, are hydrophobic and recalcitrant. An important way of enhancing the rate of PAH desorption is to compost crude oil sludge by incorporating commercial surfactants, thereby making them available for microbial degradation. In this study, crude oil sludge was composted for 16 weeks during which surfactants were added in the form of a solution. Results Molecular characterisation of the 16S rRNA genes indicated that the isolates obtained on a mineral salts medium belonged to different genera, including Stenotrophmonas, Pseudomonas, Bordetella, Brucella, Bacillus, Achromobacter, Ochrobactrum, Advenella, Mycobacterium, Mesorhizobium, Klebsiella, Pusillimonas and Raoultella. The percentage degradation rates of these isolates were estimated by measuring the absorbance of the 2,6-dichlorophenol indophenol medium. Pseudomonas emerged as the top degrader with an estimated percentage degradation rate of 73.7% after 7 days of incubation at 28 °C. In addition, the presence of the catabolic gene, catechol-2,3-dioxygenase was detected in the bacteria isolates as well as in evolutionary classifications based on phylogeny. Conclusions The bacteria isolated in this study are potential agents for the bioremediation of crude oil sludge.
Collapse
Affiliation(s)
- Linda U Obi
- Department of Environmental Sciences, University of South Africa, Johannesburg, South Africa ; Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council - Institute for Soil, Climate and Water, Pretoria, South Africa
| | - Harrison I Atagana
- Institute for Science and Technology Education, University of South Africa, Pretoria, South Africa
| | - Rasheed A Adeleke
- Department of Environmental Sciences, University of South Africa, Johannesburg, South Africa ; Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council - Institute for Soil, Climate and Water, Pretoria, South Africa ; Unit for Environment Science and Management, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| |
Collapse
|
9
|
Avdalović J, Đurić A, Miletić S, Ilić M, Milić J, Vrvić MM. Treatment of a mud pit by bioremediation. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2016; 34:734-739. [PMID: 27354013 DOI: 10.1177/0734242x16652961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The mud generated from oil and natural gas drilling, presents a considerable ecological problem. There are still insufficient remedies for the removal and minimization of these very stable emulsions. Existing technologies that are in use, more or less successfully, treat about 20% of generated waste drilling mud, while the rest is temporarily deposited in so-called mud pits. This study investigated in situ bioremediation of a mud pit. The bioremediation technology used in this case was based on the use of naturally occurring microorganisms, isolated from the contaminated site, which were capable of using the contaminating substances as nutrients. The bioremediation was stimulated through repeated inoculation with a zymogenous microbial consortium, along with mixing, watering and biostimulation. Application of these bioremediation techniques reduced the concentration of total petroleum hydrocarbons from 32.2 to 1.5 g kg(-1) (95% degradation) during six months of treatment.
Collapse
Affiliation(s)
- Jelena Avdalović
- University of Belgrade, Institute for Chemistry, Technology and Metallurgy, Serbia
| | | | - Srdjan Miletić
- University of Belgrade, Institute for Chemistry, Technology and Metallurgy, Serbia
| | - Mila Ilić
- University of Belgrade, Institute for Chemistry, Technology and Metallurgy, Serbia
| | - Jelena Milić
- University of Belgrade, Institute for Chemistry, Technology and Metallurgy, Serbia
| | | |
Collapse
|
10
|
Ibrahim MM, Al-Turki A, Al-Sewedi D, Arif IA, El-Gaaly GA. Molecular application for identification of polycyclic aromatic hydrocarbons degrading bacteria (PAHD) species isolated from oil polluted soil in Dammam, Saud Arabia. Saudi J Biol Sci 2015; 22:651-5. [PMID: 26288572 PMCID: PMC4537879 DOI: 10.1016/j.sjbs.2015.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/15/2015] [Accepted: 04/28/2015] [Indexed: 11/03/2022] Open
Abstract
Soil contamination with petroleum hydrocarbon products such as diesel and engine oil is becoming one of the major environmental problems. This study describes hydrocarbons degrading bacteria (PHAD) isolated from long-standing petrol polluted soil from the eastern region, Dammam, Saudi Arabia. The isolated strains were firstly categorized by accessible shape detection, physiological and biochemistry tests. Thereafter, a technique established on the sequence analysis of a 16S rDNA gene was used. Isolation of DNA from the bacterial strains was performed, on which the PCR reaction was carried out. Strains were identified based on 16S rDNA sequence analysis, As follows amplified samples were spontaneously sequenced automatically and the attained results were matched to open databases. Among the isolated bacterial strains, S1 was identified as Staphylococcus aureus and strain S1 as Corynebacterium amycolatum.
Collapse
Affiliation(s)
- Mohamed M Ibrahim
- King Saud University, Science College, Botany and Microbiology Department, P.O. Box 2455, Riyadh 11451, Saudi Arabia ; Alexandria University, Faculty of Science, Botany and Microbiology Department, P.O. Box 21511, Alexandria, Egypt
| | - Ameena Al-Turki
- Al-Bassam Sch., Ministry of Education, P.O. Box 945, Dammam, Saudi Arabia
| | - Dona Al-Sewedi
- Al-Bassam Sch., Ministry of Education, P.O. Box 945, Dammam, Saudi Arabia
| | - Ibrahim A Arif
- King Saud University, Science College, Botany and Microbiology Department, P.O. Box 2455, Riyadh 11451, Saudi Arabia ; Prince Sultan Research Chair for Environment and Wild Life, King Saud University, Saudi Arabia
| | - Gehan A El-Gaaly
- King Saud University, Science College, Botany and Microbiology Department, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Wu B, Lan T, Lu D, Liu Z. Ecological and enzymatic responses to petroleum contamination. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:1501-9. [PMID: 24765642 DOI: 10.1039/c3em00731f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The changes in microbial ecology interpreted from taxonomic and functional genes and biological functions represented by urease and dehydrogenase activities were monitored in soil contaminated with different petroleum hydrocarbons including crude oil, diesel, n-hexadecane and poly-aromatic hydrocarbons (PAHs). It was shown that the presence of n-hexadecane stimulated the activity of indigenous microorganisms, especially alkane degrading bacteria, and led to over 20% degradation of n-hexadecane within one month. No obvious degradation of the other three types of petroleum hydrocarbons was observed. The stimulation effect was most marked in the soil spiked with a medium concentration (2500 mg kg(-1) dry soil) of n-hexadecane. However, the presence of PAHs completely inhibited the previously-mentioned bioactivities of the soil. The content of PAH degrading bacteria, however, increased more than 10-fold, indicating the selection effect of PAHs on soil bacteria. The impacts of diesel and crude oil on the microbial ecology and biological functions varied significantly with their concentration. The disclosure of the ecological and enzymatic responses could be helpful in soil bioremediation.
Collapse
Affiliation(s)
- Binbin Wu
- Department of Chemical Engineering, Tsinghua University, Beijing, 10084, PR China.
| | | | | | | |
Collapse
|
12
|
Yan S, Wang Q, Qu L, Li C. Characterization of Oil-Degrading Bacteria from Oil-Contaminated Soil and Activity of their Enzymes. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2013.0050] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
13
|
Rüger M, Ackermann M, Reichl U. Species-specific viability analysis of Pseudomonas aeruginosa, Burkholderia cepacia and Staphylococcus aureus in mixed culture by flow cytometry. BMC Microbiol 2014; 14:56. [PMID: 24606608 PMCID: PMC3995885 DOI: 10.1186/1471-2180-14-56] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 02/25/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Bacterial species coexist commonly in mixed communities, for instance those occurring in microbial infections of humans. Interspecies effects contribute to alterations in composition of communities with respect to species and thus, to the course and severity of infection. Therefore, knowledge concerning growth and viability of single species in medically-relevant mixed communities is of high interest to resolve complexity of interspecies dynamics and to support development of treatment strategies. In this study, a flow cytometric method was established to assess the species-specific viability in defined three-species mixed cultures. The method enables the characterization of viability of Pseudomonas aeruginosa, Burkholderia cepacia and Staphylococcus aureus, which are relevant to lung infections of Cystic Fibrosis (CF) patients. The method combines fluorescence detection by antibody and lectin labeling with viability fluorescence staining using SYBRGreen I and propidium iodide. In addition, species-specific cell enumeration analysis using quantitative terminal restriction fragment length polymorphisms (qT-RFLP) was used to monitor the growth dynamics. Finally, to investigate the impact of substrate availability on growth and viability, concentrations of main substrates and metabolites released were determined. RESULTS For each species, the time course of growth and viability during mixed culture cultivations was obtained by using qT-RFLP analysis in combination with flow cytometry. Comparison between mixed and pure cultures revealed for every species differences in growth properties, e.g. enhanced growth of P. aeruginosa in mixed culture. Differences were also observed for B. cepacia and S. aureus in the time course of viability, e.g. an early and drastic reduction of viability of S. aureus in mixed culture. Overall, P. aeruginosa clearly dominated the mixed culture with regard to obtained cell concentrations. CONCLUSIONS In combination with qT-RFLP analysis, the methods enabled monitoring of species-specific cell concentrations and viability during co-cultivation of theses strains. Experimental findings suggest that the predominance of P. aeruginosa over B. cepacia and S. aureus in mixed culture under the chosen cultivation conditions is promoted by more efficient substrate consumption of P. aeruginosa, and antagonistic interspecies effects induced by P. aeruginosa.
Collapse
Affiliation(s)
- Marc Rüger
- Chair of Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany
| | - Mandy Ackermann
- Chair of Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany
| | - Udo Reichl
- Chair of Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
14
|
Grigoryeva TV, Laikov AV, Rizvanov AA, Ilinskaya ON, Naumova RP. Composition of the oil-slime microbial community as determined by analysis of the 16S rRNA gene. Microbiology (Reading) 2013. [DOI: 10.1134/s0026261713050044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
15
|
Rüger M, Bensch G, Tüngler R, Reichl U. A flow cytometric method for viability assessment of Staphylococcus aureus and Burkholderia cepacia in mixed culture. Cytometry A 2012; 81:1055-66. [PMID: 23081865 DOI: 10.1002/cyto.a.22219] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 09/07/2012] [Accepted: 09/20/2012] [Indexed: 11/06/2022]
Abstract
Mixed bacterial communities are commonly encountered in microbial infections of humans. Knowledge on the composition of species and viability of each species in these communities allows for a detailed description of the complexity of interspecies dynamics and contributes to the assessment of the severity of infections. Several assays exist for quantification of specific species in mixed communities, including analysis of quantitative terminal restriction fragment length polymorphisms. While this method allows for species-specific cell enumeration, it cannot provide viability data. In this study, flow cytometry was applied to assess the viability of Staphylococcus aureus and Burkholderia cepacia in mixed culture by membrane integrity analysis using SYBR® Green I and propidium iodide staining. Both bacteria are relevant to pulmonary infections of cystic fibrosis patients. Fluorescence staining was optimized separately for each species in pure culture due to differences between species in cell wall structure and metabolic capabilities. To determine viability of species in mixed culture, a protocol was established as a compromise between optimum conditions determined before for pure cultures. This protocol allowed the detection of viable and dead cells of both species, exhibiting an intact and a permeabilized membrane, respectively. To discriminate between S. aureus and B. cepacia, the protocol was combined with Gram-specific fluorescent staining using wheat germ agglutinin. The established three-color staining method was successfully tested for viability determination of S. aureus and B. cepacia in mixed culture cultivations. In addition, growth of both species was monitored by quantitative terminal restriction fragment length polymorphisms. The obtained data revealed alterations in viability during cultivations for different growth phases and suggest interspecies effects in mixed culture. Overall, this method allows for rapid simultaneous Gram-differentiation and viability assessment of bacterial mixed cultures and is therefore suitable for the analysis of dynamics of mixed communities of medical, environmental, and biotechnological relevance.
Collapse
Affiliation(s)
- Marc Rüger
- Chair of Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany.
| | | | | | | |
Collapse
|
16
|
Beškoski VP, Gojgić-Cvijović G, Milić J, Ilić M, Miletić S, Solević T, Vrvić MM. Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)--a field experiment. CHEMOSPHERE 2011; 83:34-40. [PMID: 21288552 DOI: 10.1016/j.chemosphere.2011.01.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 05/30/2023]
Abstract
Mazut (heavy residual fuel oil)-polluted soil was exposed to bioremediation in an ex situ field-scale (600 m(3)) study. Re-inoculation was performed periodically with biomasses of microbial consortia isolated from the mazut-contaminated soil. Biostimulation was conducted by adding nutritional elements (N, P and K). The biopile (depth 0.4m) was comprised of mechanically mixed polluted soil with softwood sawdust and crude river sand. Aeration was improved by systematic mixing. The biopile was protected from direct external influences by a polyethylene cover. Part (10 m(3)) of the material prepared for bioremediation was set aside uninoculated, and maintained as an untreated control pile (CP). Biostimulation and re-inoculation with zymogenous microorganisms increased the number of hydrocarbon degraders after 50 d by more than 20 times in the treated soil. During the 5 months, the total petroleum hydrocarbon (TPH) content of the contaminated soil was reduced to 6% of the initial value, from 5.2 to 0.3 g kg(-1) dry matter, while TPH reduced to only 90% of the initial value in the CP. After 150 d there were 96%, 97% and 83% reductions for the aliphatic, aromatic, and nitrogen-sulphur-oxygen and asphaltene fractions, respectively. The isoprenoids, pristane and phytane, were more than 55% biodegraded, which indicated that they are not suitable biomarkers for following bioremediation. According to the available data, this is the first field-scale study of the bioremediation of mazut and mazut sediment-polluted soil, and the efficiency achieved was far above that described in the literature to date for heavy fuel oil.
Collapse
Affiliation(s)
- Vladimir P Beškoski
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, 11001 Belgrade, Njegoševa 12, P.O. Box 473, Serbia.
| | | | | | | | | | | | | |
Collapse
|
17
|
Enriched Microbial Community in Bioaugmentation of Petroleum-Contaminated Soil in the Presence of Wheat Straw. Appl Biochem Biotechnol 2011; 164:1071-82. [DOI: 10.1007/s12010-011-9195-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/31/2011] [Indexed: 11/25/2022]
|
18
|
Yu S, Li S, Tang Y, Wu X. Succession of bacterial community along with the removal of heavy crude oil pollutants by multiple biostimulation treatments in the Yellow River Delta, China. J Environ Sci (China) 2011; 23:1533-1543. [PMID: 22432291 DOI: 10.1016/s1001-0742(10)60585-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Multiple biostimulation treatments were applied to enhance the removal of heavy crude oil pollutants in the saline soil of Yellow River Delta. Changes of the soil bacterial community were monitored using the terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses. The 140-day microcosm experiments showed that low C:N:P ratio, high availability of surfactant and addition of bulking agent significantly enhanced the performance, leading to the highest total petroleum hydrocarbon removal. Meanwhile, the bacterial community was remarkably changed by the multiple biostimulation treatments, with the Deltaproteobacteria, Firmicutes, Actinobacteria, Acidobacteria and Planctomycetes being inhibited and the Alpha- and Beta-proteobacteria and some unknown Gammaproteobacteria bacteria being enriched. In addition, different hydrocarbon-degraders came to power in the following turn. At the first stage, the Alcanivorax-related Gammaproteobacteria bacteria dominated in the biostimulated soil and contributed mainly to the biodegradation of easily degradable portion of the heavy crude oil. Then the bacteria belonging to Alphaproteobacteria, followed by bacteria belonging to Candidate division OD1, became the dominant oil-degraders to degrade the remaining recalcitrant constituents of the heavy crude oil.
Collapse
Affiliation(s)
- Sulin Yu
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | | | | | | |
Collapse
|
19
|
Wu Z, Zou L, Lu D, Liu Z. Restoration of taxonomic and functional genes after bioaugmentation of petroleum contaminated soil. ACTA ACUST UNITED AC 2011; 13:2904-13. [DOI: 10.1039/c0em00761g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Biodegradation: gaining insight through proteomics. Biodegradation 2010; 21:861-79. [DOI: 10.1007/s10532-010-9361-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
|
21
|
Change of isoprenoids, steranes and terpanes during ex situ bioremediation of mazut on industrial level. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2010. [DOI: 10.2298/jsc100505091b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The paper presents results of the ex situ bioremediation of soil contaminated by mazut (heavy residual fuel oil) in the field scale (600 m3). A treatment-bed (thickness 0.4 m) consisted of mechanically mixed mazut-contaminated soil, softwood sawdust as the additional carbon source and crude river sand, as bulking and porosity increasing material. The inoculation/reinoculation was conducted periodically using a biomass of a consortium of zymogenous microorganisms isolated from the bioremediation substrate. The biostimulation was performed through addition of nutritious substances (N, P and K). The aeration was improved by systematic mixing of the bioremediation system. After 50 days, the number of hydrocarbon degraders increased 100 times. Based on the changes in the group composition, the average biodegradation rate during bioremediation was 24 mg/kg/day for the aliphatic fraction, 6 mg/kg/day for the aromatic fraction, and 3 mg/kg/day for the nitrogen-sulphuroxygen compounds (NSO)-asphaltene fraction. In the saturated hydrocarbon fraction, gas chromatography-mass spectrometry (GC-MS) in the single ion-monitoring mode (SIM) was applied to analyse isoprenoids pristane and phytane and polycyclic molecules of sterane and triterpane type. Biodegradation occurred during the bioremediation process, as well as reduction of relative quantities of isoprenoids, steranes, tri- and tetracyclic terpanes and pentacyclic terpanes of hopane type.
Collapse
|
22
|
Pandey J, Chauhan A, Jain RK. Integrative approaches for assessing the ecological sustainability ofin situbioremediation. FEMS Microbiol Rev 2009; 33:324-75. [PMID: 19178567 DOI: 10.1111/j.1574-6976.2008.00133.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
23
|
de Lorenzo V. Systems biology approaches to bioremediation. Curr Opin Biotechnol 2008; 19:579-89. [PMID: 19000761 DOI: 10.1016/j.copbio.2008.10.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/08/2008] [Accepted: 10/16/2008] [Indexed: 11/30/2022]
Affiliation(s)
- Víctor de Lorenzo
- Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain.
| |
Collapse
|
24
|
Simple method for transformation of Ochrobactrum anthropi. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Efficiency of the EPS emulsifier produced by Ochrobactrum anthropi in different hydrocarbon bioremediation assays. J Ind Microbiol Biotechnol 2008; 35:1493-501. [DOI: 10.1007/s10295-008-0451-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
|
26
|
Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol 2008; 80:365-80. [PMID: 18648804 DOI: 10.1007/s00253-008-1565-4] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/29/2008] [Accepted: 06/01/2008] [Indexed: 10/21/2022]
Abstract
Terminal restriction fragment length polymorphism (T-RFLP) analysis is a popular high-throughput fingerprinting technique used to monitor changes in the structure and composition of microbial communities. This approach is widely used because it offers a compromise between the information gained and labor intensity. In this review, we discuss the progress made in T-RFLP analysis of 16S rRNA genes and functional genes over the last 10 years and evaluate the performance of this technique when used in conjunction with different statistical methods. Web-based tools designed to perform virtual polymerase chain reaction and restriction enzyme digests greatly facilitate the choice of primers and restriction enzymes for T-RFLP analysis. Significant improvements have also been made in the statistical analysis of T-RFLP profiles such as the introduction of objective procedures to distinguish between signal and noise, the alignment of T-RFLP peaks between profiles, and the use of multivariate statistical methods to detect changes in the structure and composition of microbial communities due to spatial and temporal variation or treatment effects. The progress made in T-RFLP analysis of 16S rRNA and genes allows researchers to make methodological and statistical choices appropriate for the hypotheses of their studies.
Collapse
|
27
|
|
28
|
Federici E, Leonardi V, Giubilei MA, Quaratino D, Spaccapelo R, D'Annibale A, Petruccioli M. Addition of allochthonous fungi to a historically contaminated soil affects both remediation efficiency and bacterial diversity. Appl Microbiol Biotechnol 2007; 77:203-11. [PMID: 17823794 DOI: 10.1007/s00253-007-1143-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 06/06/2007] [Accepted: 07/26/2007] [Indexed: 10/22/2022]
Abstract
Botryosphaeria rhodina DABAC P82 and Pleurotus pulmonarius CBS 664.97 were tested for their ability to grow and to degrade aromatic hydrocarbons in an aged contaminated soil. To evaluate the impact of indigenous microflora on the overall process, incubations were performed on both fumigated and nonfumigated soils. Fungal colonization by B. rhodina was unexpectedly lower in the fumigated than in the nonfumigated soil while the growth of P. pulmonarius showed an opposite response. Degradation performances and detoxification by both fungi in the nonfumigated soil were markedly higher than those observed in the fumigated one. Heterotrophic bacterial counts in nonfumigated soil augmented with either B. rhodina or P. pulmonarius were significantly higher than those of the corresponding incubation control (6.7 +/- 0.3 x 10(8) and 8.35 +/- 0.6 x 10(8), respectively, vs 9.2 +/- 0.3 x 10(7)). Bacterial communities of both incubation controls and fungal-augmented soil were compared by numerical analysis of denaturing gradient gel electrophoresis profiles of polymerase chain reaction (PCR)-amplified 16S ribosomal RNA (rRNA) genes and cloning and sequencing of PCR-amplified 16S rRNA genes. Besides increasing overall diversity, fungal augmentation led to considerable qualitative differences with respect to the pristine soil.
Collapse
Affiliation(s)
- Ermanno Federici
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Wang Z, Li J, Hesham AEL, He S, Zhang Y, Wang Z, Yang M. Co-variations of bacterial composition and catabolic genes related to PAH degradation in a produced water treatment system consisting of successive anoxic and aerobic units. THE SCIENCE OF THE TOTAL ENVIRONMENT 2007; 373:356-62. [PMID: 17207845 DOI: 10.1016/j.scitotenv.2006.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 11/10/2006] [Accepted: 11/18/2006] [Indexed: 05/13/2023]
Abstract
This paper reports on the investigation of concentration levels of PAHs, community structure, as well as the abundance of PAH-related catabolic genes including upper-pathway dioxygenase genes (nahAc and phnAc) and down-pathway catechol dioxygenase genes (C12O and C23O) in a successive anoxic and aerobic treatment of produced water from the Jidong Oilfield, China. 93% of total PAHs were removed, almost equally contributed by the anoxic and aerobic units. However, PAHs of more than 3 benzene rings remained almost unchanged. The signals for phnAc and C12O were undetectable in this biological system, whereas the existence of nahAc and C23O was confirmed in the system and the copies of the two genes in the aerobic tank were 2 or 3 orders higher than those in the influent water sample. The different behavior of C23O demonstrated that mineralization of PAHs might mainly occur in the aerobic unit. The existence of nahAc and C23O genes in the influent and the high similarity of genotype between the influent and the two sludge samples suggested that bacteria existing in the influent contributed to PAH removal and bacteria harboring PAH catabolic genes were enriched in the sludge.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, CAS, P.O. Box 2871, Beijing 100085, China
| | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Seleem MN, Ali M, Boyle SM, Mukhopadhyay B, Witonsky SG, Schurig GG, Sriranganathan N. Establishment of a gene expression system in Ochrobactrum anthropi. Appl Environ Microbiol 2006; 72:6833-6. [PMID: 17021239 PMCID: PMC1610320 DOI: 10.1128/aem.01446-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic studies of Ochrobactrum anthropi are hindered by the lack of a suitable gene expression system. We constructed a set of vectors containing several promoters and a His tag fusion in the N terminus to facilitate protein detection and purification. The new vectors should significantly enhance the genetic manipulation and characterization of O. anthropi.
Collapse
Affiliation(s)
- Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic and State University, Blacksburg, VA 24060, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
El-Latif Hesham A, Khan S, Liu X, Zhang Y, Wang Z, Yang M. Application of PCR–DGGE to analyse the yeast population dynamics in slurry reactors during degradation of polycyclic aromatic hydrocarbons in weathered oil. Yeast 2006; 23:879-87. [PMID: 17001616 DOI: 10.1002/yea.1401] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Slurry-phase reactors have been used to investigate the biodegradation feasibility of polycyclic aromatic hydrocarbons (PAHs) in weathered crude oil, by mixed culture containing five PAHs-degrading yeast strains. Yeasts were isolated from the oily soil by enrichment culture, using phenanthrene as a sole carbon source, and identified based on the 26S ribosomal DNA (rDNA) sequence. Yeast strains belonged to the genera Candida, Pichia, Rhodotorula and Sporidiobolus. The experiment was carried out for a period of 6 weeks at room temperature with a solid : liquid ratio of 50% w/w. The results showed that high removal efficiency was obtained for all PAHs, including low molecular weight (LMW) and high molecular weight (HMW) compounds (89.3-98.6% and 66.3-89.4% within 6 weeks, respectively). The higher removal efficiency for HMW-PAHs obtained in this work suggested that yeast strains mixture could play an important role to reclaim oil-contaminated sites. Denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified 26S rRNA genes was used to follow the changes of yeast populations during the slurry reactor process. The results of DGGE indicated that Candida maltosa-like and Pichia guilliermondii were the dominant species but Rhodotorula dairenensis appeared as a weak band and Sporidiobolus salmonicolor and Pichia anomala disappeared during the study. Moreover, the results showed that all of the five strains, including the two belonging to the same genus, could be differentiated from each other in the DGGE profile.
Collapse
Affiliation(s)
- Abd El-Latif Hesham
- Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085, People's Republic of China
| | | | | | | | | | | |
Collapse
|