1
|
Xiong H, Zhou X, Cao Z, Xu A, Dong W, Jiang M. Microbial biofilms as a platform for diverse biocatalytic applications. BIORESOURCE TECHNOLOGY 2024; 411:131302. [PMID: 39173957 DOI: 10.1016/j.biortech.2024.131302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Microbial biofilms have gained significant traction in commercial wastewater treatment due to their inherent resilience, well-organized structure, and potential for collaborative metabolic processes. As our understanding of their physiology deepens, these living catalysts are finding exciting applications beyond wastewater treatment, including the production of bulk and fine chemicals, bioelectricity generation, and enzyme immobilization. While the biological applications of biofilms in different biocatalytic systems have been extensively summarized, the applications of artificially engineered biofilms were rarely discussed. This review aims to bridge this gap by highlighting the untapped potential of engineered microbial biofilms in diverse biocatalytic applications, with a focus on strategies for biofilms engineering. Strategies for engineering biofilm-based systems will be explored, including genetic modification, synthetic biology approaches, and targeted manipulation of biofilm formation processes. Finally, the review will address key challenges and future directions in developing robust biofilm-based biocatalytic platforms for large-scale production of chemicals, pharmaceuticals, and biofuels.
Collapse
Affiliation(s)
- Hongda Xiong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xinyu Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhanqing Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Anming Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Min Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
2
|
Suresh S, Ambily SKA, Chandran P. Plastic Debris in the Aquatic Environment: An Emerging Substratum for Antimicrobial Resistant (AMR) Biofilms. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:311-320. [PMID: 39244709 DOI: 10.1007/s00244-024-01086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
Plastic pollution has quadrupled over the past years and has become a global concern due to its direct impact on life forms. The present study analysed whether the plastic debris in aquatic environments could act as the substratum for the antimicrobial-resistant (AMR) bacteria to form biofilm for survival. We have collected various plastic debris (n = 32) from six sites of the Periyar River, the drinking water source for the entire city and one of the most polluted rivers in Kerala (India). The chemical composition of plastics was screened via FTIR analysis and found that they comprised two types, viz., polyethylene and polypropylene. Bacteria isolated from the samples were screened for the AMR characteristics towards eight different classes of antibiotics. All isolates showed 100% resistance towards colistin and obtained the MAR index value of 0.1-0.4 range. Six representative bacterial isolates with high multiple antibiotic resistance (MAR) index were selected and identified by 16sRNA sequencing as Lysinibacillus mangiferihumi, Bacillus pumilus, Bacillus safensis, Bacillus cereus, Bacillus altitudins and Bacillus pumilus. In vitro biofilm formation was experimented on the purchased plastic samples in artificial media and river water using two selected strains, Bacillus pumilus and Bacillus cereus. Significant variations were observed in biofilm growth in different media (P < 0.05) regardless of plastic types (P > 0.05). The extracellular polymeric substances (EPS) and the characteristic holes on the surface morphology were visualized in SEM analysis, thus indicating the conditioning of the plastics by the isolates for biofilm formation.
Collapse
Affiliation(s)
- Sneha Suresh
- School of Environmental Studies, Cochin University of Science and Technology, Kalamassery, Kochi, Kerala, India
| | - S K A Ambily
- School of Environmental Studies, Cochin University of Science and Technology, Kalamassery, Kochi, Kerala, India
| | - Preethy Chandran
- School of Environmental Studies, Cochin University of Science and Technology, Kalamassery, Kochi, Kerala, India.
| |
Collapse
|
3
|
Lancheros A, Cajamarca F, Guedes C, Brito O, Guimarães MDF. Exploring the potential of Canavalia ensiformis for phytoremediation of B10 biodiesel-contaminated soil: insights on aromatic compound degradation and soil fertility. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1854-1862. [PMID: 38804225 DOI: 10.1080/15226514.2024.2357646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The widespread use of petroleum-based fuels poses a significant environmental problem due to the risks associated with accidental spills. Among the treatments available, phytoremediation is increasingly accepted as an effective and low-cost solution. This study aimed to evaluate the degradation of the aromatic fraction of biodiesel B10 and the soil fertility analysis in artificially contaminated soils treated with phytoremediation. The experimental design consisted of a 3x3 factorial, with three types of soil treatment: control, autoclaved, and planted with C. ensiformis L, and three levels of B10 biodiesel contamination: 0, 1, and 2%, to simulate spills of 30,000 and 60,000 L ha-1. The soil was analyzed at three depths: 0-10, 10-20, and 20-30 cm. The results indicated that aromatic compound degradation after phytoremediation was superior to 92,76% and 88,65% for 1% and 2% B10 soil contamination, respectively. The fuel contamination affected soil fertility, reducing the availability of phosphorus and zinc while increasing the Total Organic Carbon (TOC), pH, and the availability of manganese and iron for plants.
Collapse
Affiliation(s)
- Andres Lancheros
- Postgraduate Program in Bioenergy, Exact Sciences Center, State University of Londrina (UEL), Londrina, Brazil
| | - Fabio Cajamarca
- Postgraduate Program in Bioenergy, Exact Sciences Center, State University of Londrina (UEL), Londrina, Brazil
- Chemistry Department, Pedagogical National University (UPN), Bogotá, Colombia
| | - Carmen Guedes
- Postgraduate Program in Bioenergy, Exact Sciences Center, State University of Londrina (UEL), Londrina, Brazil
- Chemistry Department, Exact Sciences Center, State University of Londrina (UEL), Londrina, Brazil
| | - Osmar Brito
- Department of Agronomy, Agricultural Sciences Center, State University of Londrina (UEL), Londrina, Brazil
| | - Maria de Fátima Guimarães
- Department of Agronomy, Agricultural Sciences Center, State University of Londrina (UEL), Londrina, Brazil
| |
Collapse
|
4
|
Bajelani S, Enayatizamir N, Agha ABA, Sharifi R. Potential of some microbial isolates on diesel hydrocarbons removal, bio surfactant production and biofilm formation. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:417-428. [PMID: 37869592 PMCID: PMC10584761 DOI: 10.1007/s40201-023-00868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/17/2023] [Indexed: 10/24/2023]
Abstract
Potential of Arthrobacter citreus B27Pet, Bacillus thuringiensis B48Pet and Candida catnulata to produce biosurfactant using four different carbon sources (naphthalene, hexadecane, diesel and petroleum crude oil) was investigated. Removal of petroleum crude oil from aqueous culture and degradation of diesel were also determined using single and mixed culture of strains. The biofilm existence in single and mixed culture of strains was considered using naphthalene, hexadecane and diesel in culture medium. Cell surface hydrophobicity of A. citreus was higher than other isolates which also showed maximum surface tension reduction and emulsification index. As a whole, remarkable biosurfactant production occurred using petroleum crude oil as a carbon source in medium. A. citreus was found to be more robust than other tested strains in removal efficiency of crude oil due to its biosurfactant production capability. Statistically significant positive correlation was observed between biofilm existence and surface tension using diesel and hexadecane as carbon source. Overall diesel biodegradation efficiency by the mix culture of three applied strains was about 75% within a short period of time (10 days) which was accompanied with high biofilm production.
Collapse
Affiliation(s)
- Sara Bajelani
- Department of Soil Science and Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Naeimeh Enayatizamir
- Department of Soil Science and Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ali Beheshti Ale Agha
- Department of Soil Science, Faculty of Agriculture, Razi University, Kermanshah, Iran
| | - Rouhallah Sharifi
- Department of Plant Protection, Faculty of Agriculture, Razi University, Kermanshah, Iran
| |
Collapse
|
5
|
Fungal bioproducts for petroleum hydrocarbons and toxic metals remediation: recent advances and emerging technologies. Bioprocess Biosyst Eng 2023; 46:393-428. [PMID: 35943595 DOI: 10.1007/s00449-022-02763-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/22/2022] [Indexed: 11/02/2022]
Abstract
Petroleum hydrocarbons and toxic metals are sources of environmental contamination and are harmful to all ecosystems. Fungi have metabolic and morphological plasticity that turn them into potential prototypes for technological development in biological remediation of these contaminants due to their ability to interact with a specific contaminant and/or produced metabolites. Although fungal bioinoculants producing enzymes, biosurfactants, polymers, pigments and organic acids have potential to be protagonists in mycoremediation of hydrocarbons and toxic metals, they can still be only adjuvants together with bacteria, microalgae, plants or animals in such processes. However, the sudden accelerated development of emerging technologies related to the use of potential fungal bioproducts such as bioinoculants, enzymes and biosurfactants in the remediation of these contaminants, has boosted fungal bioprocesses to achieve higher performance and possible real application. In this review, we explore scientific and technological advances in bioprocesses related to the production and/or application of these potential fungal bioproducts when used in remediation of hydrocarbons and toxic metals from an integral perspective of biotechnological process development. In turn, it sheds light to overcome existing technological limitations or enable new experimental designs in the remediation of these and other emerging contaminants.
Collapse
|
6
|
Su Q, Yu J, Fang K, Dong P, Li Z, Zhang W, Liu M, Xiang L, Cai J. Microbial Removal of Petroleum Hydrocarbons from Contaminated Soil under Arsenic Stress. TOXICS 2023; 11:toxics11020143. [PMID: 36851017 PMCID: PMC9962243 DOI: 10.3390/toxics11020143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 06/12/2023]
Abstract
The contamination of soils with petroleum and its derivatives is a longstanding, widespread, and worsening environmental issue. However, efforts to remediate petroleum hydrocarbon-polluted soils often neglect or overlook the interference of heavy metals that often co-contaminate these soils and occur in petroleum itself. Here, we identified Acinetobacter baumannii strain JYZ-03 according to its Gram staining, oxidase reaction, biochemical tests, and FAME and 16S rDNA gene sequence analyses and determined that it has the ability to degrade petroleum hydrocarbons. It was isolated from soil contaminated by both heavy metals and petroleum hydrocarbons. Strain JYZ-03 utilized diesel oil, long-chain n-alkanes, branched alkanes, and polycyclic aromatic hydrocarbons (PAHs) as its sole carbon sources. It degraded 93.29% of the diesel oil burden in 7 days. It also had a high tolerance to heavy metal stress caused by arsenic (As). Its petroleum hydrocarbon degradation efficiency remained constant over the 0-300 mg/L As(V) range. Its optimal growth conditions were pH 7.0 and 25-30 °C, respectively, and its growth was not inhibited even by 3.0% (w/v) NaCl. Strain JYZ-03 effectively bioremediates petroleum hydrocarbon-contaminated soil in the presence of As stress. Therefore, strain JYZ-03 may be of high value in petroleum- and heavy-metal-contaminated site bioremediation.
Collapse
Affiliation(s)
- Qu Su
- Hubei Provincial Academy of Eco-EnvironmentSal Science, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Jiang Yu
- Hubei Provincial Academy of Eco-EnvironmentSal Science, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
- Institute of Advanced Studies, China University of Geosciences, Wuhan 430079, China
| | - Kaiqin Fang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
- Huazhong Agricultural University, Wuhan 430070, China
| | - Panyue Dong
- Hubei Provincial Academy of Eco-EnvironmentSal Science, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Zheyong Li
- Hubei Provincial Academy of Eco-EnvironmentSal Science, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Wuzhu Zhang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
- Huazhong Agricultural University, Wuhan 430070, China
| | - Manxia Liu
- Hubei Provincial Academy of Eco-EnvironmentSal Science, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Luojing Xiang
- Hubei Provincial Academy of Eco-EnvironmentSal Science, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| | - Junxiong Cai
- Hubei Provincial Academy of Eco-EnvironmentSal Science, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China
| |
Collapse
|
7
|
Ravi A, Ravuri M, Krishnan R, Narenkumar J, Anu K, Alsalhi MS, Devanesan S, Kamala-Kannan S, Rajasekar A. Characterization of petroleum degrading bacteria and its optimization conditions on effective utilization of petroleum hydrocarbons. Microbiol Res 2022; 265:127184. [PMID: 36115172 DOI: 10.1016/j.micres.2022.127184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/27/2022]
Abstract
Hydrocarbon contamination is continuing to be a serious environmental problem because of their toxicity. Hydrocarbon components have been known to be carcinogens and neurotoxic organic pollutants. The physical and chemical methods of petroleum removal have become ineffective and also are very costly. Therefore, bioremediation is considered the promising technology for the treatment of these contaminated sites since it is cost-effective and will lead to complete mineralization.The current study also concentrates on bioremediation of petroleum products by bacterium isolated from petroleum hydrocarbon contaminated soil. The current work shows that bacterial strains obtained from a petroleum hydrocarbon contaminated environment may degrade petroleum compounds. Two strains Bacillus licheniformis ARMP2 and Pseudomonas aeruginosa ARMP8 were identified as petroleum-degrading bacteria of the isolated bacterial colonies. The best growth conditions for the ARMP2 strain were determined to be pH 9, temperature 29 °C with sodium nitrate as its nitrogen source, whereas for the ARMP8 strain the optimal growth was found at pH 7, temperature 39 °C, and ammonium chloride as the nitrogen source. Both strains were shown to be effective at degrading petroleum chemicals confirmed by GCMS. Overall petroleum product degradation efficiency of the strains ARMP2 and ARMP8 was about 88 % and 73 % respectively in 48 h.The strains Bacillus licheniformis ARMP2 and Pseudomonas aeruginosa ARMP8 were shown to be effective at degrading petroleum compounds in the current study. Even greater results might be obtained if the organisms were utilised in consortia or the degradation time period was extended.
Collapse
Affiliation(s)
- Ashwini Ravi
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous), Chennai, Tamilnadu 600106, India.
| | - Mounesh Ravuri
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous), Chennai, Tamilnadu 600106, India
| | - Ramkishore Krishnan
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous), Chennai, Tamilnadu 600106, India
| | - Jayaraman Narenkumar
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu 600073, India
| | - Kasi Anu
- PG and Research Department of Zoology, Auxilium College for Women (Autonomous), Gandhinagar, Vellore, Tamilnadu 632007, India
| | - Mohamad S Alsalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia.
| | - Seralathan Kamala-Kannan
- Division of Biotechnology Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Science, Jeonbuk National University, Iksan 54596, South Korea
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu 632115, India.
| |
Collapse
|
8
|
Jakovljević VD, Radojević ID, Grujić SM, Ostojić AM. Response of selected microbial strains and their consortia to the presence of automobile paints: Biofilm growth, matrix protein content and hydrolytic enzyme activity. Saudi J Biol Sci 2022; 29:103347. [PMID: 35800142 PMCID: PMC9253408 DOI: 10.1016/j.sjbs.2022.103347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
The goal of the current study was to examine the effects of pollutants (White color – CP; Metallic red color – FM; Thinner – CN; Thinner for rinsing paint – MF; Basic color (primer) – FH) originating from the automotive industry on the biofilm growth, matrix protein content, and activity of the hydrolytic enzymes of selected microbial strains in laboratory conditions that mimic the bioreactor conditions. The chosen microorganisms (bacteria, yeasts, and fungi) were isolated from automotive industry wastewater. Pure microbe cultures and their consortia were injected into AMB Media carriers and developed into biofilms. The use of AMB media carriers has been linked to an increase in the active surface area colonized by microorganisms. Afterwards, the carriers were transferred to Erlenmeyer flasks with nutrient media and pollutants at a concentration of 200 μL/mL. The current study found that, depending on the microbial strain, development phase, and chemical structure, the assessed pollutants had an inhibitory or stimulatory influence on the growth of single cultures and their consortia. Statistical analysis found positive correlations between the protein content in the matrix and the biofilm biomass of Rhodotorula mucilaginosa and consortia in CP and FH media, respectively. The proteolytic activity of Candida utilis was very pronounced in media with MF and CN. The best alkaline phosphatase activity (ALP) was achieved in the CN medium of R. mucilaginosa. Acid invertase activity was the highest in the FM and CP media of Escherichia coli and consortia, respectively, whereas the highest alkaline invertase activity was measured in the MF medium of E. coli. A positive correlation was confirmed between ALP and the biofilm biomass of R. mucilaginosa in CP and CN media, as well as between ALP and the biofilm biomass of Penicillium expansum in FM medium. The findings provide novel insights into the extracellular hydrolytic activity of the investigated microbial strains in the presence of auto paints, as well as a good platform for subsequent research into comprehensive biofilm profiling using modern methodologies.
Collapse
Affiliation(s)
- Violeta D. Jakovljević
- Department for Science and Mathematics, State University of Novi Pazar, Vuka Karadžića 9, 36300 Novi Pazar, Serbia
- Corresponding author at: Department of Science and Mathematics, State University of Novi Pazar, Vuka Karadžića 9, 36300 Novi Pazar, Serbia.
| | - Ivana D. Radojević
- Institute for Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Sandra M. Grujić
- Institute for Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Aleksandar M. Ostojić
- Institute for Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
9
|
Integrated bioinformatics, modelling, and gene expression analysis of the putative pentose transporter from Candida tropicalis during xylose fermentation with and without glucose addition. Appl Microbiol Biotechnol 2022; 106:4587-4606. [PMID: 35708749 DOI: 10.1007/s00253-022-12005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
The transport of substrates across the cell membrane plays an essential role in nutrient assimilation by yeasts. The establishment of an efficient microbial cell factory, based on the maximum use of available carbon sources, can generate new technologies that allow the full use of lignocellulosic constituents. These technologies are of interest because they could promote the formation of added-value products with economic feasibility. In silico analyses were performed to investigate gene sequences capable of encoding xylose transporter proteins in the Candida tropicalis genome. The current study identified 11 putative transport proteins that have not yet been functionally characterized. A phylogenetic tree highlighted the potential C. tropicalis xylose-transporter proteins CtXUT1, CtXUT4, CtSTL1, CtSTL2, and CtGXT2, which were homologous to previously characterized and reported xylose transporters. Their expression was quantified through real-time qPCR at defined times, determined through a kinetic analysis of the microbial growth curve in the absence/presence of glucose supplemented with xylose as the main carbon source. The results indicated different mRNA expression levels for each gene. CtXUT1 mRNA expression was only found in the absence of glucose in the medium. Maximum CtXUT1 expression was observed in intervals of the highest xylose consumption (21 to 36 h) that corresponded to consumption rates of 1.02 and 0.82 g/L/h in the formulated media, with xylose as the only carbon source and with glucose addition. These observations indicate that CtXUT1 is an important xylose transporter in C. tropicalis. KEY POINTS: • Putative xylose transporter proteins were identified in Candida tropicalis; • The glucose concentration in the cultivation medium plays a key role in xylose transporter regulation; • The transporter gene CtXUT1 has an important role in xylose consumption by Candida tropicalis.
Collapse
|
10
|
John EM, Sreekumar J, Jisha MS. Remediation of chlorpyrifos in soil using immobilized bacterial consortium biostimulated with organic amendment. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2085033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | - J. Sreekumar
- Central Tuber Crops Research Institute (ICAR), Thiruvananthapuram, India
| | - M. S. Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, India
| |
Collapse
|
11
|
Nassar HN, Rabie AM, Abu Amr SS, El-Gendy NS. Kinetic and statistical perspectives on the interactive effects of recalcitrant polyaromatic and sulfur heterocyclic compounds and in-vitro nanobioremediation of oily marine sediment at microcosm level. ENVIRONMENTAL RESEARCH 2022; 209:112768. [PMID: 35085558 DOI: 10.1016/j.envres.2022.112768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
A halotolerant biosurfactant producer Pseudomonas aeruginosa strain NSH3 (NCBI Gene Bank Accession No. MN149622) was isolated to degrade high concentrations of recalcitrant polyaromatic hydrocarbons (PAHs) and polyaromatic heterocyclic sulfur compounds (PASHs). In biphasic batch bioreactors, the biodegradation and biosurfactant-production activities of NSH3 have been significantly enhanced (p < 0.0001) by its decoration with eco-friendly prepared magnetite nanoparticles (MNPs). On an artificially contaminated sediment microcosm level, regression modeling and statistical analysis based on a 23 full factorial design of experiments were trendily applied to provide insights into the interactive impacts of such pollutants. MNPs-coated NSH3 were also innovatively applied for nanobioremediation (NBR) of in-vitro diesel oil-polluted sediment microcosms. Gravimetric, chromatographic, and microbial respiratory analyses proved the significantly enhanced biodegradation capabilities of MNPs-coated NSH3 (p < 0.001) and the complete mineralization of various recalcitrant diesel oil components. Kinetic analyses showed that the biodegradation of iso- and n-alkanes was best fitted with a second-order kinetic model equation. Nevertheless, PAHs and PASHs in biphasic batch bioreactors and sediment microcosms followed the first-order kinetic model equation. Sustainable NBR overcome the toxicity of low molecular weight hydrocarbons, mass transfer limitation, and steric hindrance of hydrophobic recalcitrant high molecular weight hydrocarbons and alkylated polyaromatic compounds.
Collapse
Affiliation(s)
- Hussein N Nassar
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO, 11727, Egypt; Center of Excellence, October University for Modern Sciences and Arts (MSA), 6(th) of October City, Giza, PO, 12566, Egypt
| | - Abdelrahman M Rabie
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO, 11727, Egypt
| | - Salem S Abu Amr
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Karabuk University, Demir Campus, Karabuk, PO, 78050, Turkey
| | - Nour Sh El-Gendy
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO, 11727, Egypt; Center of Excellence, October University for Modern Sciences and Arts (MSA), 6(th) of October City, Giza, PO, 12566, Egypt.
| |
Collapse
|
12
|
Romo-Enríquez NP, Ignacio de la Cruz JL, Villegas-Moreno J, Sánchez-Yáñez JM. Saccharomyces exiguus utiliza queroseno como fuente de carbono y energía. JOURNAL OF THE SELVA ANDINA RESEARCH SOCIETY 2022. [DOI: 10.36610/j.jsars.2022.130100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Characterization of Dietzia maris AURCCBT01 from oil-contaminated soil for biodegradation of crude oil. 3 Biotech 2021; 11:291. [PMID: 34109094 DOI: 10.1007/s13205-021-02807-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/22/2021] [Indexed: 10/21/2022] Open
Abstract
A bacterial strain was isolated from an oil-contaminated site and on its' further characterization, exhibited the potential of synthesising metabolites and the ability to degrade crude oil. Its' morphological, biochemical and 16S rRNA analysis suggested that the bacterium belongs to Dietzia maris AURCCBT01. This strain rapidly grew in the medium supplemented with n-alkanes C14, C18, C20, C28 and C32 utilizing them as a sole carbon source and produced a maximum canthaxanthin pigment of 971.37 µg/L in the n-C14 supplemented medium and produced the lowest pigment yield of 389.48 µg/L in the n-C-32 supplemented medium. Moreover, the strain effectively degraded 91.87% of crude oil in 7 days. The emulsification activity of the strain was 25% with the highest cell surface hydrophobicity (70.26%) and it showed a decrease in surface tension, indicating that the biosurfactant production lowers the surface tension. This is the first report on the characterization of the strain, Dietzia maris AURCCBT01 and its' novelty of alkane degradation and simultaneous production of canthaxanthin pigment. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02807-7.
Collapse
|
14
|
Vaishnavi J, Devanesan S, AlSalhi MS, Rajasekar A, Selvi A, Srinivasan P, Govarthanan M. Biosurfactant mediated bioelectrokinetic remediation of diesel contaminated environment. CHEMOSPHERE 2021; 264:128377. [PMID: 33017706 DOI: 10.1016/j.chemosphere.2020.128377] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The present study integrated the electrokinetic (EK) with bioremediation (Bioelectrokinetic -BEK) of diesel hydrocarbon by Staphylococcus epidermidis EVR4. It was identified as efficient biosurfactant producing bacteria and growth parameters was optimized using response surface methodology. Upon degradation, there is a complete disappearance of peaks from nonane (C9) to tricosane (C23) and 85%, 47% of degradation of pentacosane and octacosane respectively. Marine bacterial strain, EVR4 was found to be potential to degrade the diesel with a maximum degradation efficiency of 96% within 4 d, which was due to its synergistic role of biosurfactant and catabolic enzymes (dehydrogenase, catalase and cytochrome C). The application of integrated BEK was an effective insitu method for the remediation of diesel contaminated soil by BEK (84%) than EK (67%). EVR4 as an effective strain can be employed for BIO-EK method to clean the diesel hydrocarbon polluted environment.
Collapse
Affiliation(s)
- Jeevanandam Vaishnavi
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore, 632115, Tamilnadu, India
| | - Sandhanasamy Devanesan
- Research Chair in Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh KSA, P.O. Box -2455, Riyadh, 11451, Saudi Arabia
| | - Mohamad S AlSalhi
- Research Chair in Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh KSA, P.O. Box -2455, Riyadh, 11451, Saudi Arabia.
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore, 632115, Tamilnadu, India.
| | - Adikesavan Selvi
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore, 632115, Tamilnadu, India
| | - Palanisamy Srinivasan
- PG & Research Department of Biotechnology, Mahendra Arts and Science College, Kalipatti, 637501, Tamil Nadu, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
15
|
Dash DM, Osborne WJ. Rapid biodegradation and biofilm-mediated bioremoval of organophosphorus pesticides using an indigenous Kosakonia oryzae strain -VITPSCQ3 in a Vertical-flow Packed Bed Biofilm Bioreactor. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110290. [PMID: 32058164 DOI: 10.1016/j.ecoenv.2020.110290] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
The widespread use of pesticides has been one of the major anthropogenic sources of environmental pollution. Organophosphorus (OP) pesticides are predominantly used in agriculture due to their broad-spectrum insecticidal activity and chemical stability. The study was focused on the biodegradation of OP pesticides, Profenofos (PF) and Quinalphos (QP) in culture media using bacterium isolated from wetland paddy rhizosphere. The strain VITPSCQ3 showed higher pesticide tolerance, efficient biofilm formation and was capable of synthesizing organophosphate degrading enzymes. Based on the 16S rRNA gene sequencing the isolate exhibited maximum sequence similarity with Kosakinia oryzae (GenBank accession number: KR149275). Biodegradation assay with various concentrations of PF and QP (200, 400, 600 and 800 mg L-1) showed maximum degradation up to 82% and 92% within 48 h. The kinetic studies revealed the biodegradation rates (k) to be 0.0844 min-1 and 0.107 min-1 with half-lives (h) of 18 h and 14.8 h for PF and QP. The degradation products were identified by GCMS and possible degradation pathways were proposed using Insilico techniques. To the best of our knowledge, this is the first report on the biodegradation of PF and QP using Kosakonia oryzae. Bioremoval of PF and QP from aqueous solution was performed using the biofilm of VITPSCQ3 developed on selected substrates in a circulating Vertical-flow packed-bed biofilm (VFPBB) bioreactor. Charcoal, gravel and mushroom (Agaricus bisporus) were used as biofilm carriers. Mushroom showed strong biofilm formation with optimum biodegradation capacity of up to 96% for PF and 92% for QP within 120 min reaction time.
Collapse
Affiliation(s)
- Dipti Mayee Dash
- Department of Bioscience, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - W Jabez Osborne
- Department of Bioscience, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
16
|
Biodegradation and Absorption Technology for Hydrocarbon-Polluted Water Treatment. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Wastewaters polluted with hydrocarbons are an environmental problem that has a significant impact on the natural ecosystem and on human health. Thus, the aim of this research was to develop a bioreactor sorbent technology for treating these polluted waters. A lab-scale plant composed of three 1-L bioreactors with different sorbent materials inside (meltblown polypropylene and granulated cork) was built. Wastewater to be treated was recirculated through each bioreactor for 7 days. Results showed that hydrocarbon retention rates in the three bioreactors ranged between 92.6% and 94.5% of total petroleum hydrocarbons (TPHs) and that after one simple recirculation cycle, no hydrocarbon fractions were detected by gas chromatography/Mass Spectrometry (GC/MS) in the effluent wastewater. In addition, after the wastewater treatment, the sorbent materials were extracted from the bioreactors and deposited in vessels to study the biodegradation of the retained hydrocarbons by the wastewater indigenous microbiota adhered to sorbents during the wastewater treatment. A TPH removal of 41.2% was detected after one month of Pad Sentec™ carrier treatment. Further, the shifts detected in the percentages of some hydrocarbon fractions suggested that biodegradation is at least partially involved in the hydrocarbon removal process. These results proved the efficiency of this technology for the treatment of these hydrocarbon-polluted-waters.
Collapse
|
17
|
Muter O, Khroustalyova G, Rimkus A, Kalderis D, Ruchala J, Sibirny A, Rapoport A. Evaluation of the enhanced resistance of Ogataea (Hansenula) polymorpha to benzalkonium chloride as a resource for bioremediation technologies. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
|
19
|
Ganesh Kumar A, Nivedha Rajan N, Kirubagaran R, Dharani G. Biodegradation of crude oil using self-immobilized hydrocarbonoclastic deep sea bacterial consortium. MARINE POLLUTION BULLETIN 2019; 146:741-750. [PMID: 31426216 DOI: 10.1016/j.marpolbul.2019.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 05/14/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
Hydrocarbonoclastic bacterial consortium that utilizes crude oil as carbon and energy source was isolated from marine sediment collected at a depth of 2100 m. Molecular characterization by 16S rRNA gene sequences confirmed that these isolates as Oceanobacillus sp., Nesiotobacter sp., Ruegeria sp., Photobacterium sp., Enterobacter sp., Haererehalobacter sp., Exiguobacterium sp., Acinetobacter sp. and Pseudoalteromonas sp. Self-immobilized consortium degraded more than 85% of total hydrocarbons after 10 days of incubation with 1% (v/v) of crude oil and 0.05% (v/v) of Tween 80 (non-ionic surfactant) at 28 ± 2 °C. The addition of nitrogen and phosphorus sources separately i.e. 0.1% (v/v) of CO (NH2)2 or K2HPO4 enhanced the hydrocarbon utilization percentage. The pathways of microbial degradation of hydrocarbons were confirmed by FTIR, GC-MS, 1H and 13C NMR spectroscopy analyses. These results demonstrated a novel approach using hydrocarbonoclastic self-immobilized deep sea bacterial consortium for eco-friendly bioremediation.
Collapse
Affiliation(s)
- A Ganesh Kumar
- Marine Biotechnology Division, Earth System Science Organization - National Institute of Ocean Technology (ESSO - NIOT), Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai 600100, India
| | - N Nivedha Rajan
- Marine Biotechnology Division, Earth System Science Organization - National Institute of Ocean Technology (ESSO - NIOT), Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai 600100, India
| | - R Kirubagaran
- Marine Biotechnology Division, Earth System Science Organization - National Institute of Ocean Technology (ESSO - NIOT), Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai 600100, India
| | - G Dharani
- Marine Biotechnology Division, Earth System Science Organization - National Institute of Ocean Technology (ESSO - NIOT), Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai 600100, India.
| |
Collapse
|
20
|
Ostendorf TA, Silva IA, Converti A, Sarubbo LA. Production and formulation of a new low-cost biosurfactant to remediate oil-contaminated seawater. J Biotechnol 2019; 295:71-79. [DOI: 10.1016/j.jbiotec.2019.01.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
|
21
|
Khashei S, Etemadifar Z, Rahmani HR. Immobilization of Pseudomonas putida PT in resistant matrices to environmental stresses: a strategy for continuous removal of heavy metals under extreme conditions. ANN MICROBIOL 2018; 68:931-942. [DOI: 10.1007/s13213-018-1402-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/01/2018] [Indexed: 10/27/2022] Open
|
22
|
Zhang Y, Gao W, Lin F, Han B, He C, Li Q, Gao X, Cui Z, Sun C, Zheng L. Study on immobilization of marine oil-degrading bacteria by carrier of algae materials. World J Microbiol Biotechnol 2018; 34:70. [PMID: 29777442 DOI: 10.1007/s11274-018-2438-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 03/22/2018] [Indexed: 11/24/2022]
Abstract
This study investigated the immobilizations with of bacteria two kinds of algal materials, Enteromorpha residue and kelp residue. The lipophilicity of them were compared by diesel absorption rates. The immobilization efficiency of Bacillus sp. E3 was measured to evaluate whether these carriers would satisfy the requirement for biodegradation of oil spills. The bacteria were immobilized through adsorption with the sterilized and non-sterilized carriers to compare the differences between the two treatments. Oil degradation rates were determined using gravimetric and GC-MS methods. Results showed the absorption rates of Enteromorpha residue and kelp residue for diesel were 411 and 273% respectively and remained approximately 105 and 120% after 2 h of erosion in simulated seawater system. After immobilized of Bacillus sp. E3, the oil degradation rates of them were higher than 65% after 21 days biodegradations. GC-MS analysis showed that two immobilizations degraded higher than 70% of the total alkane and the total PAHs, whereas the free bacteria degraded 63% of the total alkane and 66% the total PAHs. And the bacteria immobilized with the carriers degraded more HMW-alkanes and HMW-PAHs than the free bacteria. The bacteria immobilized by non-sterilized kelp residue showed a considerably higher degradation rate than that using sterilized kelp residue. A considerably higher cells absorption rate of immobilization was obtained when using kelp residue, and the preparation of immobilization was low cost and highly efficient. The experiments show the two algae materials, especially the kelp residue, present potential application in bioremediation of marine oil spills.
Collapse
Affiliation(s)
- Yiran Zhang
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology of the First Institute of Oceanography, State Oceanic Administration of China, Qingdao, China
| | - Wei Gao
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology of the First Institute of Oceanography, State Oceanic Administration of China, Qingdao, China
- College of Marine Life, Ocean University of China, Qingdao, China
| | - Faxiang Lin
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology of the First Institute of Oceanography, State Oceanic Administration of China, Qingdao, China
- College of Chemical, Qingdao University of Science and Technology, Qingdao, China
| | - Bin Han
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology of the First Institute of Oceanography, State Oceanic Administration of China, Qingdao, China
| | - Changfei He
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology of the First Institute of Oceanography, State Oceanic Administration of China, Qingdao, China
| | - Qian Li
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology of the First Institute of Oceanography, State Oceanic Administration of China, Qingdao, China
| | - Xiangxing Gao
- National Deep Sea Base Management Center, Qingdao, China
| | - Zhisong Cui
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology of the First Institute of Oceanography, State Oceanic Administration of China, Qingdao, China
| | - Chengjun Sun
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology of the First Institute of Oceanography, State Oceanic Administration of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Li Zheng
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology of the First Institute of Oceanography, State Oceanic Administration of China, Qingdao, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
23
|
Defosse TA, Le Govic Y, Courdavault V, Clastre M, Vandeputte P, Chabasse D, Bouchara JP, Giglioli-Guivarc'h N, Papon N. [Yeasts from the CTG clade (Candida clade): Biology, impact in human health, and biotechnological applications]. J Mycol Med 2018; 28:257-268. [PMID: 29545121 DOI: 10.1016/j.mycmed.2018.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 11/29/2022]
Abstract
Among the subdivision of Saccharomycotina (ascomycetes budding yeasts), the CTG clade (formerly the Candida clade) includes species that display a particular genetic code. In these yeasts, the CTG codon is predominantly translated as a serine instead of a leucine residue. It is now well-known that some CTG clade species have a major impact on human and its activities. Some of them are recognized as opportunistic agents of fungal infections termed candidiasis. In addition, another series of species belonging to the CTG clade draws the attention of some research groups because they exhibit a strong potential in various areas of biotechnology such as biological control, bioremediation, but also in the production of valuable biocompounds (biofuel, vitamins, sweeteners, industrial enzymes). Here we provide an overview of recent advances concerning the biology, clinical relevance, and currently tested biotechnological applications of species of the CTG clade. Future directions for scientific research on these particular yeasts are also discussed.
Collapse
Affiliation(s)
- T A Defosse
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France; EA 2106, université de Tours, biomolécules et biotechnologies végétales, Tours, France
| | - Y Le Govic
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France; Laboratoire de parasitologie - mycologie, centre hospitalier universitaire d'Angers, Angers, France
| | - V Courdavault
- EA 2106, université de Tours, biomolécules et biotechnologies végétales, Tours, France
| | - M Clastre
- EA 2106, université de Tours, biomolécules et biotechnologies végétales, Tours, France
| | - P Vandeputte
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France; Laboratoire de parasitologie - mycologie, centre hospitalier universitaire d'Angers, Angers, France
| | - D Chabasse
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France; Laboratoire de parasitologie - mycologie, centre hospitalier universitaire d'Angers, Angers, France
| | - J-P Bouchara
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France; Laboratoire de parasitologie - mycologie, centre hospitalier universitaire d'Angers, Angers, France
| | - N Giglioli-Guivarc'h
- EA 2106, université de Tours, biomolécules et biotechnologies végétales, Tours, France
| | - N Papon
- Groupe d'étude des interactions Hôte-Pathogène (EA 3142), SFR interactions cellulaires et applications thérapeutiques, université d'Angers, 49933 Angers, France.
| |
Collapse
|
24
|
Prakash J, Gupta RK, Xx P, Kalia VC. Bioprocessing of Biodiesel Industry Effluent by Immobilized Bacteria to Produce Value-Added Products. Appl Biochem Biotechnol 2017; 185:179-190. [PMID: 29101733 DOI: 10.1007/s12010-017-2637-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/16/2017] [Indexed: 12/28/2022]
Abstract
Biodiesel industrial effluent rich in crude glycerol (CG) was processed to produce value-added product. Under continuous culture system, Bacillus amyloliquefaciens strain CD16 immobilized within its biofilm, produced 3.2 L H2/day/L feed, over a period of 60 days at a hydraulic retention time of 2 days. The effective H2 yield by B. amyloliquefaciens strain CD16 was 165 L/L CG. This H2 yield was 1.18-fold higher than that observed with non-biofilm forming Bacillus thuringiensis strain EGU45. Bioprocessing of the effluent released after this stage, by recycling it up to 25% did not have any adverse effect on H2 production by strain EGU45; however, a 25% reduction in yield was recorded with strain CD16. Biofilm forming H2 producers thus proved effective as self-immobilizing system leading to enhanced process efficiency.
Collapse
Affiliation(s)
- Jyotsana Prakash
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007, India. .,Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001, India.
| | - Rahul Kumar Gupta
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007, India
| | - Priyanka Xx
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001, India
| | - Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001, India
| |
Collapse
|
25
|
Borowik A, Wyszkowska J, Wyszkowski M. Resistance of aerobic microorganisms and soil enzyme response to soil contamination with Ekodiesel Ultra fuel. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24346-24363. [PMID: 28890995 PMCID: PMC5655587 DOI: 10.1007/s11356-017-0076-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/01/2017] [Indexed: 05/04/2023]
Abstract
This study determined the susceptibility of cultured soil microorganisms to the effects of Ekodiesel Ultra fuel (DO), to the enzymatic activity of soil and to soil contamination with PAHs. Studies into the effects of any type of oil products on reactions taking place in soil are necessary as particular fuels not only differ in the chemical composition of oil products but also in the composition of various fuel improvers and antimicrobial fuel additives. The subjects of the study included loamy sand and sandy loam which, in their natural state, have been classified into the soil subtype 3.1.1 Endocalcaric Cambisols. The soil was contaminated with the DO in amounts of 0, 5 and 10 cm3 kg-1. Differences were noted in the resistance of particular groups or genera of microorganisms to DO contamination in loamy sand (LS) and sandy loam (SL). In loamy sand and sandy loam, the most resistant microorganisms were oligotrophic spore-forming bacteria. The resistance of microorganisms to DO contamination was greater in LS than in SL. It decreased with the duration of exposure of microorganisms to the effects of DO. The factor of impact (IFDO) on the activity of particular enzymes varied. For dehydrogenases, urease, arylsulphatase and β-glucosidase, it had negative values, while for catalase, it had positive values and was close to 0 for acid phosphatase and alkaline phosphatase. However, in both soils, the noted index of biochemical activity of soil (BA) decreased with the increase in DO contamination. In addition, a positive correlation occurred between the degree of soil contamination and its PAH content.
Collapse
Affiliation(s)
- Agata Borowik
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Mirosław Wyszkowski
- Department of Environmental Chemistry, University of Warmia and Mazury in Olsztyn, Plac Łódzki 4, 10-727 Olsztyn, Poland
| |
Collapse
|
26
|
Delgadillo-Ordoñez NC, Posada-Suárez LR, Marcelo E, Cepeda-Hernández ML, Sánchez-Nieves J. Aislamiento e identificación de levaduras degradadoras de hidrocarburos aromáticos, presentes en tanques de gasolina de vehículos urbanos. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2017. [DOI: 10.15446/rev.colomb.biote.v19n2.70278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Se obtuvieron aislamientos de levaduras a partir de muestreos en tanques de combustible de vehículos urbanos, con el objeto de evaluar su potencial actividad de degradación de hidrocarburos aromáticos derivados del petróleo. Se realizaron ensayos de crecimiento en medio mínimo mineral sólido utilizando distintos hidrocarburos (benceno, tolueno, naftaleno, fenantreno, y pireno). Los aislamientos que presentaron crecimiento notorio en alguno de los hidrocarburos aromáticos policíclicos fueron identificados mediante secuenciación Sanger de los marcadores moleculares ITS1 e ITS2 del ARNr. Se obtuvieron 16 aislados de levaduras, de las cuales tres presentaron crecimiento conspicuo con hidrocarburos aromáticos como única fuente de carbono. Las cepas identificadas pertenecen al género Rhodotorula y corresponden a las especies Rhodotorula calyptogenae (99,8% de identidad) y Rhodotorula dairenensis (99,8% de identidad). Dichas cepas presentaron crecimiento en benceno, tolueno, naftaleno, fenantreno. En este estudio se reporta por primera vez la presencia de levaduras del género Rhodotorula que habitan los ductos y tanques de gasolina de vehículos urbanos, así como su capacidad para utilizar distintos hidrocarburos aromáticos que son contaminantes para el medio ambiente. Estos resultados sugieren que dichas levaduras constituyen potenciales candidatos para la degradación de éstos compuestos, como parte de estrategias de biorremediación.
Collapse
|
27
|
Dedov AG, Ivanova EA, Sandzhieva DA, Lobakova ES, Kashcheeva PB, Kirpichnikov MP, Ishkov AG, Buznik VM. New materials and ecology: Biocomposites for aquatic remediation. THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING 2017. [DOI: 10.1134/s0040579517040042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Abd El-Zaher EHF, Abou-Zeid AM, Mostafa AA, Arif DM. Industrial oil wastewater treatment by free and immobilized Aspergillus niger KX759617 and the possibility of using it in crop irrigation. RENDICONTI LINCEI 2017. [DOI: 10.1007/s12210-016-0578-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Nie M, Nie H, He M, Lin Y, Wang L, Jin P, Zhang S. Immobilization of biofilms of Pseudomonas aeruginosa NY3 and their application in the removal of hydrocarbons from highly concentrated oil-containing wastewater on the laboratory scale. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 173:34-40. [PMID: 26963906 DOI: 10.1016/j.jenvman.2016.02.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 06/05/2023]
Abstract
To explore the potential of Pseudomonas aeruginosa NY3 for the treatment of highly concentrated crude oil-contaminated water, the immobilization of strain NY3 on the surface of polyurethane foam (PUF), the conditions for using these biofilms and the possibility of recovering the used biofilms were studied. The results demonstrated that the biofilm formation process for strain NY3 was quick and easy. Under optimum conditions, the biomass immobilized on the PUF surface could reach 488.32 mg dry cell/g dry PUF. The results demonstrated that when the degradation time was 12 h, the average oil removal rate in 2 g crude oil/L contaminated water was approximately 90% for 40d. Meanwhile, the biofilms could be recovered for reuse. The recovery ability and the high and steady oil removal rate facilitated the application of the biofilms for the removal of concentrated oil from wastewater.
Collapse
Affiliation(s)
- Maiqian Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province, PR China.
| | - Hongyun Nie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province, PR China
| | - Meili He
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province, PR China
| | - Yingying Lin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province, PR China
| | - Lei Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province, PR China
| | - Pengkang Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province, PR China
| | - SenYuan Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, Shaanxi Province, PR China
| |
Collapse
|
30
|
Facilitation as Attenuating of Environmental Stress among Structured Microbial Populations. ScientificWorldJournal 2016; 2016:5713939. [PMID: 26904719 PMCID: PMC4745299 DOI: 10.1155/2016/5713939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/15/2015] [Accepted: 12/31/2015] [Indexed: 11/29/2022] Open
Abstract
There is currently an intense debate in microbial societies on whether evolution in complex communities is driven by competition or cooperation. Since Darwin, competition for scarce food resources has been considered the main ecological interaction shaping population dynamics and community structure both in vivo and in vitro. However, facilitation may be widespread across several animal and plant species. This could also be true in microbial strains growing under environmental stress. Pure and mixed strains of Serratia marcescens and Candida rugosa were grown in mineral culture media containing phenol. Growth rates were estimated as the angular coefficients computed from linearized growth curves. Fitness index was estimated as the quotient between growth rates computed for lineages grown in isolation and in mixed cultures. The growth rates were significantly higher in associated cultures than in pure cultures and fitness index was greater than 1 for both microbial species showing that the interaction between Serratia marcescens and Candida rugosa yielded more efficient phenol utilization by both lineages. This result corroborates the hypothesis that facilitation between microbial strains can increase their fitness and performance in environmental bioremediation.
Collapse
|
31
|
Enhanced sunlight photocatalytic activity and recycled Ag–N co-doped TiO2 supported by expanded graphite C/C composites for degradation of organic pollutants. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-015-2385-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Ni L, Li Y, Zhang C, Li L, Zhang W, Wang D. Novel floating photocatalysts based on polyurethane composite foams modified with silver/titanium dioxide/graphene ternary nanoparticles for the visible-light-mediated remediation of diesel-polluted surface water. J Appl Polym Sci 2016. [DOI: 10.1002/app.43400] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Lingfeng Ni
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes (Ministry of Education); College of Environment, Hohai University; Xikang Road 1 Nanjing 210098 People's Republic of China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes (Ministry of Education); College of Environment, Hohai University; Xikang Road 1 Nanjing 210098 People's Republic of China
| | - Chi Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes (Ministry of Education); College of Environment, Hohai University; Xikang Road 1 Nanjing 210098 People's Republic of China
| | - Linze Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes (Ministry of Education); College of Environment, Hohai University; Xikang Road 1 Nanjing 210098 People's Republic of China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes (Ministry of Education); College of Environment, Hohai University; Xikang Road 1 Nanjing 210098 People's Republic of China
| | - Dawei Wang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes (Ministry of Education); College of Environment, Hohai University; Xikang Road 1 Nanjing 210098 People's Republic of China
| |
Collapse
|
33
|
Priya A, Mandal AK, Ball AS, Manefield M, Lal B, Sarma PM. Mass culture strategy for bacterial yeast co-culture for degradation of petroleum hydrocarbons in marine environment. MARINE POLLUTION BULLETIN 2015; 100:191-199. [PMID: 26384865 DOI: 10.1016/j.marpolbul.2015.08.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
In the present study a metabolically versatile co-culture with two Bacilli and one yeast strain was developed using enrichment culture techniques. The developed co-culture had affinity to degrade both aliphatic and aromatic fractions of petroleum crude oil. Degradation kinetics was established for designing the fermentation protocol of the co-culture. The developed mass culture strategy led to achieve the reduction in surface tension (26dynescm(-1) from 69 dynescm(-1)) and degradation of 67% in bench scale experiments. The total crude oil degradation of 96% was achieved in 4000l of natural seawater after 28days without adding any nutrients. The survival of the augmented co-culture was maintained (10(9)cellsml(-1)) in contaminated marine environment. The mass culture protocol devised for the bioaugmentation was a key breakthrough that was subsequently used for pilot scale studies with 100l and 4000l of natural seawater for potential application in marine oil spills.
Collapse
Affiliation(s)
- Anchal Priya
- TERI University, 10 Institutional Area, Vasant Kunj, New Delhi 110 070, India; Environment and Industrial Biotechnology Division, The Energy and Resources Institute, India Habitat Centre, Darbari Seth Block, Lodhi Road, New Delhi, India
| | - Ajoy K Mandal
- TERI University, 10 Institutional Area, Vasant Kunj, New Delhi 110 070, India
| | - Andrew S Ball
- School of Applied Sciences, RMIT University, Bundoora West Campus, Melbourne, Australia
| | - Mike Manefield
- Centre for Marine Bio Innovation, University of New South Wales, Sydney, NSW, Australia
| | - Banwari Lal
- TERI University, 10 Institutional Area, Vasant Kunj, New Delhi 110 070, India; Environment and Industrial Biotechnology Division, The Energy and Resources Institute, India Habitat Centre, Darbari Seth Block, Lodhi Road, New Delhi, India.
| | - Priyangshu M Sarma
- TERI University, 10 Institutional Area, Vasant Kunj, New Delhi 110 070, India; Environment and Industrial Biotechnology Division, The Energy and Resources Institute, India Habitat Centre, Darbari Seth Block, Lodhi Road, New Delhi, India.
| |
Collapse
|
34
|
Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater. BIOMED RESEARCH INTERNATIONAL 2015; 2015:929424. [PMID: 26339653 PMCID: PMC4538589 DOI: 10.1155/2015/929424] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/28/2015] [Accepted: 04/05/2015] [Indexed: 11/18/2022]
Abstract
Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.
Collapse
|
35
|
Zhang J, Wang X, Wang X, Song J, Huang J, Louangsouphom B, Zhao J. Floating photocatalysts based on loading Bi/N-doped TiO2 on expanded graphite C/C (EGC) composites for the visible light degradation of diesel. RSC Adv 2015. [DOI: 10.1039/c5ra12783a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enhanced visible-light photocatalytic activity for degradation of diesel based on photocatalyst easy recycle.
Collapse
Affiliation(s)
- Jing Zhang
- College of Environmental Science and Engineering
- State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Xuejiang Wang
- College of Environmental Science and Engineering
- State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Xin Wang
- College of Environmental Science and Engineering
- State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Jingke Song
- College of Environmental Science and Engineering
- State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Jiayu Huang
- College of Environmental Science and Engineering
- State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Bountheva Louangsouphom
- College of Environmental Science and Engineering
- State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| | - Jianfu Zhao
- College of Environmental Science and Engineering
- State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai 200092
- China
| |
Collapse
|
36
|
Palanisamy N, Ramya J, Kumar S, Vasanthi NS, Chandran P, Khan S. Diesel biodegradation capacities of indigenous bacterial species isolated from diesel contaminated soil. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2014; 12:142. [PMID: 25530870 PMCID: PMC4271493 DOI: 10.1186/s40201-014-0142-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/22/2014] [Indexed: 06/04/2023]
Abstract
Petroleum based products are the major source of energy for industries and daily life. Leaks and accidental spills occur regularly during the exploration, production, refining, transport, and storage of petroleum and petroleum products. In the present study we isolated the bacteria from diesel contaminated soil and screened them for diesel biodegradation capacity. One monoculture isolate identified by 16S rRNA gene sequence analysis to be Acinetobacter baumannii was further studied for diesel oil biodegradation. The effects of various culture parameters (pH, temperature, NaCl concentrations, initial hydrocarbon concentration, initial inoculum size, role of chemical surfactant, and role of carbon and nitrogen sources) on biodegradation of diesel oil were evaluated. Optimal diesel oil biodegradation by A. baumanii occurred at initial pH 7, 35°C and initial hydrocarbon concentration at 4%. The biodegradation products under optimal cultural conditions were analyzed by GC-MS. The present study suggests that A. baumannii can be used for effective degradation of diesel oil from industrial effluents contaminated with diesel oil.
Collapse
Affiliation(s)
- Nandhini Palanisamy
- />Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu India
| | - Jayaprakash Ramya
- />Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu India
| | - Srilakshman Kumar
- />Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu India
| | - NS Vasanthi
- />Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu India
| | - Preethy Chandran
- />CeNTAB, School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613401 Tamil Nadu India
| | - Sudheer Khan
- />Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu India
- />CeNTAB, School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613401 Tamil Nadu India
| |
Collapse
|
37
|
More TT, Yadav JSS, Yan S, Tyagi RD, Surampalli RY. Extracellular polymeric substances of bacteria and their potential environmental applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 144:1-25. [PMID: 24907407 DOI: 10.1016/j.jenvman.2014.05.010] [Citation(s) in RCA: 457] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 05/02/2014] [Accepted: 05/11/2014] [Indexed: 05/06/2023]
Abstract
Biopolymers are considered a potential alternative to conventional chemical polymers because of their ease of biodegradability, high efficiency, non-toxicity and non-secondary pollution. Recently, extracellular polymeric substances (EPS, biopolymers produced by the microorganisms) have been recognised by many researchers as a potential flocculent for their applications in various water, wastewater and sludge treatment processes. In this context, literature information on EPS is widely dispersed and is very scarce. Thus, this review marginalizes various studies conducted so far about EPS nature-production-recovery, properties, environmental applications and moreover, critically examines future research needs and advanced application prospective of the EPS. One of the most important aspect of chemical composition and structural details of different moieties of EPS in terms of carbohydrates, proteins, extracellular DNA, lipid and surfactants and humic substances are described. These chemical characteristics of EPS in relation to formation and properties of microbial aggregates as well as degradation of EPS in the matrix (biomass, flocs etc) are analyzed. The important engineering properties (based on structural characteristics) such as adsorption, biodegradability, hydrophilicity/hydrophobicity of EPS matrix are also discussed in details. Different aspects of EPS production process such as bacterial strain maintenance; inoculum and factors affecting EPS production were presented. The important factors affecting EPS production include growth phase, carbon and nitrogen sources and their ratio, role of other nutrients (phosphorus, micronutrients/trace elements, and vitamins), impact of pH, temperature, metals, aerobic versus anaerobic conditions and pure and mixed culture. The production of EPS in high concentration with high productivity is essential due to economic reasons. Therefore, the knowledge about all the aspects of EPS production (listed above) is highly essential to formulate a logical and scientific basis for the research and industrial activities. One of the very important issues in the production/application/biodegradation of EPS is how the EPS is extracted from the matrix or a culture broth. Moreover, EPS matrix available in different forms (crude, loosely bound, tightly bound, slime, capsular and purified) can be used as a bioflocculant material. Several chemical and physical methods for the extraction of EPS (crude form or purified form) from different sources have been analyzed and reported. There is ample information available in the literature about various EPS extraction methods. Flocculability, dewaterability and biosorption ability are the very attractive engineering properties of the EPS matrix. Recent information on important aspects of these properties qualitatively as well as quantitatively has been described. Recent information on the mechanism of flocculation mediated by EPS is presented. Potential role of EPS in sludge dewatering and biosorption phenomenon has been discussed in details. Different factors influencing the EPS ability to flocculate and dewaterability of different suspensions have been included. The factors considered for the discussion are cations, different forms of EPS, concentration of EPS, protein and carbohydrate content of EPS, molecular weight of EPS, pH of the suspension, temperature etc. These factors were selected for the study based upon their role in the flocculation and dewatering mechanism as well the most recent available literature findings on these factors. For example, only recently it has been demonstrated that there is an optimum EPS concentration for sludge flocculation/dewatering. High or low concentration of EPS can lead to destabilization of flocs. Role of EPS in environmental applications such as water treatment, wastewater flocculation and settling, colour removal from wastewater, sludge dewatering, metal removal and recovery, removal of toxic organic compounds, landfill leachate treatment, soil remediation and reclamation has been presented based on the most recent available information. However, data available on environmental application of EPS are very limited. Investigations are required for exploring the potential of field applications of EPS. Finally, the limitations in the knowledge gap are outlined and the research needs as well as future perspectives are highlighted.
Collapse
Affiliation(s)
- T T More
- Institut national de la recherche scientifique, Centre Eau, Terre & Environnement, Université du Québec, 490 de la Couronne, Québec, QC G1K 9A9, Canada.
| | - J S S Yadav
- Institut national de la recherche scientifique, Centre Eau, Terre & Environnement, Université du Québec, 490 de la Couronne, Québec, QC G1K 9A9, Canada
| | - S Yan
- Institut national de la recherche scientifique, Centre Eau, Terre & Environnement, Université du Québec, 490 de la Couronne, Québec, QC G1K 9A9, Canada
| | - R D Tyagi
- Institut national de la recherche scientifique, Centre Eau, Terre & Environnement, Université du Québec, 490 de la Couronne, Québec, QC G1K 9A9, Canada.
| | - R Y Surampalli
- U. S. Environmental Protection Agency, P.O. Box 17-2141, Kansas City, KS 66117, USA
| |
Collapse
|
38
|
Auffret MD, Yergeau E, Labbé D, Fayolle-Guichard F, Greer CW. Importance of Rhodococcus strains in a bacterial consortium degrading a mixture of hydrocarbons, gasoline, and diesel oil additives revealed by metatranscriptomic analysis. Appl Microbiol Biotechnol 2014; 99:2419-30. [PMID: 25343979 DOI: 10.1007/s00253-014-6159-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/12/2014] [Indexed: 11/29/2022]
Abstract
A bacterial consortium (Mix3) composed of microorganisms originating from different environments (soils and wastewater) was obtained after enrichment in the presence of a mixture of 16 hydrocarbons, gasoline, and diesel oil additives. After addition of the mixture, the development of the microbial composition of Mix3 was monitored at three different times (35, 113, and 222 days) using fingerprinting method and dominant bacterial species were identified. In parallel, 14 bacteria were isolated after 113 days and identified. Degradation capacities for Mix3 and the isolated bacterial strains were characterized and compared. At day 113, we induced the expression of catabolic genes in Mix3 by adding the substrate mixture to resting cells and the metatranscriptome was analyzed. After addition of the substrate mixture, the relative abundance of Actinobacteria increased at day 222 while a shift between Rhodococcus and Mycobacterium was observed after 113 days. Mix3 was able to degrade 13 compounds completely, with partial degradation of isooctane and 2-ethylhexyl nitrate, but tert-butyl alcohol was not degraded. Rhodococcus wratislaviensis strain IFP 2016 isolated from Mix3 showed almost the same degradation capacities as Mix3: these results were not observed with the other isolated strains. Transcriptomic results revealed that Actinobacteria and in particular, Rhodococcus species, were major contributors in terms of total and catabolic gene transcripts while other species were involved in cyclohexane degradation. Not all the microorganisms identified at day 113 were active except R. wratislaviensis IFP 2016 that appeared to be a major player in the degradation activity observed in Mix3.
Collapse
Affiliation(s)
- Marc D Auffret
- Institut Français du Pétrole (IFP), 1-4 Avenue de Bois-Préau, 92852, Rueil-Malmaison, France,
| | | | | | | | | |
Collapse
|
39
|
Das D, Das N. Sunlight mediated diesel degradation under saline conditions using ionic silver coated sand via nanoreduction: use of impregnated form of thiourea modified chitosan membranes for ex situ application. JOURNAL OF HAZARDOUS MATERIALS 2014; 278:597-609. [PMID: 25019578 DOI: 10.1016/j.jhazmat.2014.06.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/11/2014] [Accepted: 06/23/2014] [Indexed: 06/03/2023]
Abstract
The present research investigates the use of ionic silver coated sand dust (ISSD) for the sunlight mediated degradation of diesel under saline conditions. Sand dust was used as a template for reduction of silver ions by effective removal of chloride ions. Diesel degradation was estimated in terms of degradation (%), chloride removal, volume reduction and nanoparticle synthesis, respectively. The process was optimized using a 7-level Box-Behnken design. Among several factors, time (B), Tween 80 (C), ISSD dosage (D) and silver(I) concentration (F) were found to be most significant. Maximum diesel degradation 99.8% was obtained in a period of 14 h which was analyzed by gas chromatography. XPS analysis confirmed silver reduction as the underlying phenomena. TEM analysis and albeit first approximation method confirmed that enhanced degradation occurred due to physical contact between diesel components and ISSD. First order kinetic model exhibited the best fit. Light microscopy results showed the various stages in diesel degradation by a reduction in bubble size. Ex situ application was carried out using ISSD impregnated thiourea modified chitosan/PVA membranes by surface floatation technique for the remediation of diesel contaminated sea water. Complete diesel degradation was noted after 48 h of sunlight exposure.
Collapse
Affiliation(s)
- Devlina Das
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Nilanjana Das
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
40
|
Jamal P, Mir S, Alam MZ, Wan Nawawi WMF. Isolation and selection of new biosurfactant producing bacteria from degraded palm kernel cake under liquid state fermentation. J Oleo Sci 2014; 63:795-804. [PMID: 25007747 DOI: 10.5650/jos.ess13181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biosurfactants are surface-active compounds produced by different microorganisms. The aim of this study was to introduce palm kernel cake (PKC) as a novel substrate for biosurfactant production using a potent bacterial strain under liquid state fermentation. This study was primarily based on the isolation and identification of biosurfactant-producing bacteria that could utilize palm kernel cake as a new major substrate. Potential bacterial strains were isolated from degraded PKC and screened for biosurfactant production with the help of the drop collapse assay and by analyzing the surface tension activity. From the screened isolates, a new strain, SM03, showed the best and most consistent results, and was therefore selected as the most potent biosurfactant-producing bacterial strain. The new strain was identified as Providencia alcalifaciens SM03 using the Gen III MicroPlate Biolog Microbial Identification System. The yield of the produced biosurfactant was 8.3 g/L.
Collapse
Affiliation(s)
- Parveen Jamal
- Bioenvironmental Engineering Research Centre (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia
| | | | | | | |
Collapse
|
41
|
Al-Mailem D, Kansour M, Radwan S. Hydrocarbonoclastic biofilms based on sewage microorganisms and their application in hydrocarbon removal in liquid wastes. Can J Microbiol 2014; 60:477-86. [DOI: 10.1139/cjm-2014-0214] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Attempts to establish hydrocarbonoclastic biofilms that could be applied in waste-hydrocarbon removal are still very rare. In this work, biofilms containing hydrocarbonoclastic bacteria were successfully established on glass slides by submerging them in oil-free and oil-containing sewage effluent for 1 month. Culture-dependent analysis of hydrocarbonoclastic bacterial communities in the biofilms revealed the occurrence of the genera Pseudomonas, Microvirga, Stenotrophomonas, Mycobacterium, Bosea, and Ancylobacter. Biofilms established in oil-containing effluent contained more hydrocarbonoclastic bacteria than those established in oil-free effluent, and both biofilms had dramatically different bacterial composition. Culture-independent analysis of the bacterial flora revealed a bacterial community structure totally different from that determined by the culture-dependent method. In microcosm experiments, these biofilms, when used as inocula, removed between 20% and 65% crude oil, n-hexadecane, and phenanthrene from the surrounding effluent in 2 weeks, depending on the biofilm type, the hydrocarbon identity, and the culture conditions. More of the hydrocarbons were removed by biofilms established in oil-containing effluent than by those established in oil-free effluent, and by cultures incubated in the light than by those incubated in the dark. Meanwhile, the bacterial numbers and diversities were enhanced in the biofilms that had been previously used in hydrocarbon bioremediation. These novel findings pave a new way for biofilm-based hydrocarbon bioremediation, both in sewage effluent and in other liquid wastes.
Collapse
Affiliation(s)
- D.M. Al-Mailem
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait
| | - M.K. Kansour
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait
| | - S.S. Radwan
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait
| |
Collapse
|
42
|
Basak G, V L, Chandran P, Das N. Removal of Zn(II) from electroplating effluent using yeast biofilm formed on gravels: batch and column studies. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2014; 12:8. [PMID: 24397917 PMCID: PMC3904462 DOI: 10.1186/2052-336x-12-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 10/06/2013] [Indexed: 06/01/2023]
Abstract
BACKGROUND Present study deals with the removal of Zn(II) ions from effluent using yeast biofilm formed on gravels. METHODS The biofilm forming ability of Candida rugosa and Cryptococcus laurentii was evaluated using XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay and monitored by scanning electron microscopy (SEM), and Confocal laser scanning microscopy (CLSM). Copious amount of extracellular polymeric substances (EPS) produced by yeast species was quantified and characterized by Fourier transform infrared spectroscopy (FT-IR). RESULTS Yeast biofilm formed on gravels by C. rugosa and C. laurentii showed 88% and 74.2% removal of Zn(II) ions respectively in batch mode. In column mode, removal of Zn(II) ions from real effluent was found to be 95.29% by C. rugosa biofilm formed on gravels. CONCLUSION The results of the present study showed that there is a scope to develop a cost effective method for the efficient removal of Zn(II) from effluent using gravels coated with yeast biofilm.
Collapse
Affiliation(s)
- Geetanjali Basak
- Environmental Biotechnology Division, School of Bio- Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Lakshmi V
- Environmental Biotechnology Division, School of Bio- Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Preethy Chandran
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Nilanjana Das
- Environmental Biotechnology Division, School of Bio- Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| |
Collapse
|
43
|
Fan MY, Xie RJ, Qin G. Bioremediation of petroleum-contaminated soil by a combined system of biostimulation-bioaugmentation with yeast. ENVIRONMENTAL TECHNOLOGY 2014; 35:391-9. [PMID: 24600879 DOI: 10.1080/09593330.2013.829504] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This paper presents a study of the effect of a combined biostimulation-bioaugmentation treatment applied to a clay-loam soil contaminated with 16,300 mg/kg of total petroleum hydrocarbons (TPH), which comprised 51% saturated hydrocarbons and 31% aromatic hydrocarbons. The bioaugmentation was performed with yeast Candida tropicalis SK21 isolated from petroleum-contaminated soil. The strain was able to grow in a pH range of 3-9 in liquid culture, and the optimum pH was found to be 6 for both growth and biosurfactant production. At pH 6, 96% and 42% of TPH were degraded by the strain at the initial diesel oil concentrations of 0.5% and 5% (v/v), respectively. The remediation via inoculating the yeast removed 83% of TPH in 180 days while the experiment with the indigenous microorganisms alone removed 61%. Microbial enumeration showed that the yeast SK21 could grow good in the soil. It was also found that dehydrogenase and polyphenoloxidase activities in soil were remarkably enhanced by the inoculation of the yeast.
Collapse
Affiliation(s)
- Mei-Ying Fan
- China University of Geosciences, Lumo Road, Wuhan 430074, People's Republic of China.
| | - Rui-Jie Xie
- School of Geophysics and Oil Resources, Yangtze University, Xueyuan Road, Jingzhou 434023, People's Republic of China
| | - Gang Qin
- College of Engineering and Technology, Yangtze University, Xueyuan Road, Jingzhou 434020, People s Republic of China
| |
Collapse
|
44
|
Al-Bader D, Kansour MK, Rayan R, Radwan SS. Biofilm comprising phototrophic, diazotrophic, and hydrocarbon-utilizing bacteria: a promising consortium in the bioremediation of aquatic hydrocarbon pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:3252-3262. [PMID: 23089957 DOI: 10.1007/s11356-012-1251-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/06/2012] [Indexed: 06/01/2023]
Abstract
Biofilms harboring simultaneously anoxygenic and oxygenic phototrophic bacteria, diazotrophic bacteria, and hydrocarbon-utilizing bacteria were established on glass slides suspended in pristine and oily seawater. Via denaturing gradient gel electrophoresis analysis on PCR-amplified rRNA gene sequence fragments from the extracted DNA from biofilms, followed by band amplification, biofilm composition was determined. The biofilms contained anoxygenic phototrophs belonging to alphaproteobacteria; pico- and filamentous cyanobacteria (oxygenic phototrophs); two species of the diazotroph Azospirillum; and two hydrocarbon-utilizing gammaproteobacterial genera, Cycloclasticus and Oleibacter. The coexistence of all these microbial taxa with different physiologies in the biofilm makes the whole community nutritionally self-sufficient and adequately aerated, a condition quite suitable for the microbial biodegradation of aquatic pollutant hydrocarbons.
Collapse
Affiliation(s)
- Dhia Al-Bader
- Department of Biological Sciences, Faculty of Science, Kuwait University, PO Box 5969, Safat 13060, Kuwait
| | | | | | | |
Collapse
|
45
|
Simons KL, Sheppard PJ, Adetutu EM, Kadali K, Juhasz AL, Manefield M, Sarma PM, Lal B, Ball AS. Carrier mounted bacterial consortium facilitates oil remediation in the marine environment. BIORESOURCE TECHNOLOGY 2013; 134:107-116. [PMID: 23500567 DOI: 10.1016/j.biortech.2013.01.152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 01/07/2013] [Accepted: 01/29/2013] [Indexed: 06/01/2023]
Abstract
Marine oil pollution can result in the persistent presence of weathered oil. Currently, removal of weathered oil is reliant on chemical dispersants and physical removal, causing further disruption. In contrast few studies have examined the potential of an environmentally sustainable method using a hydrocarbon degrading microbial community attached to a carrier. Here, we used a tank mesocosm system (50 l) to follow the degradation of weathered oil (10 g l(-1)) using a bacterial consortium mobilised onto different carrier materials (alginate or shell grit). GCMS analysis demonstrated that the extent of hydrocarbon degradation was dependent upon the carrier material. Augmentation of shell grit with nutrients and exogenous hydrocarbon degraders resulted in 75±14% removal of >C32 hydrocarbons after 12 weeks compared to 20±14% for the alginate carrier. This study demonstrated the effectiveness of a biostimulated and bioaugmented carrier material to degrade marine weathered oil.
Collapse
Affiliation(s)
- Keryn L Simons
- School of Biological Sciences, Flinders University, Bedford Park, SA 5042, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dasgupta D, Ghosh R, Sengupta TK. Biofilm-mediated enhanced crude oil degradation by newly isolated pseudomonas species. ISRN BIOTECHNOLOGY 2013; 2013:250749. [PMID: 25937972 PMCID: PMC4393046 DOI: 10.5402/2013/250749] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 01/25/2013] [Indexed: 11/23/2022]
Abstract
The bioavailability of organic contaminants to the degrading bacteria is a major limitation to efficient bioremediation of sites contaminated with hydrophobic pollutants. Such limitation of bioavailability can be overcome by steady-state biofilm-based reactor. The aim of this study was to examine the effect of such multicellular aggregation by naturally existing oil-degrading bacteria on crude oil degradation. Microorganisms, capable of utilizing crude oil as sole carbon source, were isolated from river, estuary and sea-water samples. Biochemical and 16S rDNA analysis of the best degraders of the three sources was found to belong to the Pseudomonas species. Interestingly, one of the isolates was found to be close to Pseudomonas otitidis family which is not reported yet as a degrader of crude oil. Biodegradation of crude oil was estimated by gas chromatography, and biofilm formation near oil-water interface was quantified by confocal laser scanning microscopy. Biofilm supported batches of the isolated Pseudomonas species were able to degrade crude oil much readily and extensively than the planktonic counterparts. Volumetric and topographic analysis revealed that biofilms formed in presence of crude oil accumulate higher biomass with greater thickness compared to the biofilms produced in presence of glucose as sole carbon source.
Collapse
Affiliation(s)
- Debdeep Dasgupta
- Department of Biological Sciences, Indian Institute of Science Education & Research-Kolkata, Mohanpur Campus, Nadia 741252, India
| | - Ritabrata Ghosh
- Department of Biological Sciences, Indian Institute of Science Education & Research-Kolkata, Mohanpur Campus, Nadia 741252, India
| | - Tapas K Sengupta
- Department of Biological Sciences, Indian Institute of Science Education & Research-Kolkata, Mohanpur Campus, Nadia 741252, India
| |
Collapse
|
47
|
Abdel-Razek MARS, Folch-Mallol JL, Perezgasga-Ciscomani L, Sánchez-Salinas E, Castrejón-Godínez ML, Ortiz-Hernández ML. Optimization of methyl parathion biodegradation and detoxification by cells in suspension or immobilized on tezontle expressing the opd gene. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2013; 48:449-461. [PMID: 23452210 DOI: 10.1080/03601234.2013.761863] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The goal of this study was to optimize methyl parathion (O,O-dimethyl-O-4-p-nitrophenyl phosphorothioate) degradation using a strain of Escherichia coli DH5α expressing the opd gene. Our results indicate that this strain had lower enzymatic activity compared to the Flavobacterium sp. ATCC 27551 strain from which the opd gene was derived. Both strains were assessed for their ability to degrade methyl parathion (MP) in a mineral salt medium with or without the addition of glucose either as suspended cells or immobilized on tezontle, a volcanic rock. MP was degraded by both strains with similar efficiencies, but immobilized cells degraded MP more efficiently than cells in suspension. However, the viability of E. coli cells was much higher than that of the Flavobacterium sp. We confirmed the decrease in toxicity from the treated effluents through acetylcholinesterase activity tests, indicating the potential of this method for the treatment of solutions containing MP.
Collapse
|
48
|
Nopcharoenkul W, Netsakulnee P, Pinyakong O. Diesel oil removal by immobilized Pseudoxanthomonas sp. RN402. Biodegradation 2012; 24:387-97. [PMID: 23054183 DOI: 10.1007/s10532-012-9596-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 09/20/2012] [Indexed: 11/26/2022]
Abstract
Pseudoxanthomonas sp. RN402 was capable of degrading diesel, crude oil, n-tetradecane and n-hexadecane. The RN402 cells were immobilized on the surface of high-density polyethylene plastic pellets at a maximum cell density of 10(8) most probable number (MPN) g(-1) of plastic pellets. The immobilized cells not only showed a higher efficacy of diesel oil removal than free cells but could also degrade higher concentrations of diesel oil. The rate of diesel oil removal by immobilized RN402 cells in liquid culture was 1,050 mg l(-1) day(-1). Moreover, the immobilized cells could maintain high efficacy and viability throughout 70 cycles of bioremedial treatment of diesel-contaminated water. The stability of diesel oil degradation in the immobilized cells resulted from the ability of living RN402 cells to attach to material surfaces by biofilm formation, as was shown by CLSM imaging. These characteristics of the immobilized RN402 cells, including high degradative efficacy, stability and flotation, make them suitable for the purpose of continuous wastewater bioremediation.
Collapse
Affiliation(s)
- Wannarak Nopcharoenkul
- Inter-Department of Environmental Science, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | |
Collapse
|