1
|
Nithimethachoke T, Boonmak C, Morikawa M. A novel alkane monooxygenase evolved from a broken piece of ribonucleotide reductase in Geobacillus kaustophilus HTA426 isolated from Mariana Trench. Extremophiles 2024; 28:18. [PMID: 38353731 PMCID: PMC10867098 DOI: 10.1007/s00792-024-01332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/30/2023] [Indexed: 02/16/2024]
Abstract
We have accidentally found that a thermophilic Geobacillus kaustophilus HTA426 is capable of degrading alkanes although it has no alkane oxygenating enzyme genes. Our experimental results revealed that a putative ribonucleotide reductase small subunit GkR2loxI (GK2771) gene encodes a novel heterodinuclear Mn-Fe alkane monooxygenase/hydroxylase. GkR2loxI protein can perform two-electron oxidations similar to homonuclear diiron bacterial multicomponent soluble methane monooxygenases. This finding not only answers a long-standing question about the substrate of the R2lox protein clade, but also expands our understanding of the vast diversity and new evolutionary lineage of the bacterial alkane monooxygenase/hydroxylase family.
Collapse
Affiliation(s)
- Tanasap Nithimethachoke
- Graduate School of Environmental Science, Hokkaido University, Kita-10 Nishi-5, Kita-ku, Sapporo, 060-0810, Japan
| | - Chanita Boonmak
- Department of Microbiology, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd., Lat Yao, Chatuchak, Bangkok, 10900, Thailand
| | - Masaaki Morikawa
- Graduate School of Environmental Science, Hokkaido University, Kita-10 Nishi-5, Kita-ku, Sapporo, 060-0810, Japan.
| |
Collapse
|
2
|
Fenibo EO, Selvarajan R, Abia ALK, Matambo T. Medium-chain alkane biodegradation and its link to some unifying attributes of alkB genes diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162951. [PMID: 36948313 DOI: 10.1016/j.scitotenv.2023.162951] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Hydrocarbon footprints in the environment, via biosynthesis, natural seepage, anthropogenic activities and accidents, affect the ecosystem and induce a shift in the healthy biogeochemical equilibrium that drives needed ecological services. In addition, these imbalances cause human diseases and reduce animal and microorganism diversity. Microbial bioremediation, which capitalizes on functional genes, is a sustainable mitigation option for cleaning hydrocarbon-impacted environments. This review focuses on the bacterial alkB functional gene, which codes for a non-heme di‑iron monooxygenase (AlkB) with a di‑iron active site that catalyzes C8-C16 medium-chain alkane metabolism. These enzymes are ubiquitous and share common attributes such as being controlled by global transcriptional regulators, being a component of most super hydrocarbon degraders, and their distributions linked to horizontal gene transfer (HGT) events. The phylogenetic approach used in the HGT detection suggests that AlkB tree topology clusters bacteria functionally and that a preferential gradient dictates gene distribution. The alkB gene also acts as a biomarker for bioremediation, although it is found in pristine environments and absent in some hydrocarbon degraders. For instance, a quantitative molecular method has failed to link alkB copy number to contamination concentration levels. This limitation may be due to AlkB homologues, which have other functions besides n-alkane assimilation. Thus, this review, which focuses on Pseudomonas putida GPo1 alkB, shows that AlkB proteins are diverse but have some unifying trends around hydrocarbon-degrading bacteria; it is erroneous to rely on alkB detection alone as a monitoring parameter for hydrocarbon degradation, alkB gene distribution are preferentially distributed among bacteria, and the plausible explanation for AlkB affiliation to broad-spectrum metabolism of hydrocarbons in super-degraders hitherto reported. Overall, this review provides a broad perspective of the ecology of alkB-carrying bacteria and their directed biodegradation pathways.
Collapse
Affiliation(s)
- Emmanuel Oliver Fenibo
- World Bank Africa Centre of Excellence, Centre for Oilfield Chemical Research, University of Port Harcourt, Port Harcourt 500272, Nigeria
| | - Ramganesh Selvarajan
- Laboratory of Extraterrestrial Ocean Systems (LEOS), Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China; Department of Environmental Science, University of South Africa, Florida Campus, 1710, South Africa
| | - Akebe Luther King Abia
- Department of Environmental Science, University of South Africa, Florida Campus, 1710, South Africa; Environmental Research Foundation, Westville 3630, South Africa
| | - Tonderayi Matambo
- Institute for the Development of Energy for African Sustainability, University of South Africa, Roodepoort 1709, South Africa.
| |
Collapse
|
3
|
Bacterial Isolates from Greek Sites and Their Efficacy in Degrading Petroleum. SUSTAINABILITY 2022. [DOI: 10.3390/su14159562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a major organic pollutant, not only because they do not self-degenerate but also because they accumulate in the food chain and give rise to serious repercussions in terms of biodiversity sustainability. Petroleum-degrading bacteria have long been used as a promising solution in the effort to biodegrade crude oil. In this study, new isolates from specific Greek environments displaying various levels of crude oil contamination, as well as isolates belonging to the ATHUBA collection, were thoroughly investigated for their capacity to degrade crude oil. Furthermore, the presence of nahH and alkJ genes in the above bacterial isolates, as well as their ability to form agglomerates or release surfactants, was investigated. Two consortia were formed, and their ability to degrade crude oil was tested, achieving similar degrading capacities as those observed with the individual strains. A Pseudomonas plecoglossicida isolate demonstrated the highest percentage (76.7%) ability to degrade crude oil. The biodegradation rate of this isolate was further evaluated by measuring the alkanes/hopanes ratio over a period of ten days, exhibiting a higher degradation rate in short-chain (C11–C21) alkanes, whereas a decrease in the ratio was observed when the number of carbons in petroleum increased. This is the first detailed report on bacterial communities in oil-polluted areas of Greece that contain a variety of bacteria with the ability to degrade PAHs in contaminated sites and may provide a novel alternative to various bioremediation processes or be used as inocula in autochthonous bioaugmentation procedures for crude oil biodegradation.
Collapse
|
4
|
Wang Q, Guo S, Ali M, Song X, Tang Z, Zhang Z, Zhang M, Luo Y. Thermally enhanced bioremediation: A review of the fundamentals and applications in soil and groundwater remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128749. [PMID: 35364527 DOI: 10.1016/j.jhazmat.2022.128749] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Thermally enhanced bioremediation (TEB), a new concept proposed in recent years, explores the combination of thermal treatment and bioremediation to address the challenges of the low efficiency and long duration of bioremediation. This study presented a comprehensive review regarding the fundamentals of TEB and its applications in soil and groundwater remediation. The temperature effects on the bioremediation of contaminants were systematically reviewed. The thermal effects on the physical, chemical and biological characteristics of soil, and the corresponding changes of contaminants bioavailability and microbial metabolic activities were summarized. Specifically, the increase in temperature within a suitable range can proliferate enzymes enrichment, extracellular polysaccharides and biosurfactants production, and further enhancing bioremediation. Furthermore, a systematic evaluation of TEB applications by utilizing traditional in situ heating technologies, as well as renewable energy (e.g., stored aquifer thermal energy and solar energy), was provided. Additionally, TEB has been applied as a biological polishing technology post thermal treatment, which can be a cost-effective method to address the contaminants rebounds in groundwater remediation. However, there are still various challenges to be addressed in TEB, and future research perspectives to further improve the basic understanding and applications of TEB for the remediation of contaminated soil and groundwater are presented.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Siwei Guo
- Zhejiang University, Hangzhou, China
| | - Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Saeed AM, El-Shatoury EH, Sayed HAE. Statistical factorial designs for optimum production of thermostable α-amylase by the degradative bacterium Parageobacillus thermoglucosidasius Pharon1 isolated from Sinai, Egypt. J Genet Eng Biotechnol 2021; 19:24. [PMID: 33523315 PMCID: PMC7851196 DOI: 10.1186/s43141-021-00123-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND This study aimed to isolate potent thermophilic and amylolytic bacteria from a hot spring of Pharaoh's bath, Sinai, Egypt, and screen its degradative activity. The amylolytic activity was further optimized using a statistical full factorial design followed by response surface methodology. RESULTS A thermophilic bacterium was isolated from the hot spring of Pharaoh's Bath, Sinai, Egypt. The isolate produced amylase, cellulase, and caseinase and was identified by 16S rRNA gene sequencing as Parageobacillus thermoglucosidasius Pharon1 (MG965879). A growth medium containing 1% soluble starch was found to optimize the amylase production. Dinitrosalycalic acid method (DNS) was used to estimate the amount of reducing sugar produced. Statistical full factorial and response surface designs were employed to optimize physical variables affecting the α-amylase production and determine the significant interactions of the studied variables during the fermentation process. According to the results obtained by the response optimizer, the maximum amylase activity reached 76.07 U/mL/ min at 54.1°C, pH 5.6 after 98.5 h incubation under aerobic conditions. Moreover, the produced enzyme was thermostable and retained most of its activity when exposed to a high temperature of 100°C for 120 min. Maximum enzyme activity was attained when the enzyme was incubated at 70°C for 30 min. CONCLUSIONS This is the first report of the production of thermostable α-amylase by the potent thermophilic Parageobacillus thermoglucosidasius. The enzyme endured extreme conditions of temperature and pH which are important criteria for commercial and industrial applications.
Collapse
Affiliation(s)
- Ali M Saeed
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Einas H El-Shatoury
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hayam A E Sayed
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Tariq M, Shah AA, Yasin NA, Ahmad A, Rizwan M. Enhanced performance of Bacillus megaterium OSR-3 in combination with putrescine ammeliorated hydrocarbon stress in Nicotiana tabacum. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:119-129. [PMID: 32755316 DOI: 10.1080/15226514.2020.1801572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Hydrocarbon stress (HS) has been causing decreased plant growth and productivity. Putrescine (Put) and growth promoting microbes are vital for plant growth and development under hydrocarbon stress. Current research work was carried out to evaluate the potential of Bacillus megaterium OSR-3 alone and in combination with Put to alleviate HS in Nicotiana tabacum (L.). The crude petroleum contaminated soil significantly reduced growth attributes of N. tabacum. B. megaterium OSR-3 inoculated plants subjected to HS exhibited improved photosynthetic rate, gas exchange characteristics, poline contents and protein level. Furthermore, bacterial inoculation enhanced the antioxidative activity of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) in tobacco plants subjected to HS. The HS alleviation in B. megaterium OSR-3 inoculated N. tabacum can be credited to the heightened activity of antioxidative enzymes, reduction in hydrogen peroxide (H2O2) and abridged synthesis of malondialdehyde (MDA). The increased synthesis of indole acetic acid (IAA) in HS stressed N. tabacum plants treated with co-application of B. megaterium OSR-3 and Put attenuated toxicity and amplified growth of plants. Additionally, the co-application of B. megaterium OSR-3 and Put also upregulated the activity of antioxidative enzymes and induced augmented level of proline and IAA in plants under HS regimes. Current research provides novel insight into the potential and mechanism of B. megaterium OSR-3 and Put in mitigation of HS in N. tabacum plants.
Collapse
Affiliation(s)
- Muniba Tariq
- Department of Botany, University of Narowal, Narowal, Pakistan
| | - Anis Ali Shah
- Department of Botany, University of Narowal, Narowal, Pakistan
| | - Nasim Ahmad Yasin
- Senior Superintendent Gardens, RO-II Office, University of the Punjab, Lahore, Pakistan
| | - Aqeel Ahmad
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| |
Collapse
|
7
|
Effect of Cultural Conditions on Protease Production by a Thermophilic Geobacillus thermoglucosidasius SKF4 Isolated from Sungai Klah Hot Spring Park, Malaysia. Molecules 2020; 25:molecules25112609. [PMID: 32512695 PMCID: PMC7321352 DOI: 10.3390/molecules25112609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 04/11/2020] [Indexed: 11/25/2022] Open
Abstract
Major progress in the fields of agriculture, industry, and biotechnology over the years has influenced the quest for a potent microorganism with favorable properties to be used in scientific research and industry. This study intended to isolate a new thermophilic-protease-producing bacterium and evaluate its growth and protease production under cultural conditions. Protease producing bacteria were successfully isolated from Sungai Klah Hot Spring Park in Perak, Malaysia, and coded as SKF4; they were promising protease producers. Based on microscopic, morphological, and 16S rRNA gene analysis, isolate SKF4 was identified as Geobacillus thermoglucosidasius SKF4. The process of isolating SKF4 to grow and produce proteases under different cultural conditions, including temperature, pH, NaCl concentration, carbon and nitrogen sources, and incubation time, was explored. The optimum cultural conditions observed for growth and protease production were at 60 to 65 °C of temperature, pH 7 to 8, and under 1% NaCl concentration. Further, the use of casein and yeast extract as the nitrogen sources, and sucrose and fructose as the carbon sources enhanced the growth and protease production of isolate SKF4. Meanwhile, isolate SKF4 reached maximum growth and protease production at 24 h of incubation time. The results of this study revealed a new potent strain of thermophilic bacterium isolated from Sungai Klah Hot Spring Park in Perak, Malaysia for the first time. The high production of thermostable protease enzyme by G. thermoglucosidasius SKF4 highlighted the promising properties of this bacterium for industrial and biotechnological applications.
Collapse
|
8
|
Mehetre GT, Dastager SG, Dharne MS. Biodegradation of mixed polycyclic aromatic hydrocarbons by pure and mixed cultures of biosurfactant producing thermophilic and thermo-tolerant bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 679:52-60. [PMID: 31082602 DOI: 10.1016/j.scitotenv.2019.04.376] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/06/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Applicability of thermophilic and thermo-tolerant microorganisms for biodegradation of polycyclic aromatic hydrocarbons (PAHs) with low water solubility is an interesting strategy for improving the biodegradation efficiency. In this study, we evaluated utility of thermophilic and thermo-tolerant bacteria isolated from Unkeshwar hot spring (India) for biodegradation of four different PAHs. Water samples were enriched in mineral salt medium (MSM) containing a mixture of four PAHs compounds (anthracene: ANT, fluorene: FLU, phenanthrene: PHE and pyrene: PYR) at 37 °C and 50 °C. After growth based screening, four potent strains obtained which were identified as Aeribacillus pallidus (UCPS2), Bacillus axarquiensis (UCPD1), Bacillus siamensis (GHP76) and Bacillus subtilis subsp. inaquosorum (U277) based on the 16S rRNA gene sequence analysis. Degradation of mixed PAH compounds was evaluated by pure as well as mixed cultures under shake flask conditions using MSM supplemented with 200 mg/L concentration of PAHs (50 mg/L of each compound) for 15 days at 37 °C and 50 °C. A relatively higher degradation of ANT (92%- 96%), FLU (83% - 86%), PHE (16% - 54%) and PYR (51% - 71%) was achieved at 50 °C by Aeribacillus sp. (UCPS2) and mixed culture. Furthermore, crude oil was used as a substrate to study the degradation of same PAHs using these organisms which also revealed with similar results with the higher degradation at 50 °C. Interestingly, PAH-degrading strains were also positive for biosurfactant production. Biosurfactants were identified as the variants of surfactins (lipopeptide biosurfactants) based on analytical tools and phylogenetic analysis of the surfactin genes. Overall, this study has shown that hot spring microbes may have a potential for PAHs degradation and also biosurfactant production at a higher temperature, which could provide a novel perspective for removal of PAHs residues from oil contaminated sites.
Collapse
Affiliation(s)
- Gajanan T Mehetre
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Syed G Dastager
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Mahesh S Dharne
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
9
|
Elumalai P, Parthipan P, Narenkumar J, Anandakumar B, Madhavan J, Oh BT, Rajasekar A. Role of thermophilic bacteria ( Bacillus and Geobacillus) on crude oil degradation and biocorrosion in oil reservoir environment. 3 Biotech 2019; 9:79. [PMID: 30800590 DOI: 10.1007/s13205-019-1604-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 02/01/2019] [Indexed: 12/16/2022] Open
Abstract
Thermophilic bacterial communities generate thick biofilm on carbon steel API 5LX and produce extracellular metabolic products to accelerate the corrosion process in oil reservoirs. In the present study, nine thermophilic biocorrosive bacterial strains belonging to Bacillus and Geobacillus were isolated from the crude oil and produced water sample, and identified using 16S rRNA gene sequencing. The biodegradation efficiency of hydrocarbons was found to be high in the presence of bacterial isolates MN6 (82%), IR4 (94%) and IR2 (87%). During the biodegradation process, induction of the catabolic enzymes such as alkane hydroxylase, alcohol dehydrogenase and lipase were also examined in these isolates. Among them, the highest activity of alkane hydroxylase (130 µmol mg-1 protein) in IR4, alcohol dehydrogenase (70 µmol mg-1 protein) in IR2, and higher lipase activity in IR4 (60 µmol mg-1 protein) was observed. Electrochemical impedance spectroscopy and X-ray diffraction data showed that these isolates oxidize iron into ferrous/ferric oxides as the corrosion products on the carbon steel surface, whilst the crude oil hydrocarbon served as a sole carbon source for bacterial growth and development in such extreme environments.
Collapse
Affiliation(s)
- Punniyakotti Elumalai
- 1Division of Biotechnology, Advanced Institute of Environment and Biosciences, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 54596 South Korea
| | - Punniyakotti Parthipan
- 2Electro-Materials Research Lab, Centre for Nanoscience and Technology, Pondicherry University, Puducherry, 605 014 India
| | - Jayaraman Narenkumar
- 3Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu 632115 India
| | - Balakrishnan Anandakumar
- 4Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 India
| | - Jagannathan Madhavan
- 5Solar Energy Laboratory, Department of Chemistry, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu 632115 India
| | - Byung-Taek Oh
- 1Division of Biotechnology, Advanced Institute of Environment and Biosciences, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 54596 South Korea
| | - Aruliah Rajasekar
- 3Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu 632115 India
| |
Collapse
|
10
|
Current Status of the Degradation of Aliphatic and Aromatic Petroleum Hydrocarbons by Thermophilic Microbes and Future Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15122782. [PMID: 30544637 PMCID: PMC6313336 DOI: 10.3390/ijerph15122782] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 01/10/2023]
Abstract
Contamination of the environment by petroleum products is a growing concern worldwide, and strategies to remove these contaminants have been evaluated. One of these strategies is biodegradation, which consists of the use of microorganisms. Biodegradation is significantly improved by increasing the temperature of the medium, thus, the use of thermophiles, microbes that thrive in high-temperature environments, will render this process more efficient. For instance, various thermophilic enzymes have been used in industrial biotechnology because of their unique catalytic properties. Biodegradation has been extensively studied in the context of mesophilic microbes, and the mechanisms of biodegradation of aliphatic and aromatic petroleum hydrocarbons have been elucidated. However, in comparison, little work has been carried out on the biodegradation of petroleum hydrocarbons by thermophiles. In this paper, a detailed review of the degradation of petroleum hydrocarbons (both aliphatic and aromatic) by thermophiles was carried out. This work has identified the characteristics of thermophiles, and unraveled specific catabolic pathways of petroleum products that are only found with thermophiles. Gaps that limit our understanding of the activity of these microbes have also been highlighted, and, finally, different strategies that can be used to improve the efficiency of degradation of petroleum hydrocarbons by thermophiles were proposed.
Collapse
|
11
|
Rusin M, Gospodarek J, Barczyk G, Nadgórska-Socha A. Antioxidant responses of Triticum aestivum plants to petroleum-derived substances. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:1353-1367. [PMID: 30311131 PMCID: PMC6267654 DOI: 10.1007/s10646-018-1988-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/21/2018] [Indexed: 05/05/2023]
Abstract
Winter common wheat (Triticum aestivum L.) plants were cultivated on petroleum products contaminated soils with and without using biopreparation ZB-01. We determined the impact of soil contamination with petrol, diesel fuel and engine oil on selected antioxidant enzymes and the levels of antioxidants in the leaves of winter wheat. The impact of petroleum products on selected morphological characteristics of the plants, levels of nutrients and heavy metals was also assessed. Winter wheat was relatively resistant to soil contamination with petroleum products, and did not show a significant impact on the morphological characteristics of the plants. The levels of nutrients and heavy metals in the plants depended on the type of pollutant and the analyzed component. Biopreparation ZB-01 generally resulted in an increase in calcium levels in the plants. The winter wheat plants growing in soil contaminated with engine oil were characterized by higher levels of zinc, lead, manganese and cadmium than the control plants. Biopreparation applied to the soil contaminated with petrol resulted in a slight increase in the levels of lead and zinc in the plants. The petroleum products affected the activity of antioxidant enzymes and the levels of antioxidants in the plants. The general markers of soil contaminated with diesel fuel and petrol were POD activity and proline levels. Use of the ZB-01 biopreparation caused an increase in the levels of proline and -SH groups and an increase in the levels of carbon and calcium in the plants and had no effect on the morphological characteristics of plants..
Collapse
Affiliation(s)
- Milena Rusin
- Department of Agricultural Environment Protection, University of Agriculture, al. A. Mickiewicza 21, 31-120, Krakow, Poland.
| | - Janina Gospodarek
- Department of Agricultural Environment Protection, University of Agriculture, al. A. Mickiewicza 21, 31-120, Krakow, Poland
| | - Gabriela Barczyk
- Department of Ecology, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | | |
Collapse
|
12
|
Guerra AB, Oliveira JS, Silva-Portela RCB, Araújo W, Carlos AC, Vasconcelos ATR, Freitas AT, Domingos YS, de Farias MF, Fernandes GJT, Agnez-Lima LF. Metagenome enrichment approach used for selection of oil-degrading bacteria consortia for drill cutting residue bioremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:869-880. [PMID: 29353803 DOI: 10.1016/j.envpol.2018.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/28/2017] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
Drill cuttings leave behind thousands of tons of residues without adequate treatment, generating a large environmental liability. Therefore knowledge about the microbial community of drilling residue may be useful for developing bioremediation strategies. In this work, samples of drilling residue were enriched in different culture media in the presence of petroleum, aiming to select potentially oil-degrading bacteria and biosurfactant producers. Total DNA was extracted directly from the drill cutting samples and from two enriched consortia and sequenced using the Ion Torrent platform. Taxonomic analysis revealed the predominance of Proteobacteria in the metagenome from the drill cuttings, while Firmicutes was enriched in consortia samples. Functional analysis using the Biosurfactants and Biodegradation Database (BioSurfDB) revealed a similar pattern among the three samples regarding hydrocarbon degradation and biosurfactants production pathways. However, some statistical differences were observed between samples. Namely, the pathways related to the degradation of fatty acids, chloroalkanes, and chloroalkanes were enriched in consortia samples. The degradation colorimetric assay using dichlorophenolindophenol as an indicator was positive for several hydrocarbon substrates. The consortia were also able to produce biosurfactants, with biosynthesis of iturin, lichnysin, and surfactin among the more abundant pathways. A microcosms assay followed by gas chromatography analysis showed the efficacy of the consortia in degrading alkanes, as we observed a reduction of around 66% and 30% for each consortium in total alkanes. These data suggest the potential use of these consortia in the bioremediation of drilling residue based on autochthonous bioaugmentation.
Collapse
Affiliation(s)
- Alaine B Guerra
- Department of Cellular Biology and Genetics, UFRN, Natal, Rio Grande do Norte, 59078900, Brazil
| | - Jorge S Oliveira
- Department of Cellular Biology and Genetics, UFRN, Natal, Rio Grande do Norte, 59078900, Brazil; Instituto de Engenharia de Sistemas e Computadores/Instituto Superior Técnico (INESC-ID/IST), Universidade de Lisboa, Portugal
| | - Rita C B Silva-Portela
- Department of Cellular Biology and Genetics, UFRN, Natal, Rio Grande do Norte, 59078900, Brazil
| | - Wydemberg Araújo
- Department of Cellular Biology and Genetics, UFRN, Natal, Rio Grande do Norte, 59078900, Brazil
| | - Aline C Carlos
- Department of Cellular Biology and Genetics, UFRN, Natal, Rio Grande do Norte, 59078900, Brazil
| | - Ana Tereza R Vasconcelos
- Instituto de Engenharia de Sistemas e Computadores/Instituto Superior Técnico (INESC-ID/IST), Universidade de Lisboa, Portugal
| | | | | | | | - Glauber José Turolla Fernandes
- Centro de Tecnologias do Gás e Energias Renováveis - CTGAS-ER, Natal, RN, Brazil; Universidade Potiguar, Av. Engenheiro Roberto Freire 2184, Natal, RN, 59082902, Brazil
| | - Lucymara F Agnez-Lima
- Department of Cellular Biology and Genetics, UFRN, Natal, Rio Grande do Norte, 59078900, Brazil.
| |
Collapse
|
13
|
Pugazhendi A, Abbad Wazin H, Qari H, Basahi JMAB, Godon JJ, Dhavamani J. Biodegradation of low and high molecular weight hydrocarbons in petroleum refinery wastewater by a thermophilic bacterial consortium. ENVIRONMENTAL TECHNOLOGY 2017; 38:2381-2391. [PMID: 27852158 DOI: 10.1080/09593330.2016.1262460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
Clean-up of contaminated wastewater remains to be a major challenge in petroleum refinery. Here, we describe the capacity of a bacterial consortium enriched from crude oil drilling site in Al-Khobar, Saudi Arabia, to utilize polycyclic aromatic hydrocarbons (PAHs) as sole carbon source at 60°C. The consortium reduced low molecular weight (LMW; naphthalene, phenanthrene, fluorene and anthracene) and high molecular weight (HMW; pyrene, benzo(e)pyrene and benzo(k)fluoranthene) PAH loads of up to 1.5 g/L with removal efficiencies of 90% and 80% within 10 days. PAH biodegradation was verified by the presence of PAH metabolites and evolution of carbon dioxide (90 ± 3%). Biodegradation led to a reduction of the surface tension to 34 ± 1 mN/m thus suggesting biosurfactant production by the consortium. Phylogenetic analysis of the consortium revealed the presence of the thermophilic PAH degrader Pseudomonas aeruginosa strain CEES1 (KU664514) and Bacillus thermosaudia (KU664515) strain CEES2. The consortium was further found to treat petroleum wastewater in continuous stirred tank reactor with 96 ± 2% chemical oxygen demand removal and complete PAH degradation in 24 days.
Collapse
Affiliation(s)
- Arulazhagan Pugazhendi
- a Center of Excellence in Environmental Studies , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Hadeel Abbad Wazin
- a Center of Excellence in Environmental Studies , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Huda Qari
- a Center of Excellence in Environmental Studies , King Abdulaziz University , Jeddah , Saudi Arabia
| | | | - Jean Jacques Godon
- b Laboratorie de Biotechnologie de l'Environnement , Institut National de la Recherche Agronomique , Narbonne , France
| | - Jeyakumar Dhavamani
- a Center of Excellence in Environmental Studies , King Abdulaziz University , Jeddah , Saudi Arabia
| |
Collapse
|
14
|
Elumalai P, Parthipan P, Karthikeyan OP, Rajasekar A. Enzyme-mediated biodegradation of long-chain n-alkanes (C 32 and C 40) by thermophilic bacteria. 3 Biotech 2017; 7:116. [PMID: 28567628 DOI: 10.1007/s13205-017-0773-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/06/2017] [Indexed: 01/31/2023] Open
Abstract
Removal of long-chain hydrocarbons and n-alkanes from oil-contaminated environments are mere important to reduce the ecological damages, while bio-augmentation is a very promising technology that requires highly efficient microbes. In present study, the efficiency of pure isolates, i.e., Geobacillus thermoparaffinivorans IR2, Geobacillus stearothermophillus IR4 and Bacillus licheniformis MN6 and mixed consortium on degradation of long-chain n-alkanes C32 and C40 was investigated by batch cultivation test. Biodegradation efficiencies were found high for C32 by mixed consortium (90%) than pure strains, while the pure strains were better in degradation of C40 than mixed consortium (87%). In contrast, the maximum alkane hydroxylase activities (161 µmol mg-1 protein) were recorded in mixed consortium system that had supplied with C40 as sole carbon source. Also, the alcohol dehydrogenase (71 µmol mg-1 protein) and lipase activity (57 µmol mg-1 protein) were found high. Along with the enzyme activities, the hydrophobicity natures of the bacterial strains were found to determine the degradation efficiency of the hydrocarbons. Thus, the study suggested that the hydrophobicity of the bacteria is a critical parameter to understand the biodegradation of n-alkanes.
Collapse
|
15
|
Characterisation of Pseudomonas spp. and Ochrobactrum sp. isolated from volcanic soil. Antonie van Leeuwenhoek 2016; 110:253-270. [PMID: 27853952 DOI: 10.1007/s10482-016-0796-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
Soil bacteria may have properties of plant growth promotion but not be sufficiently beneficial for plants under stress conditions. This challenge has led researchers to extend their searches into extreme environments for potential soil bacteria with multiple plant beneficial traits as well as abiotic stress tolerance abilities. In the current study, an attempt was made to evaluate soil bacteria from an extreme environment, volcano soils, based on plant growth promoting and abiotic stress mitigating characteristics. The screening led to the isolation of eight (NBRISH4, NBRISH6, NBRISH10, NBRISH11, NBRISH13, NBRISH14, NBRISH16 and NBRISH26) bacterial isolates capable of withstanding stresses, namely temperature (up to 45 °C), salt (up to 2 M NaCl) and drought (up to 60% Poly Ethylene Glycol 6000) in vitro. Further, the selected isolates were notable for their in vitro temporal performance with regards to survival (in terms of colony count), phosphate solubilisation, biofilm formation, auxin, alginate and exo-polysaccharide production abilities under abiotic stresses i.e. 40 °C temperature; 500 mM NaCl salt and drought (PEG) conditions. In vivo seed treatments of individual selected bacteria to maize plants resulted into significant enhancement in root and shoot length, root and shoot fresh and dry weight and number of leaves per plant. Overall, the plant growth promoting and abiotic stress tolerance ability was most evident for bacterial isolate NBRISH6 which was identified as an Ochrobactrum sp. using 16S rRNA based phylogenetic analysis.
Collapse
|
16
|
Moderately thermophilic, hydrocarbonoclastic bacterial communities in Kuwaiti desert soil: enhanced activity via Ca(2+) and dipicolinic acid amendment. Extremophiles 2015; 19:573-83. [PMID: 25716145 DOI: 10.1007/s00792-015-0739-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
Abstract
Pristine and oil-contaminated desert soil samples from Kuwait harbored between 10 and 100 cells g(-1) of hydrocarbonoclastic bacteria capable of growth at 50 °C. Enrichment by incubation of moistened soils for 6 months at 50 °C raised those numbers to the magnitude of 10(3) cells g(-1). Most of these organisms were moderately thermophilic and belonged to the genus Bacillus; they grew at 40-50 °C better than at 30 °C. Species belonging to the genera Amycolatopsis, Chelativorans, Isoptericola, Nocardia, Aeribacillus, Aneurinibacillus, Brevibacillus, Geobacillus, Kocuria, Marinobacter and Paenibacillus were also found. This microbial diversity indicates a good potential for hydrocarbon removal in soil at high temperature. Analysis of the same desert soil samples by a culture-independent method (combined, DGGE and 16S rDNA sequencing) revealed dramatically different lists of microorganisms, many of which had been recorded as hydrocarbonoclastic. Many species were more frequent in the oil contaminated than in the pristine soil samples, which may reflect their hydrocarbonoclastic activity in situ. The growth and hydrocarbon consumption potential of all tested isolates were dramatically enhanced by amendment of the cultures with Ca(2+) (up to 2.5 M CaSO4). This enhanced effect was even amplified when in addition 8 % w/v dipicolinic acid was amended. These novel findings are useful in suggesting biotechnologies for waste hydrocarbon remediation at moderately high temperature.
Collapse
|
17
|
Khazra B, Mousavi SM, Mehrabi S, Hashemi M, Shojaosadati SA. Biodegradation of heptadecane in hydrocarbon polluted dune sands using a newly-isolated thermophilic bacterium, Brevibacillus borstelensis TMU30: statistical evaluation and process optimization. RSC Adv 2015. [DOI: 10.1039/c5ra00678c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An enrichment culture was established to isolate a thermophilic hydrocarbon-degrading bacterium from contaminated soil samples from the Tehran Petroleum Refinery.
Collapse
Affiliation(s)
- Bahram Khazra
- Biotechnology Group
- Chemical Engineering Department
- Tarbiat Modares University
- Tehran
- Iran
| | | | - Sadaf Mehrabi
- Biotechnology Group
- Chemical Engineering Department
- Tarbiat Modares University
- Tehran
- Iran
| | - Maryam Hashemi
- Department of Microbial Biotechnology & Biosafety
- Agricultural Biotechnology Research Institute of Iran (ABRII)
- AREEO
- Karaj
- Iran
| | | |
Collapse
|
18
|
Xia W, Dong H, Zheng C, Cui Q, He P, Tang Y. Hydrocarbon degradation by a newly isolated thermophilic Anoxybacillus sp. with bioemulsifier production and new alkB genes. RSC Adv 2015. [DOI: 10.1039/c5ra17137g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, a new thermophilic bacterial strain was isolated and identified asAnoxybacillussp. WJ-4. This strain of WJ-4 can degrade a wide range of hydrocarbons, and production of an oligosaccharide–lipid–peptide bioemulsifier was detected.
Collapse
Affiliation(s)
- Wenjie Xia
- Power Environmental Energy Research Institute
- Covina
- USA
- Institute of Porous Flow & Fluid Mechanics
- Chinese Academy of Sciences
| | - Hao Dong
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum
- Beijing 102249
- PR China
| | - Chenggang Zheng
- Petroleum Exploration and Production Research Institute
- SINOPEC
- PR China
| | - Qingfeng Cui
- Institute of Porous Flow & Fluid Mechanics
- Chinese Academy of Sciences
- Langfang 065007
- PR China
| | - Panqing He
- Power Environmental Energy Research Institute
- Covina
- USA
| | - Yongchun Tang
- Power Environmental Energy Research Institute
- Covina
- USA
| |
Collapse
|
19
|
Metagenomics of petroleum muck: revealing microbial diversity and depicting microbial syntrophy. Arch Microbiol 2014; 196:531-44. [DOI: 10.1007/s00203-014-0992-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 04/06/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
|
20
|
Zeigler DR. The Geobacillus paradox: why is a thermophilic bacterial genus so prevalent on a mesophilic planet? Microbiology (Reading) 2014; 160:1-11. [DOI: 10.1099/mic.0.071696-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The genus Geobacillus comprises endospore-forming obligate thermophiles. These bacteria have been isolated from cool soils and even cold ocean sediments in anomalously high numbers, given that the ambient temperatures are significantly below their minimum requirement for growth. Geobacilli are active in environments such as hot plant composts, however, and examination of their genome sequences reveals that they are endowed with a battery of sensors, transporters and enzymes dedicated to hydrolysing plant polysaccharides. Although they appear to be relatively minor members of the plant biomass-degrading microbial community, Geobacillus bacteria have achieved a significant population with a worldwide distribution, probably in large part due to adaptive features of their spores. First, their morphology and resistance properties enable them to be mobilized in the atmosphere and transported long distances. Second, their longevity, which in theory may be extreme, enables them to lie quiescent but viable for long periods of time, accumulating gradually over time to achieve surprisingly high population densities.
Collapse
Affiliation(s)
- Daniel R. Zeigler
- Department of Microbiology, Ohio State University, 484 W 12th Ave, Columbus, OH 43210, USA
| |
Collapse
|
21
|
Wang W, Shao Z. Enzymes and genes involved in aerobic alkane degradation. Front Microbiol 2013; 4:116. [PMID: 23755043 PMCID: PMC3664771 DOI: 10.3389/fmicb.2013.00116] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/25/2013] [Indexed: 12/15/2022] Open
Abstract
Alkanes are major constituents of crude oil. They are also present at low concentrations in diverse non-contaminated because many living organisms produce them as chemo-attractants or as protecting agents against water loss. Alkane degradation is a widespread phenomenon in nature. The numerous microorganisms, both prokaryotic and eukaryotic, capable of utilizing alkanes as a carbon and energy source, have been isolated and characterized. This review summarizes the current knowledge of how bacteria metabolize alkanes aerobically, with a particular emphasis on the oxidation of long-chain alkanes, including factors that are responsible for chemotaxis to alkanes, transport across cell membrane of alkanes, the regulation of alkane degradation gene and initial oxidation.
Collapse
Affiliation(s)
- Wanpeng Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources Xiamen, China ; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration Xiamen, China ; Key Laboratory of Marine Genetic Resources of Fujian Province Xiamen, China
| | | |
Collapse
|
22
|
Unraveling the lipolytic activity of thermophilic bacteria isolated from a volcanic environment. BIOMED RESEARCH INTERNATIONAL 2013; 2013:703130. [PMID: 23738330 PMCID: PMC3662197 DOI: 10.1155/2013/703130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 03/25/2013] [Indexed: 11/17/2022]
Abstract
In a bioprospecting effort towards novel thermostable lipases, we assessed the lipolytic profile of 101 bacterial strains isolated from the volcanic area of Santorini, Aegean Sea, Greece. Screening of lipase activity was performed both in agar plates and liquid cultures using olive oil as carbon source. Significant differences were observed between the two screening methods with no clear correlation between them. While the percentage of lipase producing strains identified in agar plates was only 17%, lipolytic activity in liquid culture supernatants was detected for 74% of them. Nine strains exhibiting elevated extracellular lipase activities were selected for lipase production and biochemical characterization. The majority of lipase producers revealed high phylogenetic similarity with Geobacillus species and related genera, whilst one of them was identified as Aneurinibacillus sp. Lipase biosynthesis strongly depended on the carbon source that supplemented the culture medium. Olive oil induced lipase production in all strains, but maximum enzyme yields for some of the strains were also obtained with Tween-80, mineral oil, and glycerol. Partially purified lipases revealed optimal activity at 70–80°C and pH 8-9. Extensive thermal stability studies revealed marked thermostability for the majority of the lipases as well as a two-step thermal deactivation pattern.
Collapse
|
23
|
Bioremediation of Libyan Crude Oil-Contaminated Soil under Mesophilic and Thermophilic Conditions. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.apcbee.2013.05.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Zhang J, Zhang X, Liu J, Li R, Shen B. Isolation of a thermophilic bacterium, Geobacillus sp. SH-1, capable of degrading aliphatic hydrocarbons and naphthalene simultaneously, and identification of its naphthalene degrading pathway. BIORESOURCE TECHNOLOGY 2012; 124:83-89. [PMID: 22985850 DOI: 10.1016/j.biortech.2012.08.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/06/2012] [Accepted: 08/10/2012] [Indexed: 06/01/2023]
Abstract
A thermophilic naphthalene- and aliphatic hydrocarbon-degrading bacterium SH-1 was isolated from a deep oil well and identified as Geobacillus sp. n-alkanes from C12 to C33 in crude oil and naphthalene were effectively degraded by strain SH-1, and this strain could readily utilize these compounds as its sole carbon and energy resources. During the degradation of naphthalene, strain SH-1 initiated its attack on naphthalene by a monooxygenation at its C-1 to give 1-naphthol and further monooxygenation at C-2 to produce 1,2-dihydroxynaphthalene. The ring of 1,2-dihydroxynaphthalene was cleaved to form trans-o-hydroxybenzylidenepyruvate. Subsequently, trans-o-hydroxybenzylidenepyruvate was transformed to (2E)-3-(2-hydroxyphenyl)prop-2-enal by losing a carboxyl group. Additionally, benzoic acid was identified as an intermediate in the naphthalene degradation pathway of this Geobacillus strain. This study highlights an important potential use of the thermophilic degradative strain SH-1 in the cleanup of environmental contamination by naphthalene and crude oil and presents a mechanism for naphthalene metabolism.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agricultural, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, Jiangsu Province, PR China
| | | | | | | | | |
Collapse
|
25
|
BAQUIRAN JEANPAUL, THATER BRIAN, SONGCO KRISNA, CROWLEY DAVIDE. Characterization of Culturable PAH and BTEX Degrading Bacteria from Heavy Oil of the Rancho La Brea Tarpits. Polycycl Aromat Compd 2012. [DOI: 10.1080/10406638.2011.651678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Assessment of the biomass hydrolysis potential in bacterial isolates from a volcanic environment: biosynthesis of the corresponding activities. World J Microbiol Biotechnol 2012; 28:2889-902. [DOI: 10.1007/s11274-012-1100-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 06/05/2012] [Indexed: 11/25/2022]
|
27
|
Singh SN, Kumari B, Mishra S. Microbial Degradation of Alkanes. ENVIRONMENTAL SCIENCE AND ENGINEERING 2012. [DOI: 10.1007/978-3-642-23789-8_17] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Perfumo A, Cockell C, Elsaesser A, Marchant R, Kminek G. Microbial diversity in Calamita ferromagnetic sand. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:483-490. [PMID: 23761311 DOI: 10.1111/j.1758-2229.2011.00244.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Calamita is a black ferromagnetic sand from a marine iron ore on Elba Island (Italy). Its total iron content is approximately 80% and a major fraction (63% w/w) has magnetic properties. Desiccation, ultraviolet irradiation and the high temperature induced by the thermal conductivity of iron make Calamita sand an extreme biotope. We report, for the first time, the geomicrobiological characterization of Calamita sand, which showed a low bacterial biodiversity as determined by denaturing gradient gel electrophoresis and 16S rRNA gene clone library analysis. We retrieved sequences closely affiliated with uncultured bacteria inhabiting the harshest deserts on Earth. Radiation- and desiccation-tolerant bacteria from the phyla Proteobacteria, Actinobacteria and Deinococcus-Thermus dominated the community. Heavy metal-resistant organisms, for example Variovorax sp. were also abundant. Sequences of organisms with an inferred metabolism based on lithotrophic iron oxidation were detected. The sands also contained thermophilic bacilli, which were cultivated at 60°C. These data provided important insights also into the biogeographical distribution of these organisms in the Mediterranean region. In summary, this study on Calamita helps to expand our knowledge of the biodiversity in extreme, iron-rich, environments.
Collapse
Affiliation(s)
- Amedea Perfumo
- Planetary Protection, European Space Agency-ESA/ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands School of Biomedical Sciences, University of Ulster, Coleraine, UK Planetary and Space Science Research Institute, Open University, Milton Keynes, UK
| | | | | | | | | |
Collapse
|
29
|
Wang L, Wang W, Lai Q, Shao Z. Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environ Microbiol 2010; 12:1230-42. [PMID: 20148932 DOI: 10.1111/j.1462-2920.2010.02165.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alkane hydroxylases, including the integral-membrane non-haem iron monooxygenase (AlkB) and cytochrome P450 CYP153 family, are key enzymes in bacterial alkane oxidation. Although both genes have been detected in a number of bacteria and environments, knowledge about the diversity of these genes in marine alkane-degrading bacteria is still limited, especially in pelagic areas. In this report, 177 bacterial isolates, comprising 43 genera, were obtained from 18 oil-degrading consortia enriched from surface seawater samples collected from the Atlantic Ocean. Many isolates were confirmed to be the first oil-degraders in their affiliated genera including Brachybacterium, Idiomarina, Leifsonia, Martelella, Kordiimonas, Parvibaculum and Tistrella. Using degenerate PCR primers, alkB and CYP153A P450 genes were surveyed in these bacteria. In total, 82 P450 and 52 alkB gene fragments were obtained from 80 of the isolates. These isolates mainly belonged to Alcanivorax, Bacillus, Erythrobacter, Martelella, Parvibaculum and Salinisphaera, some of which were reported, for the first time, to encode alkane hydroxylases. Phylogenetic analysis showed that both genes were quite diverse and formed several clusters, most of which were generated from various Alcanivorax bacteria. Noticeably, some sequences, such as those from the Salinisphaera genus, were grouped into a distantly related novel cluster. Inspection of the linkage between gene and host revealed that alkB and P450 tend to coexist in Alcanivorax and Salinisphaera, while in all isolates of Parvibaculum, only P450 genes were found, but of multiple homologues. Multiple homologues of alkB mostly cooccurred in Alcanivorax isolates. Conversely, distantly related isolates contained similar or even identical sequences. In summary, various oil-degrading bacteria, which harboured diverse P450 and alkB genes, were found in the surface water of Atlantic Ocean. Our results help to show the diversity of P450 and alkB genes in prokaryotes, and to portray the geographic distribution of oil-degrading bacteria in marine environments.
Collapse
Affiliation(s)
- Liping Wang
- Key Laboratory of Marine Biogenetic Resources, The Third Institute of Oceanography, State of Oceanic Administration, Xiamen, China
| | | | | | | |
Collapse
|
30
|
Liu YC, Zhou TT, Zhang J, Xu L, Zhang ZH, Shen QR, Shen B. Molecular characterization of the alkB gene in the thermophilic Geobacillus sp. strain MH-1. Res Microbiol 2009; 160:560-6. [DOI: 10.1016/j.resmic.2009.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 08/15/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
|
31
|
Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA. J Ind Microbiol Biotechnol 2009; 36:585-98. [PMID: 19189143 DOI: 10.1007/s10295-009-0528-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 01/08/2009] [Indexed: 10/21/2022]
Abstract
The present study investigated the cultivable mesophilic (37 degrees C) and thermophilic (60 degrees C) cellulose-degrading bacterial diversity in a weathered soil-like sample collected from the deep subsurface (1.5 km depth) of the Homestake gold mine in Lead, South Dakota, USA. Chemical characterization of the sample by X-ray fluorescence spectroscopy revealed a high amount of toxic heavy metals such as Cu, Cr, Pb, Ni, and Zn. Molecular community structures were determined by phylogenetic analysis of 16S rRNA gene sequences retrieved from enrichment cultures growing in presence of microcrystalline cellulose as the sole source of carbon. All phylotypes retrieved from enrichment cultures were affiliated to Firmicutes. Cellulose-degrading mesophilic and thermophilic pure cultures belonging to the genera Brevibacillus, Paenibacillus, Bacillus, and Geobacillus were isolated from enrichment cultures, and selected cultures were studied for enzyme activities. For a mesophilic isolate (DUSELG12), the optimum pH and temperature for carboxymethyl cellulase (CMCase) were 5.5 and 55 degrees C, while for a thermophilic isolate (DUSELR7) they were 5.0 and 75 degrees C, respectively. Furthermore, DUSELG12 retained about 40% CMCase activity after incubation at 60 degrees C for 8 h. Most remarkably, thermophilic isolate, DUSELR7 retained 26% CMCase activity at 60 degrees C up to a period of 300 h. Overall, the present work revealed the presence of different cellulose-degrading bacterial lineages in the unique deep subsurface environment of the mine. The results also have strong implications for biological conversion of cellulosic agricultural and forestry wastes to commodity chemicals including sugars.
Collapse
|
32
|
A refinery sludge deposition site: presence of nahH and alkJ genes and crude oil biodegradation ability of bacterial isolates. Biotechnol Lett 2008; 30:2105-10. [PMID: 18688575 DOI: 10.1007/s10529-008-9816-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/11/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
Abstract
204 bacterial isolates from four Greek refinery sludge deposition sites were investigated for the presence of nahH and alkJ genes encoding key enzymes of both aromatic and aliphatic hydrocarbon degradation pathways by PCR and DNA hybridisation. Members of Pseudomonas, Acinetobacter, Bacillus, Rhodococcus and Arthrobacter play important role in bioremediation processes in sandy/loam soil contaminated with oil and nahH and alkJ genes were present in the 73% of the isolates. Consortia of bacterial isolates that were used for biodegradation of aliphatic and aromatic hydrocarbons in crude oil using liquid cultures exhibited rates from 35% to 48% within 10 days of incubation.
Collapse
|
33
|
Tourova TP, Nazina TN, Mikhailova EM, Rodionova TA, Ekimov AN, Mashukova AV, Poltaraus AB. alkB homologs in thermophilic bacteria of the genus Geobacillus. Mol Biol 2008. [DOI: 10.1134/s0026893308020076] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Meintanis C, Chalkou K, Kormas KA, Lymperopoulou D, Katsifas E, Hatzinikolaou D, Karagouni A. Application of rpoB sequence similarity analysis, REP-PCR and BOX-PCR for the differentiation of species within the genus Geobacillus. Lett Appl Microbiol 2008; 46:395-401. [DOI: 10.1111/j.1472-765x.2008.02328.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Koukkou AI, Drainas C. Addressing PAH biodegradation in Greece: Biochemical and molecular approaches. IUBMB Life 2008; 60:275-80. [DOI: 10.1002/iub.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB, Throne-Holst M. Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 2007; 76:1209-21. [PMID: 17673997 DOI: 10.1007/s00253-007-1119-1] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Revised: 07/10/2007] [Accepted: 07/11/2007] [Indexed: 10/23/2022]
Abstract
Degradation of alkanes is a widespread phenomenon in nature, and numerous microorganisms, both prokaryotic and eukaryotic, capable of utilizing these substrates as a carbon and energy source have been isolated and characterized. In this review, we summarize recent advances in the understanding of bacterial metabolism of long-chain n-alkanes. Bacterial strategies for accessing these highly hydrophobic substrates are presented, along with systems for their enzymatic degradation and conversion into products of potential industrial value. We further summarize the current knowledge on the regulation of bacterial long-chain n-alkane metabolism and survey progress in understanding bacterial pathways for utilization of n-alkanes under anaerobic conditions.
Collapse
Affiliation(s)
- Alexander Wentzel
- Department of Biotechnology, Norwegian University of Science and Technology, Sem Saelandsvei 6/8, 7491 Trondheim, Norway.
| | | | | | | | | |
Collapse
|
37
|
van Beilen JB, Funhoff EG. Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 2007; 74:13-21. [PMID: 17216462 DOI: 10.1007/s00253-006-0748-0] [Citation(s) in RCA: 319] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 11/03/2006] [Accepted: 11/05/2006] [Indexed: 11/30/2022]
Abstract
This review focuses on the role and distribution in the environment of alkane hydroxylases and their (potential) applications in bioremediation and biocatalysis. Alkane hydroxylases play an important role in the microbial degradation of oil, chlorinated hydrocarbons, fuel additives, and many other compounds. Environmental studies demonstrate the abundance of alkane degraders and have lead to the identification of many new species, including some that are (near)-obligate alkanotrophs. The availability of a growing collection of alkane hydroxylase gene sequences now allows estimations of the relative abundance of the different enzyme systems and the distribution of the host organisms.
Collapse
Affiliation(s)
- Jan B van Beilen
- Département de Biologie Moléculaire Végétale, Le Biophore, Quartier Sorge, Université de Lausanne, 1015, Lausanne, Switzerland.
| | | |
Collapse
|