1
|
Wu Z, Zuo Z, Zhang X, Yan H, Zhao W, Wu L, Zhang C, Yang Z. Characterization of a novel 1,2-dichloroethane degrader Ancylobacter sp. J3 and use of its immobilized cells in the treatment of polluted groundwater. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138346. [PMID: 40286663 DOI: 10.1016/j.jhazmat.2025.138346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/29/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
A novel 1,2-dichloroethane (1,2-DCA) degrading bacteria strain J3 was isolated from 1,2-DCA contaminated groundwater and identified as Ancylobacter sp. The strain J3 was associated with self-flocculation during the growth process, and the degradation pathway study showed that the bacteria could completely mineralize 1,2-DCA. The microorganism was immobilized and the optimum preparation conditions were obtained by orthogonal experiment: 6 % polyvinyl alcohol, 2 % sodium alginate, 1 % biochar, and 2 % CaCl2, and the immobilized cells were named J3C. The degradation rates of J3C at low pH, temperature, and high concentration NaCl were higher than that of free J3. The fitting results of the pseudo-first-order degradation kinetics model showed that for above 200 mg/L 1,2-DCA, the degradation rate of J3C was higher than that of free J3. The adsorption process of the sterile J3C aligns with the pseudo-first-order kinetic model and the intraparticle diffusion model. The internal mass transfer kinetics analysis revealed that the beads with biochar and a small diameter (0.34 cm) were more conducive to mass transfer. Finally, remediation of real polluted groundwater by J3C shows that for groundwater with a pH value of about 7, 1,2-DCA concentrations of about 100, 200 mg/L, 1,2-DCA can be completely degraded by J3C, while for groundwater with a pH value of 12, 250 mg/L 1,2-DCA, the degradation rate was 83.15 % by J3C, 66.91 % higher than that of free J3. The changes in microbial communities in groundwater showed that J3C disturbed the groundwater microbial little for the immobilized cells in J3C originated from the groundwater.
Collapse
Affiliation(s)
- Zhiguo Wu
- College of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, China; College of Oceanography and Environment, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zihan Zuo
- College of Oceanography and Environment, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xueyang Zhang
- College of Oceanography and Environment, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huijuan Yan
- College of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenli Zhao
- College of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liya Wu
- College of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chaozheng Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zongzheng Yang
- College of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, China; College of Oceanography and Environment, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Cruciata I, Scirè Calabrisotto L, Carpani G, Poppa L, Modica A, Pace A, Catania V, Quatrini P. 1,2-DCA biodegradation potential of an aquifer assessed in situ and in aerobic and anaerobic microcosms. ENVIRONMENTAL MICROBIOME 2024; 19:106. [PMID: 39696724 DOI: 10.1186/s40793-024-00650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND 1,2-dichloroethane (1,2-DCA) biodegradation can occur through aerobic or anaerobic pathways that can be exploited in bioremediation strategies. Bioremediation interventions are site specific and generally based on anaerobic pathways, nevertheless expanding knowledge on proper conditions favoring the biodegradation and especially on 1,2-DCA degrading microorganisms is crucial. In this work the intrinsic biodegradation potential of an aquifer impacted by Chlorinated Aliphatic Hydrocarbons (mainly 1,2-DCA) was evaluated by characterizing the aquifer microbiome across space and time and by setting up biostimulation treatments in microcosms under different aerobic and anaerobic conditions, in parallel. RESULTS The microbial profiling of the aquifer revealed noticeable alpha and beta diversity across the sampling sites within the aquifer and strong fluctuations over time. Surprisingly both the anaerobic and aerobic biostimulation treatments led to the successful removal of 1,2-DCA in microcosms, the enrichment of known 1,2-DCA degraders and the detection of reductive or hydrolytic dehalogenases. Ancylobacter and Starkeya were enriched in aerobic microcosms. Desulfovibrio and Desulfuromonas, known as perchloroethylene degraders, were enriched in anaerobic microcosms, suggesting they could be yet unknown 1,2-DCA respirers. CONCLUSIONS Our results demonstrate the occurrence of both aerobic and anaerobic bioremediation potential in the aquifer despite its negative redox potential. Due to the feasibility of direct oxidation with oxygen insufflation, we propose that an enhanced bioremediation strategy based on direct oxidation of 1,2-DCA could be applied to the contaminated aquifer as an ecofriendly, efficient and cost-effective approach as an alternative to anaerobic biodegradation.
Collapse
Affiliation(s)
- Ilenia Cruciata
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Palermo, Italy
| | - Laura Scirè Calabrisotto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Palermo, Italy.
- Department of Engineering, University of Palermo, Palermo, Italy.
| | - Giovanna Carpani
- Environmental and Biological Laboratories, Eni S.p.A, San Donato Milanese, MI, Italy
| | | | - Alfonso Modica
- Environmental Laboratory Services, Eni Rewind S.p.A, Priolo Gargallo, SR, Italy
| | - Andrea Pace
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Palermo, Italy
| | - Valentina Catania
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy
| | - Paola Quatrini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Palermo, Italy
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Palermo, Italy
| |
Collapse
|
3
|
Yang SNN, Haritos V, Kertesz MA, Coleman NV. A novel soluble di-iron monooxygenase from the soil bacterium Solimonas soli. Environ Microbiol 2024; 26:e16567. [PMID: 38233213 DOI: 10.1111/1462-2920.16567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Soluble di-iron monooxygenase (SDIMO) enzymes enable insertion of oxygen into diverse substrates and play significant roles in biogeochemistry, bioremediation and biocatalysis. An unusual SDIMO was detected in an earlier study in the genome of the soil organism Solimonas soli, but was not characterized. Here, we show that the S. soli SDIMO is part of a new clade, which we define as 'Group 7'; these share a conserved gene organization with alkene monooxygenases but have only low amino acid identity. The S. soli genes (named zmoABCD) could be functionally expressed in Pseudomonas putida KT2440 but not in Escherichia coli TOP10. The recombinants made epoxides from C2 C8 alkenes, preferring small linear alkenes (e.g. propene), but also epoxidating branched, carboxylated and chlorinated substrates. Enzymatic epoxidation of acrylic acid was observed for the first time. ZmoABCD oxidised the organochlorine pollutants vinyl chloride (VC) and cis-1,2-dichloroethene (cDCE), with the release of inorganic chloride from VC but not cDCE. The original host bacterium S. soli could not grow on any alkenes tested but grew well on phenol and n-octane. Further work is needed to link ZmoABCD and the other Group 7 SDIMOs to specific physiological and ecological roles.
Collapse
Affiliation(s)
- Sui Nin Nicholas Yang
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Victoria Haritos
- Department of Chemical and Biological Engineering, Monash University, Melbourne, Victoria, Australia
| | - Michael A Kertesz
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Nicholas V Coleman
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
4
|
Willmann A, Tiehm A. Aerobic co-metabolic cis-Dichloroethene degradation with Trichloroethene as primary substrate and effects of concentration ratios. CHEMOSPHERE 2024; 350:141000. [PMID: 38135124 DOI: 10.1016/j.chemosphere.2023.141000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Pollution with chloroethenes threaten groundwater resources worldwide. Cis-Dichloroethene (cDCE) and Trichloroethene (TCE) are widespread pollutants that often occur together at contaminated sites, either as primary discharges or as degradation products of anaerobic dechlorination. In this study, comprehensive microcosm experiments were conducted with groundwater samples of seven sites contaminated with chloroethenes. In total, twelve wells with different pollutant concentrations and chloroethene compositions were sampled, and aerobic microcosms including sterile controls were set up. The results revealed interactions as well as interferences between cDCE and TCE. First, co-metabolic cDCE degradation with TCE as growth substrate was detected for the first time in this work. Transformation yields Ty' (molar ratio of co-substrate degraded to primary substrate degraded) of the degradation process were determined and showed a linear relationship with the cDCE/TCE concentration ratio. At low cDCE/TCE ratio, aerobic metabolic TCE degradation can result in complete cDCE removal due to co-metabolic degradation. Secondly, interfering effects were detected at notable cDCE levels resulting in deceleration of TCE degradation and residual concentrations which were also correlating linearly with the cDCE/TCE concentration ratio. These findings are significant for investigating chloroethene contaminated sites and planning remediation strategies. In particular, the efficiency biological remediation methods in the presence of both pollutants can be evaluated more precisely through the knowledge of interactions and interferences. Our study emphasizes that co-contaminants and possible effects of contaminant mixtures on the degradation rates of individual substances should be considered in general.
Collapse
Affiliation(s)
- Anna Willmann
- Department of Water Microbiology TZW: DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, 76139, Karlsruhe, Germany; Working Group Environmental Mineralogy & Environmental System Analysis of the Institute of Applied Geosciences, Karlsruhe Institute of Technology, Adenauerring 20b, 76131, Karlsruhe, Germany
| | - Andreas Tiehm
- Department of Water Microbiology TZW: DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, 76139, Karlsruhe, Germany.
| |
Collapse
|
5
|
Chi Z, Liu X, Li H, Liang S, Luo YH, Zhou C, Rittmann BE. Co-metabolic biodegradation of chlorinated ethene in an oxygen- and ethane-based membrane biofilm reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167323. [PMID: 37742949 DOI: 10.1016/j.scitotenv.2023.167323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Groundwater contamination by chlorinated ethenes is an urgent concern worldwide. One approach for detoxifying chlorinated ethenes is aerobic co-metabilims using ethane (C2H6) as the primary substrate. This study evaluated long-term continuous biodegradation of three chlorinated alkenes in a membrane biofilm reactor (MBfR) that delivered C2H6 and O2 via gas-transfer membranes. During 133 days of continuous operation, removals of dichloroethane (DCE), trichloroethene (TCE), and tetrachloroethene (PCE) were as high as 94 % and with effluent concentrations below 5 μM. In situ batch tests showed that the co-metabolic kinetics were faster with more chlorination. C2H6-oxidizing Comamonadaceae and "others," such as Methylococcaceae, oxidized C2H6 via monooxyenation reactions. The abundant non-ethane monooxygenases, particularly propane monooxygenase, appears to have been responsible for C2H6 aerobic metabolism and co-metabolism of chlorinated ethenes. This work proves that the C2H6 + O2 MBfR is a platform for ex-situ bioremediation of chlorinated ethenes, and the generalized action of the monooxygenases may make it applicable for other chlorinated organic contaminants.
Collapse
Affiliation(s)
- Zifang Chi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Xinyang Liu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China.
| | - Shen Liang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA; Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, PR China.
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| |
Collapse
|
6
|
Chen WY, Wu JH, Wang BN. Intermittent Oxygen Supply Facilitates Codegradation of Trichloroethene and Toluene by Anaerobic Consortia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37422855 DOI: 10.1021/acs.est.3c02481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Biodegradation is commonly employed for remediating trichloroethene- or toluene-contaminated sites. However, remediation methods using either anaerobic or aerobic degradation are inefficient for dual pollutants. We developed an anaerobic sequencing batch reactor system with intermittent oxygen supply for the codegradation of trichloroethylene and toluene. Our results showed that oxygen inhibited anaerobic dechlorination of trichloroethene, but dechlorination rates remained comparable to that at dissolved oxygen levels of 0.2 mg/L. Intermittent oxygenation engendered reactor redox fluctuations (-146 to -475 mV) and facilitated rapid codegradation of targeting dual pollutants, with trichloroethene degradation constituting only 27.5% of the noninhibited dechlorination. Amplicon sequencing analysis revealed the predominance of Dehalogenimonas (16.0% ± 3.5%) over Dehalococcoides (0.3% ± 0.2%), with ten times higher transcriptomic activity in Dehalogenimonas. Shotgun metagenomics revealed numerous genes related to reductive dehalogenases and oxidative stress resistance in Dehalogenimonas and Dehalococcoides, as well as the enrichment of diversified facultative populations with functional genes related to trichloroethylene cometabolism and aerobic and anaerobic toluene degradation. These findings suggested that the codegradation of trichloroethylene and toluene may involve multiple biodegradation mechanisms. Overall results of this study demonstrate the effectiveness of intermittent micro-oxygenation in aiding trichloroethene-toluene degradation, suggesting the potential for the bioremediation of sites with similar organic pollutants.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Rd., East District, Tainan City 70101, Taiwan
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Rd., East District, Tainan City 70101, Taiwan
| | - Bing Nan Wang
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Rd., East District, Tainan City 70101, Taiwan
- Environmental Laboratory and Research, Sinotech Environmental Technology, Ltd., No. 351, Sanzhong Rd., Dashe District, Kaohsiung City 815040, Taiwan
| |
Collapse
|
7
|
Pan X, Li Z, Huang S, Huang Y, Wang Q, Tao Z, Hu W. Mycolicibacterium aurantiacum sp. nov. and Mycolicibacterium xanthum sp. nov., two novel actinobacteria isolated from mangrove sediments. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two novel actinobacteria with the ability to degrade kerosene, designated as B3033T and Y57T, were isolated from mangrove sediments in Tieshan Harbour, South China Sea. Both strains are Gram-staining-positive, non-spore forming, slow-growing, oxidase-positive, non-motile and aerobic. Their major cellular fatty acids were C16 : 0 and C18 : 1ω9c. Analysis of 16S rRNA gene sequences revealed the close relationship of strain B3033T to
Mycobacterium kyogaense
DSM 107316T (99.4 % nucleotide identity) and strain Y57T to
Mycolicibacterium chubuense
ATCC 27278T (98.7 %) and
Mycolicibacterium rufum
JS14T (98.7 %). Whole genome average nucleotide blast identity (ANI) and the digital DNA–DNA hybridization (dDDH) values between the two isolates and the type strains of species of the genus
Mycolicibacterium
were lower than 94 and 45 %, respectively, which were below the threshold values of 95 % (for ANI) and 70 % (for dDDH) recommended for bacterial species differentiation. The genome sequence of B3033T comprised a circular 11.0 Mb chromosome with a DNA G+C content of 68.1 mol%. Y57T had a genome size of 5.6 Mb and a DNA G+C content of 68.7 mol%. Genes involved in degradation of aromatic compounds and copper resistance were identified in the genomes of both strains that could improve their adaptive capacity to the mangrove environment. These results combined with those of chemotaxonomic analyses, MALDI-TOF MS profiles and phenotypic analyses support the affiliation of these strains to two novel species within the genus
Mycolicibacterium
, for which we propose the names Mycolicibacterium aurantiacum sp. nov. B3033T (=KCTC 49712T=MCCC 1K04526T) and Mycolicibacterium xanthum sp. nov. Y57T (=KCTC 49711T=MCCC 1K04875T) as type strains.
Collapse
Affiliation(s)
- Xinli Pan
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, PR China
| | - Zhe Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, PR China
| | - Shushi Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, PR China
| | - Yuanlin Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, PR China
| | - Qiaozhen Wang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, PR China
| | - Zhanhua Tao
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, PR China
| | - Wenjin Hu
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning, 530007, PR China
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, PR China
| |
Collapse
|
8
|
Jeong WG, Kim JG, Lee SM, Baek K. CaO 2-based electro-Fenton-oxidation of 1,2-dichloroethane in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157065. [PMID: 35780882 DOI: 10.1016/j.scitotenv.2022.157065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/06/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
It has been well recognized that the Fenton reaction requires a rigorous pH control and suffers from the fast self-degradation of H2O2. In an effort to resolve the technical demerits of the conventional Fenton reaction, particular concern on the use of CaO2-based Fenton reaction was paid in this study. To realize the practical use of CaO2 in the Fenton reaction for groundwater remediation, it could be of great importance to control its reaction rate in the subsurface. As such, this study laid great emphasis on the combined process of electrochemical oxidation and CaO2-based Fenton oxidation, using 1,2-dichloroethane (1,2-DCA) as a model compound. It was hypothesized that the reaction rate is also highly contingent on the formation of Fe(II) (stemmed from iron anode oxidation). Eighty percent of 1,2-DCA were degraded by the CaO2-based Fenton reaction. The final pH was neutral, inferring that the reaction could be a viable option for the subsurface environment. Moreover, the supply of electric current in an iron anode expedited 1,2-DCA degradation efficiency from 35 % to 62 % via electrically generated Fe(II), which donated electrons to H2O2, producing more hydroxyl radicals. An anode-cathode configuration from the single-well system enhanced the degradation of 1,2-DCA, with less amount of energy consumption than the double-well system. Based on results, CaO2-based electro-Fenton oxidation can remove well 1,2-DCA in groundwater and can be a strategic measure for groundwater remediation.
Collapse
Affiliation(s)
- Won-Gune Jeong
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Jong-Gook Kim
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Su-Min Lee
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; School of Civil, Environmental, and Resources-Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea.
| |
Collapse
|
9
|
Li C, Chen R, Liu H, Huang Y, Yu J, Ouyang W, Xue C. Response of chlorinated hydrocarbon transformation and microbial community structure in an aquifer to joint H 2 and O 2. RSC Adv 2022; 12:23252-23262. [PMID: 36090448 PMCID: PMC9380535 DOI: 10.1039/d2ra04185e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
Hydrogen (H2) and oxygen (O2) are critical electron donors and acceptors to promote the anaerobic and aerobic microbial transformation of chlorinated hydrocarbons (CHCs), respectively. Electrochemical technology can effectively supply H2 and O2 directly to an aquifer. However, the response of CHC transformation and microbial community structure to joint H2 and O2 are still unclear. In this work, microcosms containing different combinations of H2 and O2 were constructed with natural sediments and nine mixed CHCs. The joint H2 and O2 microcosm (H2/O2 microcosm) significantly promoted the biotransformation of trichloroethylene (TCE), trans-dichloroethene (tDCE) and chloroform (CF). Illumina sequencing analyses suggested that a particular microbial community was formed in the H2/O2 microcosm. The specific microbial species included Methyloversatilis, Dechloromonas, Sediminibacterium, Pseudomonas, Acinetobacter, Curvibacter, Comamonas and Acidovorax, and the relative abundance of the tceA, phe and soxB genes synchronously increased. These results suggested that some specific microbes are potential CHC converters using H2 and O2 as energy sources, and aerobic and anaerobic transformations exist simultaneously in the H2/O2 microcosm. It provides a theoretical basis for establishing efficient green remediation technologies for CHC contaminated aquifers.
Collapse
Affiliation(s)
- Cui Li
- School of Environmental Studies, China University of Geosciences Wuhan Hubei 430078 PR China
| | - Rong Chen
- School of Environmental and Biological Engineering, Wuhan Technology and Business University Wuhan Hubei 430065 PR China
| | - Hui Liu
- School of Environmental Studies, China University of Geosciences Wuhan Hubei 430078 PR China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan Hubei 430078 PR China
| | - Yao Huang
- School of Environmental Studies, China University of Geosciences Wuhan Hubei 430078 PR China
| | - Jintao Yu
- School of Environmental Studies, China University of Geosciences Wuhan Hubei 430078 PR China
| | - Weiwei Ouyang
- School of Environmental Studies, China University of Geosciences Wuhan Hubei 430078 PR China
| | - Chen Xue
- School of Environmental Studies, China University of Geosciences Wuhan Hubei 430078 PR China
| |
Collapse
|
10
|
Jeong WG, Kim JG, Baek K. Removal of 1,2-dichloroethane in groundwater using Fenton oxidation. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128253. [PMID: 35033913 DOI: 10.1016/j.jhazmat.2022.128253] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Among the chlorinated aliphatic hydrocarbons, 1,2-dichloroethane (1,2-DCA) is widely used for the synthesis of vinyl chloride monomers. Despite the high demand for 1,2-DCA, it poses a risk to the environment because it is persistent and carcinogenic. Therefore, in this study, several reagents (dithionite, hydrosulfide, sulfite, persulfate, sulfate radicals, and hydroxyl radicals) were evaluated for the degradation of 1,2-DCA. Among these, the hydroxyl radicals generated by the Fenton reaction were the most suitable oxidant, decomposing 92% of 1,2-DCA. Chloride, one of the final oxidized products, was observed, which supported the oxidation reaction. Moreover, with an increasing concentration of hydroxyl radicals, the degradation of 1,2-DCA increased. Furthermore, sufficient amounts of hydrogen peroxide were more important than Fe(II) in the decomposition of 1,2-DCA. The radical reaction can generate larger molecules via the degradation of 1,2-DCA, which are degraded over time. The applicability of Fenton oxidation was evaluated using real 1,2-DCA-contaminated groundwater. Although the degradation of target contaminant was lowered due to the alkaline pH and the presence of chloride and bicarbonate ions in groundwater, the Fenton reaction was still efficient to oxidize 1,2-DCA. These results indicate that Fenton oxidation is an effective technique for the treatment of 1,2-DCA in contaminated groundwater.
Collapse
Affiliation(s)
- Won-Gune Jeong
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Jong-Gook Kim
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; School of Civil, Environmental, and Resources-Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea.
| |
Collapse
|
11
|
Cortés-Albayay C, Sangal V, Klenk HP, Nouioui I. Comparative Genomic Study of Vinyl Chloride Cluster and Description of Novel Species, Mycolicibacterium vinylchloridicum sp. nov. Front Microbiol 2021; 12:767895. [PMID: 35003006 PMCID: PMC8727900 DOI: 10.3389/fmicb.2021.767895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
Advanced physicochemical and chemical absorption methods for chlorinated ethenes are feasible but incur high costs and leave traces of pollutants on the site. Biodegradation of such pollutants by anaerobic or aerobic bacteria is emerging as a potential alternative. Several mycobacteria including Mycolicibacterium aurum L1, Mycolicibacterium chubuense NBB4, Mycolicibacterium rhodesiae JS60, Mycolicibacterium rhodesiae NBB3 and Mycolicibacterium smegmatis JS623 have previously been described as assimilators of vinyl chloride (VC). In this study, we compared nucleotide sequence of VC cluster and performed a taxogenomic evaluation of these mycobacterial species. The results showed that the complete VC cluster was acquired by horizontal gene transfer and not intrinsic to the genus Mycobacterium sensu lato. These results also revealed the presence of an additional xcbF1 gene that seems to be involved in Coenzyme M biosynthesis, which is ultimately used in the VC degradation pathway. Furthermore, we suggest for the first time that S/N-Oxide reductase encoding gene was involved in the dissociation of the SsuABC transporters from the organosulfur, which play a crucial role in the Coenzyme M biosynthesis. Based on genomic data, M. aurum L1, M. chubuense NBB4, M. rhodesiae JS60, M. rhodesiae NBB3 and M. smegmatis JS623 were misclassified and form a novel species within the genus Mycobacterium sensu lato. Mycolicibacterium aurum L1T (CECT 8761T = DSM 6695T) was the subject of polyphasic taxonomic studies and showed ANI and dDDH values of 84.7 and 28.5% with its close phylogenetic neighbour, M. sphagni ATCC 33027T. Phenotypic, chemotaxonomic and genomic data considering strain L1T (CECT 8761T = DSM 6695T) as a type strain of novel species with the proposed name, Mycolicibacterium vinylchloridicum sp. nov.
Collapse
Affiliation(s)
- Carlos Cortés-Albayay
- Faculty of Science, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Hans-Peter Klenk
- Faculty of Science, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Imen Nouioui
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- *Correspondence: Imen Nouioui,
| |
Collapse
|
12
|
Zhou Z, Huang J, Danish M, Zeng G, Yang R, Gu X, Ali M, Lyu S. Insights into enhanced removal of 1,2-dichloroethane by amorphous boron-enhanced Fenton system: Performances and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126589. [PMID: 34329106 DOI: 10.1016/j.jhazmat.2021.126589] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
In this study, amorphous boron was employed as a reductant in traditional Fenton system for the first time to accelerate the regeneration of Fe(II). The degradation of 1,2-dichloroethane (DCA) was only 40.0% in Fenton system, while in the presence of amorphous boron, it could reach to 93.0% in 60 min. HO• was demonstrated to be the major reactive oxygen species (ROSs) and responsible for DCA degradation. Further, the mechanism of amorphous boron-enhanced Fenton system was described as follows. With the addition of amorphous boron, the reduction process occurred on its surface and Fe(III) was regenerated to Fe(II) to further utilize H2O2 and produce more HO• for DCA removal. Meanwhile, amorphous boron was oxidized to B2O3 and a portion of H3BO3 leaching into the solution occurred. Both B2O3 and H3BO3 had no reactivity for Fe(III) reduction. Moreover, DCA could be entirely dechlorinated and mineralized to CO2, Cl- and H2O. Vinyl chloride (VC) and dichloromethane (DCM) were the mainly intermediates in DCA degradation and two possible pathways were inferred. Eventually, the performance of DCA degradation in complex solution matrixes and for other contaminants removal were tested, demonstrating the broad-spectrum reactivity and superiority of amorphous boron-enhanced Fenton system in the remediation of contaminated groundwater.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Jingyao Huang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Muhammad Danish
- Chemical Engineering Department, University of Engineering and Technology (UET), Lahore (Faisalabad Campus), G.T. Road, Lahore, Pakistan
| | - Guilu Zeng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Rumin Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaogang Gu
- Shanghai Urban Construction Design & Research Institute (Group) Co., Ltd, 3447 Dongfang Road, Shanghai 200125, China
| | - Meesam Ali
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China; Department of Chemical Engineering, MNS University of Engineering and Technology, Multan 60000, Pakistan
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
13
|
Gaza S, Schmidt KR, Weigold P, Heidinger M, Tiehm A. Aerobic metabolic trichloroethene biodegradation under field-relevant conditions. WATER RESEARCH 2019; 151:343-348. [PMID: 30616046 DOI: 10.1016/j.watres.2018.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Chloroethenes belong to the most widely distributed groundwater contaminants. Since 2014, it has been known that trichloroethene (TCE) can be degraded aerobically and metabolically as growth substrate by a mixed bacterial enrichment culture (named SF culture). In this study, the degradation capabilities under a range of field-relevant conditions were investigated in fixed-bed reactors as well as in batch experiments. Aerobic metabolic TCE degradation was stable over the long term, with degradation optima at 22 °C and pH 7. Degradation of up to 400 μM TCE was observed. The longest starvation period after which degradation of TCE was regained was 112 days. The possible co-contaminants perchloroethene, trans-1,2-dichloroethene, and cis-1,2-dichloroethene did not inhibit TCE degradation, even though they were not degraded themselves. The presence of equimolar amounts of 1,1-dichloroethene and vinyl chloride inhibited TCE degradation. Experiments with groundwater from different chloroethene-contaminated field sites proved the potential of the SF culture for bioaugmentation. Thus, aerobic metabolic TCE degradation should be considered as a promising method for the bioremediation of field sites with TCE as the main contaminant.
Collapse
Affiliation(s)
- Sarah Gaza
- Department of Environmental Biotechnology, Water Technology Center, Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Kathrin R Schmidt
- Department of Environmental Biotechnology, Water Technology Center, Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Pascal Weigold
- Department of Environmental Biotechnology, Water Technology Center, Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | | | - Andreas Tiehm
- Department of Environmental Biotechnology, Water Technology Center, Karlsruher Str. 84, 76139, Karlsruhe, Germany.
| |
Collapse
|
14
|
McCarl V, Somerville MV, Ly MA, Henry R, Liew EF, Wilson NL, Holmes AJ, Coleman NV. Heterologous Expression of Mycobacterium Alkene Monooxygenases in Gram-Positive and Gram-Negative Bacterial Hosts. Appl Environ Microbiol 2018; 84:e00397-18. [PMID: 29802186 PMCID: PMC6052275 DOI: 10.1128/aem.00397-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/15/2018] [Indexed: 01/01/2023] Open
Abstract
Alkene monooxygenases (MOs) are soluble di-iron-containing enzymes found in bacteria that grow on alkenes. Here, we report improved heterologous expression systems for the propene MO (PmoABCD) and ethene MO (EtnABCD) from Mycobacterium chubuense strain NBB4. Strong functional expression of PmoABCD and EtnABCD was achieved in Mycobacterium smegmatis mc2155, yielding epoxidation activities (62 and 27 nmol/min/mg protein, respectively) higher than any reported to date for heterologous expression of a di-iron MO system. Both PmoABCD and EtnABCD were specialized for the oxidation of gaseous alkenes (C2 to C4), and their activity was much lower on liquid alkenes (C5 to C8). Despite intensive efforts to express the complete EtnABCD enzyme in Escherichia coli, this was not achieved, although recombinant EtnB and EtnD proteins could be purified individually in soluble form. The biochemical function of EtnD as an oxidoreductase was confirmed (1.36 μmol cytochrome c reduced/min/mg protein). Cloning the EtnABCD gene cluster into Pseudomonas putida KT2440 yielded detectable epoxidation of ethene (0.5 nmol/min/mg protein), and this could be stimulated (up to 1.1 nmol/min/mg protein) by the coexpression of cpn60 chaperonins from either Mycobacterium spp. or E. coli Successful expression of the ethene MO in a Gram-negative host was validated by both whole-cell activity assays and peptide mass spectrometry of induced proteins seen on SDS-PAGE gels.IMPORTANCE Alkene MOs are of interest for their potential roles in industrial biocatalysis, most notably for the stereoselective synthesis of epoxides. Wild-type bacteria that grow on alkenes have high activities for alkene oxidation but are problematic for biocatalysis, since they tend to consume the epoxide products. Using recombinant biocatalysts is the obvious alternative, but a major bottleneck is the low activities of recombinant alkene MOs. Here, we provide new high-activity recombinant biocatalysts for alkene oxidation, and we provide insights into how to further improve these systems.
Collapse
Affiliation(s)
- Victoria McCarl
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Mark V Somerville
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Mai-Anh Ly
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Rebecca Henry
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Elissa F Liew
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Neil L Wilson
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Andrew J Holmes
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Nicholas V Coleman
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| |
Collapse
|
15
|
Brzeszcz J, Kaszycki P. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an undervalued strategy for metabolic diversity and flexibility. Biodegradation 2018; 29:359-407. [PMID: 29948519 DOI: 10.1007/s10532-018-9837-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
Environmental pollution with petroleum toxic products has afflicted various ecosystems, causing devastating damage to natural habitats with serious economic implications. Some crude oil components may serve as growth substrates for microorganisms. A number of bacterial strains reveal metabolic capacities to biotransform various organic compounds. Some of the hydrocarbon degraders are highly biochemically specialized, while the others display a versatile metabolism and can utilize both saturated aliphatic and aromatic hydrocarbons. The extended catabolic profiles of the latter group have been subjected to systematic and complex studies relatively rarely thus far. Growing evidence shows that numerous bacteria produce broad biochemical activities towards different hydrocarbon types and such an enhanced metabolic potential can be found in many more species than the already well-known oil-degraders. These strains may play an important role in the removal of heterogeneous contamination. They are thus considered to be a promising solution in bioremediation applications. The main purpose of this article is to provide an overview of the current knowledge on aerobic bacteria involved in the mineralization or transformation of both n-alkanes and aromatic hydrocarbons. Variant scientific approaches enabling to evaluate these features on biochemical as well as genetic levels are presented. The distribution of multidegradative capabilities between bacterial taxa is systematically shown and the possibility of simultaneous transformation of complex hydrocarbon mixtures is discussed. Bioinformatic analysis of the currently available genetic data is employed to enable generation of phylogenetic relationships between environmental strain isolates belonging to the phyla Actinobacteria, Proteobacteria, and Firmicutes. The study proves that the co-occurrence of genes responsible for concomitant metabolic bioconversion reactions of structurally-diverse hydrocarbons is not unique among various systematic groups.
Collapse
Affiliation(s)
- Joanna Brzeszcz
- Department of Microbiology, Oil and Gas Institute-National Research Institute, ul. Lubicz 25A, 31-503, Kraków, Poland.
| | - Paweł Kaszycki
- Unit of Biochemistry, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, al. 29 Listopada 54, 31-425, Kraków, Poland
| |
Collapse
|
16
|
Taylor AE, Bottomley PJ, Semprini L. Contrasting growth properties of Nocardioides JS614 on threedifferent vinyl halides. Appl Microbiol Biotechnol 2018; 102:1859-1867. [PMID: 29297101 DOI: 10.1007/s00253-017-8723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 10/18/2022]
Abstract
Ethene (ETH)-grown inocula of Nocardioides JS614 grow on vinyl chloride (VC), vinyl fluoride (VF), or vinyl bromide (VB) as the sole carbon and energy source, with faster growth rates and higher cell yields on VC and VF than on VB. However, whereas acetate-grown inocula of JS614 grow on VC and VF after a lag period, growth on VB did not occur unless supplemental ethene oxide (EtO) was present in the medium. Despite inferior growth on VB, the maximum rate of VB consumption by ETH-grown cells was ~ 50% greater than the rates of VC and VF consumption, but Br- release during VB consumption was non-stoichiometric with VB consumption (~ 66%) compared to 100% release of Cl- and F- during VC and VF consumption. Evidence was obtained for VB turnover-dependent toxicity of cell metabolism in JS614 with both acetate-dependent respiration and growth being significantly reduced by VB turnover, but no VC or VF turnover-dependent toxicity of growth was detected. Reduced growth rate and cell yield of JS614 on VB probably resulted from a combination of inefficient metabolic processing of the highly unstable VB epoxide (t0.5 = 45 s), accompanied by growth inhibitory effects of VB metabolites on acetate-dependent metabolism. The exact role(s) of EtO in promoting growth of alkene repressed JS614 on VB remains unresolved, with evidence of EtO inducing epoxide consuming activity prior to an increase in alkene oxidizing activity and supplementing reductant supply when VB is the growth substrate.
Collapse
Affiliation(s)
- Anne E Taylor
- Department of Chemical Biological and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA. .,Department of Crop and Soil Science, Oregon State University, Corvallis, OR, 97331, USA. .,Department of Crop and Soil Science, 3017 ALS Building, Oregon State University, Corvallis, OR, 97331, USA.
| | - Peter J Bottomley
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Lewis Semprini
- Department of Chemical Biological and Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
17
|
Weatherill JJ, Atashgahi S, Schneidewind U, Krause S, Ullah S, Cassidy N, Rivett MO. Natural attenuation of chlorinated ethenes in hyporheic zones: A review of key biogeochemical processes and in-situ transformation potential. WATER RESEARCH 2018; 128:362-382. [PMID: 29126033 DOI: 10.1016/j.watres.2017.10.059] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/12/2017] [Accepted: 10/28/2017] [Indexed: 06/07/2023]
Abstract
Chlorinated ethenes (CEs) are legacy contaminants whose chemical footprint is expected to persist in aquifers around the world for many decades to come. These organohalides have been reported in river systems with concerning prevalence and are thought to be significant chemical stressors in urban water ecosystems. The aquifer-river interface (known as the hyporheic zone) is a critical pathway for CE discharge to surface water bodies in groundwater baseflow. This pore water system may represent a natural bioreactor where anoxic and oxic biotransformation process act in synergy to reduce or even eliminate contaminant fluxes to surface water. Here, we critically review current process understanding of anaerobic CE respiration in the competitive framework of hyporheic zone biogeochemical cycling fuelled by in-situ fermentation of natural organic matter. We conceptualise anoxic-oxic interface development for metabolic and co-metabolic mineralisation by a range of aerobic bacteria with a focus on vinyl chloride degradation pathways. The superimposition of microbial metabolic processes occurring in sediment biofilms and bulk solute transport delivering reactants produces a scale dependence in contaminant transformation rates. Process interpretation is often confounded by the natural geological heterogeneity typical of most riverbed environments. We discuss insights from recent field experience of CE plumes discharging to surface water and present a range of practical monitoring technologies which address this inherent complexity at different spatial scales. Future research must address key dynamics which link supply of limiting reactants, residence times and microbial ecophysiology to better understand the natural attenuation capacity of hyporheic systems.
Collapse
Affiliation(s)
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Uwe Schneidewind
- Department of Engineering Geology and Hydrogeology, RWTH Aachen University, Aachen, Germany
| | - Stefan Krause
- School of Geography, Earth and Environmental Science, University of Birmingham, UK
| | - Sami Ullah
- School of Geography, Earth and Environmental Science, University of Birmingham, UK
| | | | - Michael O Rivett
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK; GroundH(2)O Plus Ltd., Quinton, Birmingham, UK
| |
Collapse
|
18
|
Liang Y, Liu X, Singletary MA, Wang K, Mattes TE. Relationships between the Abundance and Expression of Functional Genes from Vinyl Chloride (VC)-Degrading Bacteria and Geochemical Parameters at VC-Contaminated Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12164-12174. [PMID: 28981261 DOI: 10.1021/acs.est.7b03521] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bioremediation of vinyl chloride (VC) contamination in groundwater could be mediated by three major bacterial guilds: anaerobic VC-dechlorinators, methanotrophs, and ethene-oxidizing bacteria (etheneotrophs) via metabolic or cometabolic pathways. We collected 95 groundwater samples across 6 chlorinated ethene-contaminated sites and searched for relationships among VC biodegradation gene abundance and expression and site geochemical parameters (e.g., VC concentrations). Functional genes from the three major VC-degrading bacterial guilds were present in 99% and expressed in 59% of the samples. Etheneotroph and methanotroph functional gene abundances ranged from 102 to 109 genes per liter of groundwater among the samples with VC reductive dehalogenase gene (bvcA and vcrA) abundances reaching 108 genes per liter of groundwater. Etheneotroph functional genes (etnC and etnE) and VC reductive dehalogenase genes (bvcA and vcrA) were strongly related to VC concentrations (p < 0.001). Methanotroph functional genes (mmoX and pmoA) were not related to VC concentration (p > 0.05). Samples from sites with bulk VC attenuation rates >0.08 year-1 contained higher levels of etheneotroph and anaerobic VC-dechlorinator functional genes and transcripts than those with bulk VC attenuation rates <0.004 year-1. We conclude that both etheneotrophs and anaerobic VC-dechlorinators have the potential to simultaneously contribute to VC biodegradation at these sites.
Collapse
Affiliation(s)
| | | | - Michael A Singletary
- NAVFAC Southeast, EV3 Environmental Restoration Building 135, Naval Air Station Jacksonville, Florida 32508, United States
| | | | | |
Collapse
|
19
|
Munro JE, Kimyon Ö, Rich DJ, Koenig J, Tang S, Low A, Lee M, Manefield M, Coleman NV. Co-occurrence of genes for aerobic and anaerobic biodegradation of dichloroethane in organochlorine-contaminated groundwater. FEMS Microbiol Ecol 2017; 93:4494361. [DOI: 10.1093/femsec/fix133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/10/2017] [Indexed: 12/15/2022] Open
|
20
|
Fraraccio S, Strejcek M, Dolinova I, Macek T, Uhlik O. Secondary compound hypothesis revisited: Selected plant secondary metabolites promote bacterial degradation of cis-1,2-dichloroethylene (cDCE). Sci Rep 2017; 7:8406. [PMID: 28814712 PMCID: PMC5559444 DOI: 10.1038/s41598-017-07760-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/29/2017] [Indexed: 12/20/2022] Open
Abstract
Cis-1,2-dichloroethylene (cDCE), which is a common hazardous compound, often accumulates during incomplete reductive dechlorination of higher chlorinated ethenes (CEs) at contaminated sites. Simple monoaromatics, such as toluene and phenol, have been proven to induce biotransformation of cDCE in microbial communities incapable of cDCE degradation in the absence of other carbon sources. The goal of this microcosm-based laboratory study was to discover non-toxic natural monoaromatic secondary plant metabolites (SPMEs) that could enhance cDCE degradation in a similar manner to toluene and phenol. Eight SPMEs were selected on the basis of their monoaromatic molecular structure and widespread occurrence in nature. The suitability of the SPMEs chosen to support bacterial growth and to promote cDCE degradation was evaluated in aerobic microbial cultures enriched from cDCE-contaminated soil in the presence of each SPME tested and cDCE. Significant cDCE depletions were achieved in cultures enriched on acetophenone, phenethyl alcohol, p-hydroxybenzoic acid and trans-cinnamic acid. 16S rRNA gene sequence analysis of each microbial community revealed ubiquitous enrichment of bacteria affiliated with the genera Cupriavidus, Rhodococcus, Burkholderia, Acinetobacter and Pseudomonas. Our results provide further confirmation of the previously stated secondary compound hypothesis that plant metabolites released into the rhizosphere can trigger biodegradation of environmental pollutants, including cDCE.
Collapse
Affiliation(s)
- Serena Fraraccio
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic.
| | - Michal Strejcek
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Iva Dolinova
- Technical University of Liberec, Liberec, Czech Republic
| | - Tomas Macek
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Ondrej Uhlik
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic.
| |
Collapse
|
21
|
Munro JE, Liew EF, Ly MA, Coleman NV. A New Catabolic Plasmid in Xanthobacter and Starkeya spp. from a 1,2-Dichloroethane-Contaminated Site. Appl Environ Microbiol 2016; 82:5298-308. [PMID: 27342553 PMCID: PMC4988179 DOI: 10.1128/aem.01373-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED 1,2-Dichloroethane (DCA) is a problematic xenobiotic groundwater pollutant. Bacteria are capable of biodegrading DCA, but the evolution of such bacteria is not well understood. In particular, the mechanisms by which bacteria acquire the key dehalogenase genes dhlA and dhlB have not been well defined. In this study, the genomic context of dhlA and dhlB was determined in three aerobic DCA-degrading bacteria (Starkeya novella strain EL1, Xanthobacter autotrophicus strain EL4, and Xanthobacter flavus strain EL8) isolated from a groundwater treatment plant (GTP). A haloalkane dehalogenase gene (dhlA) identical to the canonical dhlA gene from Xanthobacter sp. strain GJ10 was present in all three isolates, and, in each case, the dhlA gene was carried on a variant of a 37-kb circular plasmid, which was named pDCA. Sequence analysis of the repA replication initiator gene indicated that pDCA was a member of the pTAR plasmid family, related to catabolic plasmids from the Alphaproteobacteria, which enable growth on aromatics, dimethylformamide, and tartrate. Genes for plasmid replication, mobilization, and stabilization were identified, along with two insertion sequences (ISXa1 and ISPme1) which were likely to have mobilized dhlA and dhlB and played a role in the evolution of aerobic DCA-degrading bacteria. Two haloacid dehalogenase genes (dhlB1 and dhlB2) were detected in the GTP isolates; dhlB1 was most likely chromosomal and was similar to the canonical dhlB gene from strain GJ10, while dhlB2 was carried on pDCA and was not closely related to dhlB1 Heterologous expression of the DhlB2 protein confirmed that this plasmid-borne dehalogenase was capable of chloroacetate dechlorination. IMPORTANCE Earlier studies on the DCA-degrading Xanthobacter sp. strain GJ10 indicated that the key dehalogenases dhlA and dhlB were carried on a 225-kb linear plasmid and on the chromosome, respectively. The present study has found a dramatically different gene organization in more recently isolated DCA-degrading Xanthobacter strains from Australia, in which a relatively small circular plasmid (pDCA) carries both dhlA and dhlB homologs. pDCA represents a true organochlorine-catabolic plasmid, first because its only obvious metabolic phenotype is dehalogenation of organochlorines, and second because acquisition of this plasmid provides both key enzymes required for carbon-chlorine bond cleavage. The discovery of the alternative haloacid dehalogenase dhlB2 in pDCA increases the known genetic diversity of bacterial chloroacetate-hydrolyzing enzymes.
Collapse
Affiliation(s)
- Jacob E Munro
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Elissa F Liew
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Mai-Anh Ly
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Nicholas V Coleman
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
22
|
Nunez Garcia A, Boparai HK, O'Carroll DM. Enhanced Dechlorination of 1,2-Dichloroethane by Coupled Nano Iron-Dithionite Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5243-5251. [PMID: 27128632 DOI: 10.1021/acs.est.6b00734] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
1,2-Dichloroethane (1,2-DCA) is a chlorinated solvent classified as a probable human carcinogen. Due to its extensive use in industrial applications, widespread contamination, and recalcitrance toward abiotic dechlorination, 1,2-DCA remains a challenging compound for the remediation community. Over the past decade, nano zerovalent iron (nZVI) has been efficiently used to treat many of the chlorinated compounds of concern. However, thus far, even nZVI (monometallic or bimetallic) has been unable to dechlorinate 1,2-DCA. Therefore, an alternative treatment coupling nZVI with dithionite to treat 1,2-DCA is proposed in this work. Coupled nZVI-dithionite was able to degrade >90% 1,2-DCA over the course of a year. The effects of dithionite and nZVI loadings, carboxymethyl cellulose (CMC) coating, addition of palladium, and other iron species as metal surfaces on the degradation kinetics were also investigated. Observed pseudo-first-order rate constants (kobs) ranged from 3.8 × 10(-3) to 7.8 × 10(-3) d(-1). Both nucleophilic substitution and reductive dechlorination are the proposed mechanisms for 1,2-DCA degradation by coupled nZVI-dithionite treatment. Characterization analysis of the nZVI-dithionite nanoparticles shows that most of the iron was still preserved in the zerovalent state even after more than one year of reactivity with some iron sulfide (FeS) formation. Scanning electron microscopy (SEM) analysis shows that the nanosized spherical particles were still present along with the FeS platelets. This novel treatment represents the first nZVI-based formulation to achieve nearly complete degradation of 1,2-DCA.
Collapse
Affiliation(s)
- Ariel Nunez Garcia
- Civil and Environmental Engineering, Western University , 1151 Richmond Road, London, Ontario N6A 5B8, Canada
| | - Hardiljeet K Boparai
- Civil and Environmental Engineering, Western University , 1151 Richmond Road, London, Ontario N6A 5B8, Canada
| | - Denis M O'Carroll
- Civil and Environmental Engineering, Western University , 1151 Richmond Road, London, Ontario N6A 5B8, Canada
| |
Collapse
|
23
|
Wang SY, Kuo YC, Huang YZ, Huang CW, Kao CM. Bioremediation of 1,2-dichloroethane contaminated groundwater: Microcosm and microbial diversity studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 203:97-106. [PMID: 25863886 DOI: 10.1016/j.envpol.2015.03.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 06/04/2023]
Abstract
In this study, the effectiveness of bioremediating 1,2-dichloroethane (DCA)-contaminated groundwater under different oxidation-reduction processes was evaluated. Microcosms were constructed using indigenous bacteria and activated sludge as the inocula and cane molasses and a slow polycolloid-releasing substrate (SPRS) as the primary substrates. Complete DCA removal was obtained within 30 days under aerobic and reductive dechlorinating conditions. In anaerobic microcosms with sludge and substrate addition, chloroethane, vinyl chloride, and ethene were produced. The microbial communities and DCA-degrading bacteria in microcosms were characterized by 16S rRNA-based denatured-gradient-gel electrophoresis profiling and nucleotide sequence analyses. Real-time polymerase chain reaction was applied to evaluate the variations in Dehalococcoides spp. and Desulfitobacterium spp. Increase in Desulfitobacterium spp. indicates that the growth of Desulfitobacterium might be induced by DCA. Results indicate that DCA could be used as the primary substrate under aerobic conditions. The increased ethene concentrations imply that dihaloelimination was the dominate mechanism for DCA biodegradation.
Collapse
Affiliation(s)
- S Y Wang
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Y C Kuo
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Y Z Huang
- Bioenvironmental Engineering Department, Chung Yuan University, Chung Li, Taiwan
| | - C W Huang
- Deaprtment of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - C M Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
24
|
Das S, Pettersson BMF, Behra PRK, Ramesh M, Dasgupta S, Bhattacharya A, Kirsebom LA. Characterization of Three Mycobacterium spp. with Potential Use in Bioremediation by Genome Sequencing and Comparative Genomics. Genome Biol Evol 2015; 7:1871-86. [PMID: 26079817 PMCID: PMC4524478 DOI: 10.1093/gbe/evv111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We provide the genome sequences of the type strains of the polychlorophenol-degrading Mycobacterium chlorophenolicum (DSM43826), the degrader of chlorinated aliphatics Mycobacterium chubuense (DSM44219) and Mycobacterium obuense (DSM44075) that has been tested for use in cancer immunotherapy. The genome sizes of M. chlorophenolicum, M. chubuense, and M. obuense are 6.93, 5.95, and 5.58 Mb with GC-contents of 68.4%, 69.2%, and 67.9%, respectively. Comparative genomic analysis revealed that 3,254 genes are common and we predicted approximately 250 genes acquired through horizontal gene transfer from different sources including proteobacteria. The data also showed that the biodegrading Mycobacterium spp. NBB4, also referred to as M. chubuense NBB4, is distantly related to the M. chubuense type strain and should be considered as a separate species, we suggest it to be named Mycobacterium ethylenense NBB4. Among different categories we identified genes with potential roles in: biodegradation of aromatic compounds and copper homeostasis. These are the first nonpathogenic Mycobacterium spp. found harboring genes involved in copper homeostasis. These findings would therefore provide insight into the role of this group of Mycobacterium spp. in bioremediation as well as the evolution of copper homeostasis within the Mycobacterium genus.
Collapse
Affiliation(s)
- Sarbashis Das
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| | | | | | - Malavika Ramesh
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| |
Collapse
|
25
|
Frascari D, Zanaroli G, Danko AS. In situ aerobic cometabolism of chlorinated solvents: a review. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:382-399. [PMID: 25306537 DOI: 10.1016/j.jhazmat.2014.09.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 06/04/2023]
Abstract
The possible approaches for in situ aerobic cometabolism of aquifers and vadose zones contaminated by chlorinated solvents are critically evaluated. Bioaugmentation of resting-cells previously grown in a fermenter and in-well addition of oxygen and growth substrate appear to be the most promising approaches for aquifer bioremediation. Other solutions involving the sparging of air lead to satisfactory pollutant removals, but must be integrated by the extraction and subsequent treatment of vapors to avoid the dispersion of volatile chlorinated solvents in the atmosphere. Cometabolic bioventing is the only possible approach for the aerobic cometabolic bioremediation of the vadose zone. The examined studies indicate that in situ aerobic cometabolism leads to the biodegradation of a wide range of chlorinated solvents within remediation times that vary between 1 and 17 months. Numerous studies include a simulation of the experimental field data. The modeling of the process attained a high reliability, and represents a crucial tool for the elaboration of field data obtained in pilot tests and for the design of the full-scale systems. Further research is needed to attain higher concentrations of chlorinated solvent degrading microbes and more reliable cost estimates. Lastly, a procedure for the design of full-scale in situ aerobic cometabolic bioremediation processes is proposed.
Collapse
Affiliation(s)
- Dario Frascari
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Giulio Zanaroli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Anthony S Danko
- Geo-Environmental and Resources Research Center, Department of Mining Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; Centre for Natural Resources and the Environment (CERENA), Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
26
|
SmoXYB1C1Z of Mycobacterium sp. strain NBB4: a soluble methane monooxygenase (sMMO)-like enzyme, active on C2 to C4 alkanes and alkenes. Appl Environ Microbiol 2014; 80:5801-6. [PMID: 25015887 DOI: 10.1128/aem.01338-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monooxygenase (MO) enzymes initiate the aerobic oxidation of alkanes and alkenes in bacteria. A cluster of MO genes (smoXYB1C1Z) of thus-far-unknown function was found previously in the genomes of two Mycobacterium strains (NBB3 and NBB4) which grow on hydrocarbons. The predicted Smo enzymes have only moderate amino acid identity (30 to 60%) to their closest homologs, the soluble methane and butane MOs (sMMO and sBMO), and the smo gene cluster has a different organization from those of sMMO and sBMO. The smoXYB1C1Z genes of NBB4 were cloned into pMycoFos to make pSmo, which was transformed into Mycobacterium smegmatis mc(2)-155. Cells of mc(2)-155(pSmo) metabolized C2 to C4 alkanes, alkenes, and chlorinated hydrocarbons. The activities of mc(2)-155(pSmo) cells were 0.94, 0.57, 0.12, and 0.04 nmol/min/mg of protein with ethene, ethane, propane, and butane as substrates, respectively. The mc(2)-155(pSmo) cells made epoxides from ethene, propene, and 1-butene, confirming that Smo was an oxygenase. Epoxides were not produced from larger alkenes (1-octene and styrene). Vinyl chloride and 1,2-dichloroethane were biodegraded by cells expressing Smo, with production of inorganic chloride. This study shows that Smo is a functional oxygenase which is active against small hydrocarbons. M. smegmatis mc(2)-155(pSmo) provides a new model for studying sMMO-like monooxygenases.
Collapse
|
27
|
Liew EF, Tong D, Coleman NV, Holmes AJ. Mutagenesis of the hydrocarbon monooxygenase indicates a metal centre in subunit-C, and not subunit-B, is essential for copper-containing membrane monooxygenase activity. MICROBIOLOGY-SGM 2014; 160:1267-1277. [PMID: 24682027 DOI: 10.1099/mic.0.078584-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The hydrocarbon monooxygenase (HMO) of Mycobacterium NBB4 is a member of the copper-containing membrane monooxygenase (CuMMO) superfamily, which also contains particulate methane monooxygenases (pMMOs) and ammonia monooxygenases (AMOs). CuMMOs have broad applications due to their ability to catalyse the oxidation of difficult substrates of environmental and industrial relevance. Most of our understanding of CuMMO biochemistry is based on pMMOs and AMOs as models. All three available structures are from pMMOs. These share two metal sites: a dicopper centre coordinated by histidine residues in subunit-B and a 'variable-metal' site coordinated by carboxylate and histidine residues from subunit-C. The exact nature and role of these sites is strongly debated. Significant barriers to progress have been the physiologically specialized nature of methanotrophs and autotrophic ammonia-oxidizers, lack of a recombinant expression system for either enzyme and difficulty in purification of active protein. In this study we use the newly developed HMO model system to perform site-directed mutagenesis on the predicted metal-binding residues in the HmoB and HmoC of NBB4 HMO. All mutations of predicted HmoC metal centre ligands abolished enzyme activity. Mutation of a predicted copper-binding residue of HmoB (B-H155V) reduced activity by 81 %. Mutation of a site that shows conservation within physiologically defined subgroups of CuMMOs was shown to reduce relative HMO activity towards larger alkanes. The study demonstrates that the modelled dicopper site of subunit-B is not sufficient for HMO activity and that a metal centre predicted to be coordinated by residues in subunit-C is essential for activity.
Collapse
Affiliation(s)
- Elissa F Liew
- School of Molecular Bioscience, Building G08, University of Sydney, NSW 2006, Australia
| | - Daochen Tong
- School of Molecular Bioscience, Building G08, University of Sydney, NSW 2006, Australia
| | - Nicholas V Coleman
- School of Molecular Bioscience, Building G08, University of Sydney, NSW 2006, Australia
| | - Andrew J Holmes
- School of Molecular Bioscience, Building G08, University of Sydney, NSW 2006, Australia
| |
Collapse
|
28
|
Munro JE, Liew EF, Coleman NV. Adaptation of a membrane bioreactor to 1,2-dichloroethane revealed by 16S rDNA pyrosequencing and dhlA qPCR. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13668-13676. [PMID: 24175727 DOI: 10.1021/es403292s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A pilot-scale membrane bioreactor (MBR) was tested for bioremediation of 1,2-dichloroethane (DCA) in groundwater. Pyrosequencing of 16S rDNA was used to study changes in the microbiology of the MBR over 137 days, including a 67 day initial adaptation phase of increasing DCA concentration. The bacterial community in the MBR was distinct from those in soil and groundwater at the same site, and was dominated by alpha- and beta- proteobacteria, including Rhodobacter, Methylibium, Rhodopseudomonas, Methyloversatilis, Caldilinea, Thiobacillus, Azoarcus, Hyphomicrobium, and Leptothrix. Biodegradation of DCA in the MBR began after 26 days, and was sustained for the remainder of the experiment. A quantitative PCR (qPCR) assay for the dehalogenase gene dhlA was developed to monitor DCA-degrading bacteria in the MBR, and a positive correlation was seen between dhlA gene abundance and the cumulative amount of DCA that had entered the MBR. Genera previously associated with aerobic DCA biodegradation (Xanthobacter, Ancylobacter, Azoarcus) were present in the MBR, and the abundance of Azoarcus correlated well with dhlA gene abundance. This study shows that MBRs can be an effective method for removal of DCA from groundwater, and that the dhlA qPCR is a rapid and sensitive method for detection of DCA-degrading bacteria.
Collapse
Affiliation(s)
- Jacob E Munro
- School of Molecular Bioscience, Building G08, University of Sydney , Darlington, New South Wales, 2006, Australia
| | | | | |
Collapse
|
29
|
Nzila A. Update on the cometabolism of organic pollutants by bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 178:474-82. [PMID: 23570949 DOI: 10.1016/j.envpol.2013.03.042] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/17/2013] [Accepted: 03/19/2013] [Indexed: 05/20/2023]
Abstract
Each year, tons of various types of molecules pollute our environment, and their elimination is one of the major challenges human kind is facing. Among the strategies to eliminate these pollutants is their biodegradation by microorganisms. However, many pollutants cannot be used efficiently as growth substrates by microorganisms. Biodegradation of such molecules by cometabolism has been reported, which is the ability of a microorganism to biodegrade a pollutant without using it as a growth-substrate (non-growth-substrate), while sustaining its own growth by assimilating a different substrate (growth-substrate). This approach has been used in the field of bioremediation, however, its potential has not been fully exploited yet. This review summarises the work carried out on the cometabolism of important recalcitrant pollutants, and presents strategies that can be used to improve ways of identifying microorganisms that can cometabolise such recalcitrant pollutants.
Collapse
Affiliation(s)
- Alexis Nzila
- King Fahd University of Petroleum and Minerals, Department of Biology, PO Box 468, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
30
|
Fang H, Cai L, Yu Y, Zhang T. Metagenomic analysis reveals the prevalence of biodegradation genes for organic pollutants in activated sludge. BIORESOURCE TECHNOLOGY 2013; 129:209-18. [PMID: 23247148 DOI: 10.1016/j.biortech.2012.11.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/07/2012] [Accepted: 11/11/2012] [Indexed: 05/13/2023]
Abstract
The abundance, diversity, and distribution of biodegradation genes (BDGs) and phenol degradation genes (PDGs) in activated sludge (AS) from two wastewater treatment plants (WWTPs) at different sampling times were assessed by metagenomic analysis using a total of 15 datasets derived from Illumina high-throughput sequencing and BLAST comparisons to BDGs and PDGs databases. The results showed that the abundance (0.015-0.030%) and diversity of BDGs in AS varied with the WWTP and the sampling times. The p450 and pmo genes were the most abundant genes in the BDGs and PDGs subgroups, respectively. MG-RAST analysis revealed that 87 detected bacterial genera potentially capable of degrading pollutants were mostly affiliated with Proteobacteria (59.8%), Bacteroidetes (17.2%), and Actinobacteria (9.2%). Mycobacterium, belonging to Actinobacteria, was found to be the most abundant genus (23.4%). This method could be used to monitor an AS's biodegradation ability for organic pollutants and to evaluate its wastewater treatment efficiency.
Collapse
Affiliation(s)
- Hua Fang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR
| | | | | | | |
Collapse
|
31
|
Ly MA, Liew EF, Le NB, Coleman NV. Construction and evaluation of pMycoFos, a fosmid shuttle vector for Mycobacterium spp. with inducible gene expression and copy number control. J Microbiol Methods 2011; 86:320-6. [DOI: 10.1016/j.mimet.2011.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/01/2011] [Accepted: 06/05/2011] [Indexed: 11/29/2022]
|
32
|
Hydrocarbon monooxygenase in Mycobacterium: recombinant expression of a member of the ammonia monooxygenase superfamily. ISME JOURNAL 2011; 6:171-82. [PMID: 21796219 DOI: 10.1038/ismej.2011.98] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The copper membrane monooxygenases (CuMMOs) are an important group of enzymes in environmental science and biotechnology. Areas of relevance include the development of green chemistry for sustainable exploitation of methane (CH(4)) reserves, remediation of chlorinated hydrocarbon contamination and monitoring human impact in the biogeochemical cycles of CH(4) and nitrogen. Challenges for all these applications are that many aspects of the ecology, physiology and structure-function relationships in the CuMMOs are inadequately understood. Here, we describe genetic and physiological characterization of a novel member of the CuMMO family that has an unusual physiological substrate range (C(2)-C(4) alkanes) and a distinctive bacterial host (Mycobacterium). The Mycobacterial CuMMO genes (designated hmoCAB) were amenable to heterologous expression in M. smegmatis-this is the first example of recombinant expression of a complete and highly active CuMMO enzyme. The apparent specific activity of recombinant cells containing hmoCAB ranged from 2 to 3 nmol min(-1) per mg protein on ethane, propane and butane as substrates, and the recombinants could also attack ethene, cis-dichloroethene and 1,2-dichloroethane. No detectable activity of recombinants or wild-type strains was seen with methane. The specific inhibitor allylthiourea strongly inhibited growth of wild-type cells on C(2)-C(4) alkanes, and omission of copper from the medium had a similar effect, confirming the physiological role of the CuMMO for growth on alkanes. The hydrocarbon monooxygenase provides a new model for studying this important enzyme family, and the recombinant expression system will enable biochemical and molecular biological experiments (for example, site-directed mutagenesis) that were previously not possible.
Collapse
|