1
|
Li Y, Wu B, Zhu G, Liu Y, Ng WJ, Appan A, Tan SK. High-throughput pyrosequencing analysis of bacteria relevant to cometabolic and metabolic degradation of ibuprofen in horizontal subsurface flow constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:604-613. [PMID: 27110975 DOI: 10.1016/j.scitotenv.2016.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
The potential toxicity of pharmaceutical residues including ibuprofen on the aquatic vertebrates and invertebrates has attracted growing attention to the pharmaceutical pollution control using constructed wetlands, but there lacks of an insight into the relevant microbial degradation mechanisms. This study investigated the bacteria associated with the cometabolic and metabolic degradation of ibuprofen in a horizontal subsurface flow constructed wetland system by high-throughput pyrosequencing analysis. The ibuprofen degradation dynamics, bacterial diversity and evenness, and bacterial community structure in a planted bed with Typha angustifolia and an unplanted bed (control) were compared. The results showed that the plants promoted the microbial degradation of ibuprofen, especially at the downstream zones of wetland. However, at the upstream one-third zone of wetland, the presence of plants did not significantly enhance ibuprofen degradation, probably due to the much greater contribution of cometabolic behaviors of certain non-ibuprofen-degrading microorganisms than that of the plants. By analyzing bacterial characteristics, we found that: (1) The aerobic species of family Flavobacteriaceae, family Methylococcaceae and genus Methylocystis, and the anaerobic species of family Spirochaetaceae and genus Clostridium_sensu_stricto were the most possible bacteria relevant to the cometabolic degradation of ibuprofen; (2) The family Rhodocyclaceae and the genus Ignavibacterium closely related to the plants appeared to be associated with the metabolic degradation of ibuprofen.
Collapse
Affiliation(s)
- Yifei Li
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore.
| | - Bing Wu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Guibing Zhu
- State Key Laboratory of Environmental Aquatic Quality, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, PR China.
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Wun Jern Ng
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Adhityan Appan
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Soon Keat Tan
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore; Maritime Research Centre, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
2
|
Jesus J, Frascari D, Pozdniakova T, Danko AS. Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: A review. JOURNAL OF HAZARDOUS MATERIALS 2016; 309:37-52. [PMID: 26874310 DOI: 10.1016/j.jhazmat.2016.01.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
This review analyses kinetic studies of aerobic cometabolism (AC) of halogenated aliphatic hydrocarbons (HAHs) from 2001-2015 in order to (i) compare the different kinetic models proposed, (ii) analyse the estimated model parameters with a focus on novel HAHs and the identification of general trends, and (iii) identify further research needs. The results of this analysis show that aerobic cometabolism can degrade a wide range of HAHs, including HAHs that were not previously tested such as chlorinated propanes, highly chlorinated ethanes and brominated methanes and ethanes. The degree of chlorine mineralization was very high for the chlorinated HAHs. Bromine mineralization was not determined for studies with brominated aliphatics. The examined research period led to the identification of novel growth substrates of potentially high interest. Decreasing performance of aerobic cometabolism were found with increasing chlorination, indicating the high potential of aerobic cometabolism in the presence of medium- and low-halogenated HAHs. Further research is needed for the AC of brominated aliphatic hydrocarbons, the potential for biofilm aerobic cometabolism processes, HAH-HAH mutual inhibition and the identification of the enzymes responsible for each aerobic cometabolism process. Lastly, some indications for a possible standardization of future kinetic studies of HAH aerobic cometabolism are provided.
Collapse
Affiliation(s)
- João Jesus
- Centre for Natural Resources and the Environment (CERENA), Department of Mining Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Dario Frascari
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Tatiana Pozdniakova
- LSRE-Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE-LCM, Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Anthony S Danko
- Centre for Natural Resources and the Environment (CERENA), Department of Mining Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
3
|
Li H, Zhang SY, Wang XL, Yang J, Gu JD, Zhu RL, Wang P, Lin KF, Liu YD. Aerobic biodegradation of trichloroethylene and phenol co-contaminants in groundwater by a bacterial community using hydrogen peroxide as the sole oxygen source. ENVIRONMENTAL TECHNOLOGY 2015; 36:667-674. [PMID: 25220534 DOI: 10.1080/09593330.2014.957730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Trichloroethylene (TCE) and phenol were often found together as co-contaminants in the groundwater of industrial contaminated sites. An effective method to remove TCE was aerobic biodegradation by co-metabolism using phenol as growth substrates. However, the aerobic biodegradation process was easily limited by low concentration of dissolved oxygen (DO) in groundwater, and DO was improved by air blast technique with difficulty. This study enriched a bacterial community using hydrogen peroxide (H2O2) as the sole oxygen source to aerobically degrade TCE by co-metabolism with phenol in groundwater. The enriched cultures were acclimatized to 2-8 mM H2O2 which induced catalase, superoxide dismutase and peroxidase to decompose H2O2 to release O2 and reduce the toxicity. The bacterial community could degrade 120 mg/L TCE within 12 days by using 8 mM H2O2 as the optimum concentration, and the TCE degradation efficiency reached up to 80.6%. 16S rRNA gene cloning and sequencing showed that Bordetella, Stenotrophomonas sp., Sinorhizobium sp., Variovorax sp. and Sphingobium sp. were the dominant species in the enrichments, which were clustered in three phyla: Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. Polymerase chain reaction detection proved that phenol hydroxylase (Lph) gene was involved in the co-metabolic degradation of phenol and TCE, which indicated that hydroxylase might catalyse the epoxidation of TCE to form the unstable molecule TCE-epoxide. The findings are significant for understanding the mechanism of biodegradation of TCE and phenol co-contamination and helpful for the potential applications of an aerobic bioremediation in situ the contaminated sites.
Collapse
Affiliation(s)
- Hui Li
- a State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Qin K, Struckhoff GC, Agrawal A, Shelley ML, Dong H. Natural attenuation potential of tricholoroethene in wetland plant roots: role of native ammonium-oxidizing microorganisms. CHEMOSPHERE 2015; 119:971-977. [PMID: 25303656 DOI: 10.1016/j.chemosphere.2014.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/09/2014] [Accepted: 09/14/2014] [Indexed: 06/04/2023]
Abstract
Bench-scale microcosms with wetland plant roots were investigated to characterize the microbial contributions to contaminant degradation of trichloroethene (TCE) with ammonium. The batch system microcosms consisted of a known mass of wetland plant roots in aerobic growth media where the roots provided both an inoculum of root-associated ammonium-oxidizing microorganisms and a microbial habitat. Aqueous growth media, ammonium, and TCE were replaced weekly in batch microcosms while retaining roots and root-associated biomass. Molecular biology results indicated that ammonium-oxidizing bacteria (AOB) were enriched from wetland plant roots while analysis of contaminant and oxygen concentrations showed that those microorganisms can degrade TCE by aerobic cometabolism. Cometabolism of TCE, at 29 and 46 μg L(-1), was sustainable over the course of 9 weeks, with 20-30 mg L(-1) ammonium-N. However, at 69 μg L(-1) of TCE, ammonium oxidation and TCE cometabolism were completely deactivated in two weeks. This indicated that between 46 and 69 μg L(-1) TCE with 30 mg L(-1) ammonium-N there is a threshold [TCE] below which sustainable cometabolism can be maintained with ammonium as the primary substrate. However, cometabolism-induced microbial deactivation of ammonium oxidation and TCE degradation at 69 μg L(-1) TCE did not result in a lower abundance of the amoA gene in the microcosms, suggesting that the capacity to recover from TCE inhibition was still intact, given time and removal of stress. Our study indicates that microorganisms associated with wetland plant roots can assist in the natural attenuation of TCE in contaminated aquatic environments, such as urban or treatment wetlands, and wetlands impacted by industrial solvents.
Collapse
Affiliation(s)
- Ke Qin
- Department of Earth & Environmental Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | - Garrett C Struckhoff
- Department of Systems and Engineering Management, Air Force Institute of Technology, Wright-Patterson Air Force Base, 2950 Hobson Way, WPAFB, OH 45433, USA
| | - Abinash Agrawal
- Department of Earth & Environmental Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA.
| | - Michael L Shelley
- Department of Systems and Engineering Management, Air Force Institute of Technology, Wright-Patterson Air Force Base, 2950 Hobson Way, WPAFB, OH 45433, USA
| | - Hailiang Dong
- Department of Geology and Environmental Earth Science, Miami University, OH 45056, USA
| |
Collapse
|
5
|
Powell CL, Goltz MN, Agrawal A. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots. JOURNAL OF CONTAMINANT HYDROLOGY 2014; 170:68-75. [PMID: 25444117 DOI: 10.1016/j.jconhyd.2014.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~1.9mgL(-1), and initial aqueous [CAH] ~150μgL(-1); cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12±0.01 and 0.59±0.07d(-1), respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.
Collapse
Affiliation(s)
- C L Powell
- Environmental Science Program, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States
| | - M N Goltz
- Department of Systems Engineering and Management, Air Force Institute of Technology, WPAFB, 2950 Hobson Way, OH 45433, United States
| | - A Agrawal
- Environmental Science Program, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States; Department of Earth & Environmental Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States.
| |
Collapse
|