1
|
Martínez-Toledo Á, del Carmen Cuevas-Díaz M, Guzmán-López O, López-Luna J, Ilizaliturri-Hernández C. Evaluation of in situ biosurfactant production by inoculum of P. putida and nutrient addition for the removal of polycyclic aromatic hydrocarbons from aged oil-polluted soil. Biodegradation 2022; 33:135-155. [DOI: 10.1007/s10532-022-09973-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 01/18/2022] [Indexed: 12/07/2022]
|
2
|
Chen J, Liu X, Fu S, An Z, Feng Y, Wang R, Ji P. Effects of sophorolipids on fungal and oomycete pathogens in relation to pH solubility. J Appl Microbiol 2020; 128:1754-1763. [PMID: 31995843 DOI: 10.1111/jam.14594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/30/2019] [Accepted: 01/17/2020] [Indexed: 11/28/2022]
Abstract
AIMS The objective of this study was to determine the effects of sophorolipids on several fungal and oomycete plant pathogens and the relationship between sophorolipids at different pH and antimicrobial activities. METHODS AND RESULTS Sophorolipids had different solubility at different pH with a dramatic increase in solubility when pH was 6 or higher. Inhibition of mycelial growth of Phytophthora infestans by sophorolipids was affected by pH values, showing that when the pH value was higher, the inhibition rate was lower. Sophorolipids inhibited spore germination and mycelial growth of several fungal and oomycete pathogens in vitro including Fusarium sp., F. oxysporum, F. concentricum, Pythium ultimum, Pyricularia oryzae, Rhizoctorzia solani, Alternaria kikuchiana, Gaeumannomyces graminis var. tritici and P. infestans and caused morphological changes in hyphae by microscope observation. Sophorolipids reduced β-1,3-glucanase activity in mycelia of P. infestans. In greenhouse studies, foliar application of sophorolipids at 3 mg ml-1 reduced severity of late blight of potato caused by P. infestans significantly. CONCLUSION Sophorolipids influenced spore germination and hyphal tip growth of several plant pathogens and pH solubility of sophorolipids had an effect on their efficacy. Application of sophorolipids reduced late blight disease on potato under greenhouse conditions. SIGNIFICANCE AND IMPACT OF THE STUDY The findings indicated that sophorolipids have the potential to be developed as a convenient and easy-to-use formulation for managing plant diseases.
Collapse
Affiliation(s)
- J Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Lab of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - X Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Lab of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - S Fu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Lab of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Z An
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Lab of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Y Feng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Lab of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - R Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Lab of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - P Ji
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| |
Collapse
|
3
|
Wan H, Yi X, Liu X, Feng C, Dang Z, Wei C. Time-dependent bacterial community and electrochemical characterizations of cathodic biofilms in the surfactant-amended sediment-based bioelectrochemical reactor with enhanced 2,3,4,5-tetrachlorobiphenyl dechlorination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:343-354. [PMID: 29414357 DOI: 10.1016/j.envpol.2018.01.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 06/08/2023]
Abstract
Applying an electric field to stimulate the microbial reductive dechlorination of polychlorinated biphenyls (PCBs) represents a promising approach for bioremediation of PCB-contaminated sites. This study aimed to demonstrate the biocathodic film-facilitated reduction of PCB 61 in a sediment-based bioelectrochemical reactor (BER) and, more importantly, the characterizations of electrode-microbe interaction from microbial and electrochemical perspectives particularly in a time-dependent manner. The application of a cathodic potential (-0.45 V vs. SHE) significantly improved the rate and extent of PCB 61 dechlorination compared to the open-circuit scenario (without electrical stimulation), and the addition of an external surfactant further increased the dechlorination, with Tween 80 exerting more pronounced effects than rhamnolipid. The bacterial composition of the biofilms and the bioelectrochemical kinetics of the BERs were found to be time-dependent and to vary considerably with the incubation time and slightly with the coexistence of an external surfactant. Excellent correlations were observed between the dechlorination rate and the relative abundance of Dehalogenimonas, Dechloromonas, and Geobacter, the dechlorination rate and the cathodic current density recorded from the chronoamperometry tests, and the dechlorination rate and the charge transfer resistance derived from the electrochemical impedance tests, with respect to the 120 day-operation. After day 120, PCB 61 was resistant to further appreciable reduction, but substantial hydrogen production was detected, and the bacterial community and electrochemical parameters observed on day 180 were not distinctly different from those on day 120.
Collapse
Affiliation(s)
- Hui Wan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoyun Yi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoping Liu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, PR China.
| | - Zhi Dang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, PR China
| | - Chaohai Wei
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
4
|
Li G, Lan G, Liu Y, Chen C, Lei L, Du J, Lu Y, Li Q, Du G, Zhang J. Evaluation of biodegradability and biotoxicity of surfactants in soil. RSC Adv 2017. [DOI: 10.1039/c7ra02105d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, the biodegradability and biotoxicity of four surfactants, i.e. modified heterogeneous alcohol ether, fatty acid methyl ester ethoxylates, Tween-80 and rhamnolipid, under natural soil conditions were investigated.
Collapse
Affiliation(s)
- Guixiang Li
- Key Laboratory of Oil & Gas Applied Chemistry of Sichuan Province
- Southwest Petroleum University
- Chengdu 610500
- PR China
- College of Chemistry and Chemical Engineering
| | - Guihong Lan
- Key Laboratory of Oil & Gas Applied Chemistry of Sichuan Province
- Southwest Petroleum University
- Chengdu 610500
- PR China
- College of Chemistry and Chemical Engineering
| | - Yongqiang Liu
- Faculty of Engineering and the Environment
- University of Southampton
- Southampton SO17 1BJ
- UK
| | - Chen Chen
- Key Laboratory of Oil & Gas Applied Chemistry of Sichuan Province
- Southwest Petroleum University
- Chengdu 610500
- PR China
- College of Chemistry and Chemical Engineering
| | - Lin Lei
- Key Laboratory of Oil & Gas Applied Chemistry of Sichuan Province
- Southwest Petroleum University
- Chengdu 610500
- PR China
- College of Chemistry and Chemical Engineering
| | - Jiao Du
- Key Laboratory of Oil & Gas Applied Chemistry of Sichuan Province
- Southwest Petroleum University
- Chengdu 610500
- PR China
- College of Chemistry and Chemical Engineering
| | - Yingchun Lu
- Key Laboratory of Oil & Gas Applied Chemistry of Sichuan Province
- Southwest Petroleum University
- Chengdu 610500
- PR China
- College of Chemistry and Chemical Engineering
| | - Qiang Li
- Development and Application of Rural Renewable Energy
- Ministry of Agriculture
- PR China
| | - Guoyong Du
- Key Laboratory of Oil & Gas Applied Chemistry of Sichuan Province
- Southwest Petroleum University
- Chengdu 610500
- PR China
- College of Chemistry and Chemical Engineering
| | - Jihong Zhang
- Xinjiang Oilfield Company, No. 1 Gas Production Plant
- PR China
| |
Collapse
|
5
|
Woźniak-Karczewska M, Myszka K, Sznajdrowska A, Szulc A, Zgoła-Grześkowiak A, Ławniczak Ł, Corvini PFX, Chrzanowski Ł. Isolation of rhamnolipids-producing cultures from faeces: Influence of interspecies communication on the yield of rhamnolipid congeners. N Biotechnol 2016; 36:17-25. [PMID: 28043869 DOI: 10.1016/j.nbt.2016.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 11/02/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
Abstract
The aim of this study was to evaluate the ability of bacterial cultures isolated from cattle, poultry or pig faeces and manure to produce rhamnolipids, as well as to investigate the influence of interspecies communication on possible quantitative differences in the production of rhamnolipid congeners. Initial screening methods (oil spreading, drop collapse, haemolytic activity and emulsification activity) showed that approximately 36% of the 51 isolated cultures exhibited the ability to produce biosurfactants. Subsequent studies using a selected culturable mixed culture (which included Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli) revealed that only P. aeruginosa was able to produce this biosurfactant. HPLC-MS analysis showed that the surface active compounds were rhamnolipids. Further comparative studies confirmed that the total yield of rhamnolipids was notably higher in the bioreactor inoculated with the selected mixed culture (940.58±1.10mg/L) compared to the bioreactor inoculated with the axenic strain of P. aeruginosa (108.47±0.41mg/L). Twelve rhamnolipid congeners were identified during cultivation of the selected mixed culture, whereas six congeners were detected during cultivation of the sole axenic strain of P. aeruginosa. Furthermore, increased production of rhamnolipids was observed when the concentration of autoinducer molecules (AI-2) responsible for interspecies signaling increased, suggesting the influence of quorum-sensing communication on biosynthesis efficiency. This observation may be of importance for large-scale production of this biosurfactant, as it opens new possible solutions based on the use of mixed cultures or external addition of stimulating autoinducers.
Collapse
Affiliation(s)
- Marta Woźniak-Karczewska
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| | - Kamila Myszka
- Department of Biotechnology and Food Microbiology, University of Life Sciences in Poznań, Wojska Polskiego 48, 60-627 Poznań, Poland
| | - Agata Sznajdrowska
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Alicja Szulc
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Łukasz Ławniczak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Philippe F-X Corvini
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse 40, 4132 Muttenz, Switzerland
| | - Łukasz Chrzanowski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| |
Collapse
|
6
|
Miao S, Dashtbozorg SS, Callow NV, Ju LK. Rhamnolipids as platform molecules for production of potential anti-zoospore agrochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3367-3376. [PMID: 25790115 DOI: 10.1021/acs.jafc.5b00033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Rhamnolipid biosurfactants have potential applications in the control of zoosporic plant pathogens. However, rhamnolipids have not been closely investigated for the anti-zoospore mechanism or for developing new anti-zoospore chemicals. In this study, RhL-1 and RhL-3 groups of rhamnolipids were used to generate the corresponding RhL-2 and RhL-4 groups and the free diacids. Conversion of RhL-3 to RhL-1 was also accomplished in vitro with cellobiase as the catalyst. The anti-zoospore effects of RhL-1-RhL-4 and the diacids were investigated with zoospores of Phytophthora sojae. For RhL-1-RhL-4, approximately 20, 30, 40, and 40 mg/L, respectively, were found to be the lowest concentrations required to stop movement of all zoospores, which indicates that the anti-zoospore effect remains strong even after RhL-1 and RhL-3 are hydrolyzed into RhL-2 and RhL-4. The free diacids required a significantly higher critical concentration of about 125 mg/L. Rhamnose can be obtained as a co-product.
Collapse
Affiliation(s)
- Shida Miao
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Soroosh Soltani Dashtbozorg
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Nicholas V Callow
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Lu-Kwang Ju
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| |
Collapse
|
7
|
Gudiña EJ, Pereira JFB, Costa R, Evtuguin DV, Coutinho JAP, Teixeira JA, Rodrigues LR. Novel bioemulsifier produced by a Paenibacillus strain isolated from crude oil. Microb Cell Fact 2015; 14:14. [PMID: 25636532 PMCID: PMC4318442 DOI: 10.1186/s12934-015-0197-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Surface active compounds produced by microorganisms are attracting a pronounced interest due to their potential advantages over their synthetic counterparts, and to the fact that they could replace some of the synthetics in many environmental and industrial applications. RESULTS Bioemulsifier production by a Paenibacillus sp. strain isolated from crude oil was studied. The bioemulsifier was produced using sucrose with and without adding hydrocarbons (paraffin or crude oil) under aerobic and anaerobic conditions at 40°C. It formed stable emulsions with several hydrocarbons and its emulsifying ability was not affected by exposure to high salinities (up to 300 g/l), high temperatures (100°C-121°C) or a wide range of pH values (2-13). In addition, it presented low toxicity and high biodegradability when compared with chemical surfactants. A preliminary chemical characterization by Fourier Transform Infrared Spectroscopy (FT-IR), proton and carbon nuclear magnetic resonance (1H NMR and 13C CP-MAS NMR) and size exclusion chromatography indicated that the bioemulsifier is a low molecular weight oligosaccharide-lipid complex. CONCLUSION The production of a low molecular weight bioemulsifier by a novel Paenibacillus strain isolated from crude oil was reported. To the best of our knowledge, bioemulsifier production by Paenibacillus strains has not been previously reported. The features of this novel bioemulsifier make it an interesting biotechnological product for many environmental and industrial applications. Graphical Abstract Novel bioemulsifier from Paenibacillus sp.
Collapse
Affiliation(s)
- Eduardo J Gudiña
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| | - Jorge F B Pereira
- CICECO - Chemistry Department, University of Aveiro, 3830-103, Aveiro, Portugal.
| | - Rita Costa
- CICECO - Chemistry Department, University of Aveiro, 3830-103, Aveiro, Portugal.
| | - Dmitry V Evtuguin
- CICECO - Chemistry Department, University of Aveiro, 3830-103, Aveiro, Portugal.
| | - João A P Coutinho
- CICECO - Chemistry Department, University of Aveiro, 3830-103, Aveiro, Portugal.
| | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| | - Lígia R Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
8
|
Bak F, Bonnichsen L, Jørgensen NOG, Nicolaisen MH, Nybroe O. The biosurfactant viscosin transiently stimulates n-hexadecane mineralization by a bacterial consortium. Appl Microbiol Biotechnol 2014; 99:1475-83. [PMID: 25216581 PMCID: PMC4306737 DOI: 10.1007/s00253-014-6054-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/21/2014] [Accepted: 08/27/2014] [Indexed: 11/10/2022]
Abstract
Pseudomonas produces powerful lipopeptide biosurfactants including viscosin, massetolide A, putisolvin, and amphisin, but their ability to stimulate alkane mineralization and their utility for bioremediation have received limited attention. The four Pseudomonas lipopeptides yielded emulsification indices on hexadecane of 20–31 % at 90 mg/l, which is comparable to values for the synthetic surfactant Tween 80. Viscosin was the optimal emulsifier and significantly stimulated n-hexadecane mineralization by diesel-degrading bacterial consortia but exclusively during the first 2 days of batch culture experiments. Growth of the consortia, as determined by OD600 measurements and quantification of the alkB marker gene for alkane degradation, was arrested after the first day of the experiment. In contrast, the control consortia continued to grow and reached higher OD600 values and higher alkB copy numbers during the next days. Due to the short-lived stimulation of n-hexadecane mineralization, the stability of viscosin was analyzed, and it was observed that added viscosin was degraded by the bacterial consortium during the first 2 days. Hence, viscosin has a potential as stimulator of alkane degradation, but its utility in bioremediation may be limited by its rapid degradation and growth-inhibiting properties.
Collapse
Affiliation(s)
- Frederik Bak
- Section of Genetics and Microbiology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
9
|
Odukkathil G, Vasudevan N. Enhanced biodegradation of endosulfan and its major metabolite endosulfate by a biosurfactant producing bacterium. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2013; 48:462-469. [PMID: 23452211 DOI: 10.1080/03601234.2013.761873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The present study was carried out to isolate bacteria capable of producing biosurfactant that solublize endosulfan (6,7,8,9,10,10-Hexachloro-1,5,5a,6,9,9a-hexahydro- 6,9-methano-2,4,3-benzodioxathiepine-3-oxide) and for enhanced degradation of endosulfan and its major metabolite endosulfate. The significance of the study is to enhance the bioavailability of soil-bound endosulfan residues as its degradation is limited due to its low solubility. A mixed bacterial culture capable of degrading endosulfan was enriched from pesticide-contaminated soil and was able to degrade about 80% of α-endosulfan and 75% of β-endosulfan in five days. Bacterial isolates were screened for biosurfactant production and endosulfan degradation. Among the isolates screened, four strains produced biosurfactant on endosulfan. ES-47 showed better emulsification of endosulfan and degraded 99% of endosulfan and 94% of endosulfate formed during endosulfan degradation. The strain reduced the surface tension up to 37 dynes/cm. The study reveals that the strain was capable of degrading endosulfan and endosulfate with simultaneous biosurfactant production.
Collapse
Affiliation(s)
- Greeshma Odukkathil
- Centre for Environmental Studies, Anna University, Chennai, Tamilnadu, India.
| | | |
Collapse
|
10
|
Manickam N, Bajaj A, Saini HS, Shanker R. Surfactant mediated enhanced biodegradation of hexachlorocyclohexane (HCH) isomers by Sphingomonas sp. NM05. Biodegradation 2012; 23:673-82. [PMID: 22302596 DOI: 10.1007/s10532-012-9543-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 01/21/2012] [Indexed: 12/01/2022]
Abstract
Environmental biodegradation of several chlorinated pesticides is limited by their low solubility and sorption to soil surfaces. To mitigate this problem we quantified the effect of three biosurfactant viz., rhamnolipid, sophorolipid and trehalose-containing lipid on the dissolution, bioavailability, and biodegradation of HCH-isomers in liquid culture and in contaminated soil. The effect of biosurfactants was evaluated through the critical micelle concentration (CMC) value as determined for each isomer. The surfactant increased the solubilization of HCH isomers by 3-9 folds with rhamnolipid and sophorolipid being more effective and showing maximum solubilization of HCH isomers at 40 μg/mL, compared to trehalose-containing lipid showing peak solubilization at 60 μg/mL. The degradation of HCH isomers by Sphingomonas sp. NM05 in surfactant-amended liquid mineral salts medium showed 30% enhancement in 2 days as compared to degradation in 10 days in the absence of surfactant. HCH-spiked soil slurry incubated with surfactant also showed around 30-50% enhanced degradation of HCH which was comparable to the corresponding batch culture experiments. Among the three surfactants, sophorolipid offered highest solubilization and enhanced degradation of HCH isomers both in liquid medium and soil culture. The results of this study suggest the effectiveness of surfactants in improving HCH degradation by increased bioaccessibility.
Collapse
Affiliation(s)
- Natesan Manickam
- Environmental Biotechnology, Indian Institute of Toxicology Research, Council of Scientific & Industrial Research, Lucknow 226001, India.
| | | | | | | |
Collapse
|
11
|
Chrzanowski Ł, Dziadas M, Ławniczak Ł, Cyplik P, Białas W, Szulc A, Lisiecki P, Jeleń H. Biodegradation of rhamnolipids in liquid cultures: effect of biosurfactant dissipation on diesel fuel/B20 blend biodegradation efficiency and bacterial community composition. BIORESOURCE TECHNOLOGY 2012; 111:328-335. [PMID: 22366606 DOI: 10.1016/j.biortech.2012.01.181] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 05/31/2023]
Abstract
Bacterial utilization of rhamnolipids during biosurfactant-supplemented biodegradation of diesel and B20 (20% biodiesel and 80% diesel v/v) fuels was evaluated under conditions with full aeration or with nitrate and nitrite as electron acceptors. Rhamnolipid-induced changes in community dynamics were assessed by employing real-time PCR and the ddCt method for relative quantification. The experiments with rhamnolipids at 150 mg/l, approx. double critical micelle concentration (CMC) and diesel oil confirmed that rhamnolipids were readily degraded by a soil-isolated consortium of hydrocarbon degraders in all samples, under both aerobic and nitrate-reducing conditions. The presence of rhamnolipids increased the dissipation rates for B20 constituents under aerobic conditions, but did not influence the biodegradation rate of pure diesel. No effect was observed under nitrate-reducing conditions. The biodegradation of rhamnolipids did not favor the growth of any specific consortium member, which proved that the employed biosurfactant did not interfere with the microbial equilibrium during diesel/biodiesel biodegradation.
Collapse
Affiliation(s)
- Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Franzetti A, Gandolfi I, Raimondi C, Bestetti G, Banat IM, Smyth TJ, Papacchini M, Cavallo M, Fracchia L. Environmental fate, toxicity, characteristics and potential applications of novel bioemulsifiers produced by Variovorax paradoxus 7bCT5. BIORESOURCE TECHNOLOGY 2012; 108:245-251. [PMID: 22277206 DOI: 10.1016/j.biortech.2012.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 12/30/2011] [Accepted: 01/03/2012] [Indexed: 05/31/2023]
Abstract
The aims of this work were the characterisation and the evaluation of potential environmental applications of the bioemulsifiers produced by Variovorax paradoxus 7bCT5. V. paradoxus 7bCT5 produces a mixture of high molecular weight polysaccharides. The extracellular bioemulsifiers were able to produce a thick stable oil/water emulsion and maintained the emulsification activity after boiling and at low temperatures. Environmental behavior and impact of bioemulsifiers release were assessed by evaluating biodegradability, toxicity and soil sorption. Respirometric tests showed that moderate biodegradability occurred by soil bacterial inoculum. Furthermore, the produced compounds did not show any toxic properties through different ecotoxicological tests. The K(d) values ranged from 1.3 to 7.3 L/kg indicating a high sorption affinity of the bioemulsifier molecules to soil particles. The soil sorption affinity likely affected the bioemulsifier ability to remove hydrocarbons from contaminated soils. In fact, V. paradoxus 7bCT5 bioemulsifiers significantly increased the removal of crude-oil from sandy soil compared to water.
Collapse
Affiliation(s)
- Andrea Franzetti
- Department of Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Biodegradability of bacterial surfactants. Biodegradation 2010; 22:585-92. [PMID: 21053055 DOI: 10.1007/s10532-010-9431-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
This work aimed at evaluating the biodegradability of different bacterial surfactants in liquid medium and in soil microcosms. The biodegradability of biosurfactants by pure and mixed bacterial cultures was evaluated through CO(2) evolution. Three bacterial strains, Acinetobacter baumanni LBBMA ES11, Acinetobacter haemolyticus LBBMA 53 and Pseudomonas sp. LBBMA 101B, used the biosurfactants produced by Bacillus sp. LBBMA 111A (mixed lipopeptide), Bacillus subtilis LBBMA 155 (lipopeptide), Flavobacterium sp. LBBMA 168 (mixture of flavolipids), Dietzia Maris LBBMA 191(glycolipid) and Arthrobacter oxydans LBBMA 201(lipopeptide) as carbon sources in minimal medium. The synthetic surfactant sodium dodecyl sulfate (SDS) was also mineralized by these microorganisms, but at a lower rate. CO(2) emitted by a mixed bacterial culture in soil microcosms with biosurfactants was higher than in the microcosm containing SDS. Biosurfactant mineralization in soil was confirmed by the increase in surface tension of the soil aqueous extracts after incubation with the mixed bacterial culture. It can be concluded that, in terms of biodegradability and environmental security, these compounds are more suitable for applications in remediation technologies in comparison to synthetic surfactants. However, more information is needed on structure of biosurfactants, their interaction with soil and contaminants and scale up and cost for biosurfactant production.
Collapse
|
14
|
Nie M, Yin X, Ren C, Wang Y, Xu F, Shen Q. Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol Adv 2010; 28:635-43. [PMID: 20580808 DOI: 10.1016/j.biotechadv.2010.05.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A novel rhamnolipid biosurfactant-producing and Polycyclic Aromatic Hydrocarbon (PAH)-degrading bacterium Pseudomonas aeruginosa strain NY3 was isolated from petroleum-contaminated soil samples. Strain NY3 was characterized by its extraordinary capacity to produce structurally diverse rhamnolipids. A total of 25 rhamnolipid components and 37 different parent molecular ions, representing various metal ion adducts (Na(+), 2Na(+) and K(+)), were detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Among these compounds are ten new rhamnolipids. In addition to its biosurfactant production, strain NY3 was shown to be capable of efficient degradation of PAHs as well as synergistic improvement in the degradation of high molecular weight PAHs by its biosurfactant. These findings have added novel members to the rhamnolipid group and expanded current knowledge regarding the diversity and productive capability of rhamnolipid biosurfactants from a single specific strain with variation of only one carbon source. Additionally, this paper lays the foundation for improvement in the yield of NY3BS and study of the degradation pathway(s) of PAHs in P. aeruginosa strain NY3.
Collapse
Affiliation(s)
- Maiqian Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province, PR China
| | | | | | | | | | | |
Collapse
|