1
|
Srinivasan KR, Wong JWC, Murugesan K. Production of bioflocculant from Klebsiella pneumoniae: evaluation of fish waste extract as substrate and flocculation performance. ENVIRONMENTAL TECHNOLOGY 2023; 44:4046-4059. [PMID: 35567323 DOI: 10.1080/09593330.2022.2078672] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The bioflocculant producing bacterial strain - UKD24 was isolated from the domestic sewage treatment plant. The isolated strain was identified as Klebsiella pneumoniae by using 16S rRNA gene sequencing. The K. pneumoniae UKD24 showed remarkable flocculation rates when grown with the carbon sources namely glucose, sucrose and lactose, and many commercial nitrogen sources. Furthermore, the fish waste extract (FE) was used to enhance the productivity of the bioflocculant as a nitrogen supplement and it showed a significant level of flocculation rate similar to the commercial nitrogen sources. The Box-Behnken experiments were designed to predict the optimal conditions for bioflocculant production and it suggested that glucose - 3.247 g L-1, FE - 0.5 g L-1 and inoculum size - 1% are the suitable levels for bioflocculant production. The FTIR analysis of the bioflocculant showed the functional groups related to the polysaccharides and the EEM analysis showed the fluorescence components related to the proteins and humic acids. The biochemical composition of the bioflocculant was identified as polysaccharides (24.36 ± 1.5%) and protein (12.15 ± 0.2%). The tested optimum conditions of the bioflocculant to induce flocculation were tested in the kaolin wastewater and it showed that the optimum dosage of the flocculant was 5 mg L-1 and the pH range was broad as 5-10. The cation dependency tests revealed that the monovalent and divalent cations are highly suitable for flocculation while the trivalent cations showed moderate flocculation. The Cr(VI) removal efficiency of the bioflocculant showed that ∼35% of heavy metal is trapped into flocks during the flocculation.
Collapse
Affiliation(s)
| | - J W C Wong
- Department of Biology and Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Hong Kong SAR, People's Republic of China
| | | |
Collapse
|
2
|
Aguilar C, Wissmann R, Fraefel C, Eichwald C. Display of Heterologous Proteins in Bacillus Subtilis Biofilms for Enteric Immunization. Methods Mol Biol 2022; 2465:73-95. [PMID: 35118616 DOI: 10.1007/978-1-0716-2168-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
One of the foremost goals in vaccine development is the design of effective, heat-stable vaccines that simplify the distribution and delivery while conferring high levels of protective immunity. Here, we describe a method for developing a live, oral vaccine that relies on the biofilm-forming properties of the spore-former bacterium Bacillus subtilis. The amyloid protein TasA is an abundant component of the extracellular matrix of the biofilms formed by B. subtilis that can be genetically fused to an antigen of interest. Spores of the recombinant strain are then prepared and applied via the oral route in an animal model. Due to the intrinsic resistance of the spores, they can bypass the stomach barrier, germinate, and subsequently colonize the gut, where they develop into biofilms, expressing the antigen of interest. We describe here the steps necessary to produce spores, immunization, and downstream analysis of the vaccine efficacy.
Collapse
Affiliation(s)
- Claudio Aguilar
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Ramona Wissmann
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
3
|
Fernandez M, Paulucci NS, Reynoso E, Morales GM, Agostini E, González PS. Morphological and structural response of Bacillus sp. SFC 500-1E after Cr(VI) and phenol treatment. J Basic Microbiol 2020; 60:679-690. [PMID: 32378234 DOI: 10.1002/jobm.202000076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/04/2020] [Accepted: 04/22/2020] [Indexed: 11/10/2022]
Abstract
Bacillus sp. SFC 500-1E, a bacterial strain isolated from tannery sediments, is able to remove Cr(VI) and simultaneously tolerate high concentrations of phenol. In this study, we used high-resolution microscopies, fluorescence polarization techniques, and several biochemical approaches to improve our understanding about the adaptive mechanisms of this strain to survive in the presence of Cr(VI) and phenol, both individually and simultaneously. Among adaptive strategies developed by Bacillus sp. SFC 500-1E, an increase in bacterial size, such as length, width, and height, and ultrastructural alterations, such as electron-dense precipitates, the presence of exopolymers, and cell lysis, are noteworthy. The exopolymers observed were consistent with the extensive biofilm formation and exopolysaccharides and extracellular protein quantification. At the cell membrane level, a rapid rigidity was induced in Cr(VI) + phenol treatment. This effect was counteracted after 16 h by changes at the level of phospholipids, mainly in the composition of fatty acids (FAs); in particular, an increase in the unsaturated fatty acid/saturated fatty acid ratio was detected. This study shows evidence of some adaptive responses displayed by Bacillus sp. SFC 500-1E, which allows it to survive in stressful conditions.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| | - Natalia S Paulucci
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| | - Eugenia Reynoso
- Departamento de Química- FCEFQyN, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Río Cuarto, Córdoba, Argentina
| | - Gustavo M Morales
- Departamento de Química- FCEFQyN, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| | - Paola S González
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.,CONICET-UNRC, Instituto de Biotecnología Ambiental y Salud (INBIAS), Río Cuarto, Córdoba, Argentina
| |
Collapse
|
4
|
Pattnaik S, Dash D, Mohapatra S, Pattnaik M, Marandi AK, Das S, Samantaray DP. Improvement of rice plant productivity by native Cr(VI) reducing and plant growth promoting soil bacteria Enterobacter cloacae. CHEMOSPHERE 2020; 240:124895. [PMID: 31550588 DOI: 10.1016/j.chemosphere.2019.124895] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Rapid industrialization and anthropogenic activities have produced huge amount of noxious Cr(VI), which accumulate in the soil for longer period. As a consequence, that decreases rice plant productivity in contiguous agricultural field of Sukinda mining area, Odisha. Thus, the high Cr(VI) resistant native bacterial strain CTWI-06 was selected for the study, which depicted resistance to 3500 ppm of Cr(VI) and wide array of other metals. Under optimized condition, the multi-metal resistant bacteria reduced 94% Cr(VI) within 92 h and Cr(VI) reduction was confirmed by FTIR and XRD analysis. Plant growth promoting traits like N2 fixation; phosphate (146.87 ppm), potassium (12.55 ppm) and Zn solubilization; ammonification; IAA production (114 μg mL-1) and suppression of fungal phytopathogens such as Rhizoctonia solani (ITCC 2060) and Phytium debaryanum (ITCC 5488) were also recorded. The bacterial strain was identified as Enterobacter cloacae CTWI-06 by 16S rDNA sequence (Accession No. MG757378). It significantly improved growth traits as well as productivity of Mahalakshmi rice variety in pot culture. Thus, the potential Cr(VI) reducing and PGPB strain may be utilized for long term bioremediation of Cr(VI) in chromium contaminated soil and to maintain soil fertility.
Collapse
Affiliation(s)
- Swati Pattnaik
- Department of Microbiology, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Debasis Dash
- Department of Botany, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Swati Mohapatra
- Department of Biotechnology, AMITY University, Noida, Uttar Pradesh, India
| | - Matrujyoti Pattnaik
- Department of Public Health, ICMR- Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Amit K Marandi
- Department of Polymer Technology, Indian Institute of Technology-Roorkee, Uttarakhand, India
| | - Surajit Das
- Department of Life Science, National Institute of Technology-Rourkela, Odisha, India
| | - Devi P Samantaray
- Department of Microbiology, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
5
|
Banerjee S, Misra A, Chaudhury S, Dam B. A Bacillus strain TCL isolated from Jharia coalmine with remarkable stress responses, chromium reduction capability and bioremediation potential. JOURNAL OF HAZARDOUS MATERIALS 2019; 367:215-223. [PMID: 30594722 DOI: 10.1016/j.jhazmat.2018.12.038] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
Microbial reduction of Cr(VI) to Cr(III) can mitigate environmental chromium toxicity. A chromium, cadmium and nickel tolerating strain TCL with 97% 16S rRNA gene sequence homology to Bacillus cereus was isolated from a derelict open-cast, Tasra Coalmine Lake of Jharia, India. It could tolerate up to Cr2000 [2,000 mg L-1 Cr(VI)] and completely reduce Cr200 within 16 h under heterotrophic condition. TCL grown in ≥ Cr500 exhibited multifarious stress responses particularly in its prolonged lag-phase, like cell aggregation, up to two-fold elongation, increased exopolysaccharide production, and stress enzyme activities. These were relieved by increasing inoculum size or nutrient content. Chromium reduction was constitutive, with maximum activities detected in loosely-bound exopolysaccharides and membrane fractions, followed by cytoplasm and spent media. Cr(VI) was efficiently reduced to Cr(III) and >90% was released in spent media. Cells also expressed Cr-induced active efflux pumps. Growing cells or its crude enzyme extracts could efficiently reduce Cr(VI) in diverse temperatures (15-45 °C), pH (5-9); and in presence of other metals (Cd, Cu, Mo, Ni, Pb), oxyanions (SO4-2, NO2-), and metabolic inhibitors (phenol, NaN3, EDTA). Growth and reduction were also detected in nutrient-limited minimal salt media, and contaminated leather industry effluent thereby making TCL a potential candidate for bioremediation.
Collapse
Affiliation(s)
- Sohini Banerjee
- Microbiology Laboratory, Department of Botany (DST-FIST and UGC-DRS Funded), Institute of Science, Visva-Bharati (A Central University), Santiniketan, West Bengal 731235, India; Department of Environmental Studies, Institute of Science, Visva-Bharati (A Central University), Santiniketan, West Bengal 731235, India
| | - Arijit Misra
- Microbiology Laboratory, Department of Botany (DST-FIST and UGC-DRS Funded), Institute of Science, Visva-Bharati (A Central University), Santiniketan, West Bengal 731235, India
| | - Shibani Chaudhury
- Department of Environmental Studies, Institute of Science, Visva-Bharati (A Central University), Santiniketan, West Bengal 731235, India
| | - Bomba Dam
- Microbiology Laboratory, Department of Botany (DST-FIST and UGC-DRS Funded), Institute of Science, Visva-Bharati (A Central University), Santiniketan, West Bengal 731235, India.
| |
Collapse
|
6
|
Rizvi A, Ahmed B, Zaidi A, Khan MS. Bioreduction of toxicity influenced by bioactive molecules secreted under metal stress by Azotobacter chroococcum. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:302-322. [PMID: 30758729 DOI: 10.1007/s10646-019-02023-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Heavy metal pollution destruct soil microbial compositions and functions, plant's performance and subsequently human health. Culturable microbes among many metal abatement strategies are considered inexpensive, viable and environmentally safe. In this study, nitrogen fixing bacterial strain CAZ3 recovered from chilli rhizosphere tolerated 100, 1000 and 1200 µg mL-1 of cadmium, chromium and nickel, respectively and was identified as Azotobacter chroococcum by 16S rDNA sequence analysis. Under metal stress, cellular morphology of A. chroococcum observed under SEM was found distorted and shrinkage of cells was noticed when grown with 50 µg mL-1 of Cd (cell size 1.7 µm) and 100 of µg mL-1 Ni (cell size 1.3 µm) compared to untreated control (cell size 1.8 µm). In the presence of 100 µg mL-1 of Cr, cells became elongated and measured 1.9 µm in size. Location of metals inside the cells was revealed by EDX. A dose dependent growth arrest and consequently the death of A. chroococcum cells was revealed under CLSM. A. chroococcum CAZ3 secreted 320, 353 and 133 µg EPS mL-1 when grown with 100 µg mL-1 each of Cd, Cr and Ni, respectively. The EDX revealed the presence of 0.4, 0.07 and 0.24% of Cd, Cr and Ni, respectively within EPS extracted from metal treated cells. Moreover, a dark brown pigment (melanin) secreted by A. chroococcum cells under metal pressure displayed tremendous metal chelating activity. The EDX spectra of melanin extracted from metal treated cells of A. chroococcum CAZ3 displayed 0.53, 0.22 and 0.12% accumulation of Cd, Cr and Ni, respectively. The FT-IR spectra of EPS and melanin demonstrated stretching vibrations and variations in surface functional groups of bacterial cells. The C-H stretching of CH3 in fatty acids and CH2 groups, stretching of N-H bond of proteins and O-H bond of hydroxyl groups caused the shifting of peaks in the EPS spectra. Similar stretching vibrations were recorded in metal treated melanin which involved CHO, alkyl, carboxylate and alkene groups resulting in significant peak shifts. Nuclear magnetic resonance (NMR) spectrum of EPS extracted from A. chroococcum CAZ3 revealed apparent peak signals at 4.717, 9.497, 9.369 and 9.242 ppm. However, 1H NMR peaks were poorly resolved due largely to the impurity/viscosity of the EPS. The entrapment of metals by EPS and melanin was confirmed by EDX. Also, the induction and excretion of variable amounts of metallothioneins (MTs) by A. chroococcum under metal pressure was interesting. Conclusively, the present findings establish- (i) cellular damage due to Cd, Cr and Ni and (ii) role of EPS, melanin and MTs in adsorption/complexation and concurrently the removal of heavy metals. Considering these, A. chroococcum can be promoted as a promising candidate for supplying N efficiently to plants and protecting plants from metal toxicity while growing under metal stressed environment.
Collapse
Affiliation(s)
- Asfa Rizvi
- Faculty of Agricultural Sciences, Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, UP, 202002, India.
| | - Bilal Ahmed
- Faculty of Agricultural Sciences, Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Almas Zaidi
- Faculty of Agricultural Sciences, Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Mohd Saghir Khan
- Faculty of Agricultural Sciences, Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, UP, 202002, India
| |
Collapse
|
7
|
Tamindžija D, Chromikova Z, Spaić A, Barak I, Bernier-Latmani R, Radnović D. Chromate tolerance and removal of bacterial strains isolated from uncontaminated and chromium-polluted environments. World J Microbiol Biotechnol 2019; 35:56. [PMID: 30900044 DOI: 10.1007/s11274-019-2638-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
Investigation of bacterial chromate tolerance has mostly focused on strains originating from polluted sites. In the present study, we isolated 33 chromate tolerant strains from diverse environments harbouring varying concentrations of chromium (Cr). All of these strains were able to grow on minimal media with at least 2 mM hexavalent chromium (Cr(VI)) and their classification revealed that they belonged to 12 different species and 8 genera, with a majority (n = 20) being affiliated to the Bacillus cereus group. Selected B. cereus group strains were further characterised for their chromate tolerance level and the ability to remove toxic Cr(VI) from solution. A similar level of chromate tolerance was observed in isolates originating from environments harbouring high or low Cr. Reference B. cereus strains exhibited the same Cr(VI) tolerance which indicates that a high chromate tolerance could be an intrinsic group characteristic. Cr(VI) removal varied from 22.9% (strain PCr2a) to 98.5% (strain NCr4). Strains NCr1a and PCr12 exhibited the ability to grow to the greatest extent in Cr(VI) containing media (maximum growth of 65.3% and 64.9% relative to that in the absence of Cr(VI), respectively) accompanied with high chromate removal activity (73.7% and 74.4%, respectively), making them prime candidates for the investigation of chromate tolerance mechanisms in Gram-positive bacteria and Cr(VI) bioremediation applications.
Collapse
Affiliation(s)
- Dragana Tamindžija
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Zuzana Chromikova
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, Bratislava, 845 51, Slovakia
| | - Andrea Spaić
- Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad, 21000, Serbia
| | - Imrich Barak
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, Bratislava, 845 51, Slovakia
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Dragan Radnović
- Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad, 21000, Serbia.
| |
Collapse
|
8
|
Vogt CM, Hilbe M, Ackermann M, Aguilar C, Eichwald C. Mouse intestinal microbiota reduction favors local intestinal immunity triggered by antigens displayed in Bacillus subtilis biofilm. Microb Cell Fact 2018; 17:187. [PMID: 30477481 PMCID: PMC6258259 DOI: 10.1186/s12934-018-1030-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/16/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND We previously engineered Bacillus subtilis to express an antigen of interest fused to TasA in a biofilm. B. subtilis has several properties such as sporulation, biofilm formation and probiotic ability that were used for the oral application of recombinant spores harboring Echinococcus granulosus paramyosin and tropomyosin immunogenic peptides that resulted in the elicitation of a specific humoral immune response in a dog model. RESULTS In order to advance our understanding of the research in oral immunization practices using recombinant B. subtilis spores, we describe here an affordable animal model. In this study, we show clear evidence indicating that a niche is required for B. subtilis recombinant spores to colonize the densely populated mice intestinal microbiota. The reduction of intestinal microbiota with an antibiotic treatment resulted in a positive elicitation of local humoral immune response in BALB/c mice after oral application of recombinant B. subtilis spores harboring TasA fused to E. granulosus (102-207) EgTrp immunogenic peptide. Our results were supported by a lasting prevalence of spores in mice feces up to 50 days after immunization and by the presence of specific secretory IgA, isolated from feces, against E. granulosus tropomyosin. CONCLUSIONS The reduction of mouse intestinal microbiota allowed the elicitation of a local humoral immune response in mice after oral application with spores of B. subtilis harboring immunogenic peptides against E. granulosus.
Collapse
Affiliation(s)
- Cédric M Vogt
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland
| | - Monika Hilbe
- Laboratory for Animal Model Pathology, Institute of Pathology, Vetsuisse, University of Zurich, Zurich, Switzerland
| | - Mathias Ackermann
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland
| | | | - Catherine Eichwald
- Institute of Virology, University of Zurich, Winterthurerstrasse 266a, 8057, Zurich, Switzerland.
| |
Collapse
|
9
|
Long B, Ye B, Liu Q, Zhang S, Ye J, Zou L, Shi J. Characterization of Penicillium oxalicum SL2 isolated from indoor air and its application to the removal of hexavalent chromium. PLoS One 2018; 13:e0191484. [PMID: 29381723 PMCID: PMC5790237 DOI: 10.1371/journal.pone.0191484] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023] Open
Abstract
Removal of toxic Cr(VI) by microbial reduction is a promising approach to reducing its ecotoxicological impact. To develop bioremediation technologies, many studies have evaluated the application of microorganisms isolated from Cr(VI)-contaminated sites. Nonetheless, little attention has been given to microbes from the environments without a history of Cr(VI) contamination. In this study, we aimed to characterize the Cr(VI) tolerance and removal abilities of a filamentous fungus strain, SL2, isolated from indoor air. Based on phenotypic characterization and rDNA sequence analysis, SL2 was identified as Penicillium oxalicum, a species that has not been extensively studied regarding Cr(VI) tolerance and reduction abilities. SL2 showed high tolerance to Cr(VI) on solid and in liquid media, facilitating its application to Cr(VI)-contaminated environments. Growth curves of SL2 in the presence of 0, 100, 400, or 1000 mg/L Cr(VI) were well simulated by the modified Gompertz model. The relative maximal colony diameter and maximal growth rate decreased as Cr(VI) concentration increased, while the lag time increased. SL2 manifested remarkable efficacy of removing Cr(VI). Mass balance analysis indicated that SL2 removed Cr(VI) by reduction, and incorporated 0.79 mg of Cr per gram of dry biomass. In electroplating wastewater, the initial rate of Cr(VI) removal was affected by the initial contaminant concentration. In conclusion, P. oxalicum SL2 represents a promising new candidate for Cr(VI) removal. Our results significantly expand the knowledge on potential application of this microorganism.
Collapse
Affiliation(s)
- Bibo Long
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Binhui Ye
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Qinglin Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Shu Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jien Ye
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lina Zou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jiyan Shi
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, Zhejiang Province, China
| |
Collapse
|
10
|
Upadhyay N, Vishwakarma K, Singh J, Mishra M, Kumar V, Rani R, Mishra RK, Chauhan DK, Tripathi DK, Sharma S. Tolerance and Reduction of Chromium(VI) by Bacillus sp. MNU16 Isolated from Contaminated Coal Mining Soil. FRONTIERS IN PLANT SCIENCE 2017; 8:778. [PMID: 28588589 PMCID: PMC5438964 DOI: 10.3389/fpls.2017.00778] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/25/2017] [Indexed: 05/12/2023]
Abstract
The bacterium MNU16 was isolated from contaminated soils of coal mine and subsequently screened for different plant growth promoting (PGP) activities. The isolate was further identified by 16S rRNA sequencing as Bacillus subtilis MNU16 with IAA concentration (56.95 ± 0.43 6μg/ml), siderophore unit (9.73 ± 2.05%), phosphate solubilization (285.13 ± 1.05 μg/ml) and ACC deaminase activity (116.79 ± 0.019 μmoles α-ketobutyrate/mg/24 h). Further, to evaluate the metal resistance profile of bacterium, the isolate was screened for multi-metal resistance (viz. 900 mg/L for Cr, 600 mg/L for As, 700 mg/L for Ni and 300 mg/L for Hg). Additionally, the resistance pattern of B. subtilis MNU16 against Cr(VI) (from 50 to 300 mg/L) treatments were evaluated. An enriched population was observed at 0-200 mg/L Cr(VI) concentration while slight reductions were observed at 250 and 300 mg/L Cr(VI). Further, the chromium reduction ability at 50 mg/L of Cr(VI) highlighted that the bacterium B. subtilis MNU16 reduced 75% of Cr(VI) to 13.23 mg/L within 72 h. The localization of electron dense precipitates was observed in the TEM images of B. subtilis MNU16 which is might be due to the reduction of Cr(VI) to Cr(III). The data of fluorescence microscopy and flow cytometry with respect to Cr(VI) treatments (50-300 mg/L) showed a similar pattern and clearly revealed the less toxic effect of hexavalent chromium upto 200 mg/L Cr(VI) concentration. However, toxicity effects were more pronounced at 300 mg/L Cr(VI). Therefore, the present study suggests that the plant growth promoting potential and resistance efficacy of B. subtilis MNU16 will go a long way in developing an effective bioremediation approach for Cr(VI) contaminated soils.
Collapse
Affiliation(s)
- Neha Upadhyay
- Department of Biotechnology, Motilal Nehru National Institute of Technology AllahabadAllahabad, India
| | - Kanchan Vishwakarma
- Department of Biotechnology, Motilal Nehru National Institute of Technology AllahabadAllahabad, India
| | - Jaspreet Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology AllahabadAllahabad, India
| | - Mitali Mishra
- Department of Biotechnology, Motilal Nehru National Institute of Technology AllahabadAllahabad, India
- Centre for Medical Diagnostic and Research, Motilal Nehru National Institute of Technology AllahabadAllahabad, India
| | - Vivek Kumar
- Department of Biotechnology, Himalayan Institute of Biosciences, Swami Rama Himalayan UniversityDehradun, India
| | - Radha Rani
- Department of Biotechnology, Motilal Nehru National Institute of Technology AllahabadAllahabad, India
| | - Rohit K. Mishra
- Centre for Medical Diagnostic and Research, Motilal Nehru National Institute of Technology AllahabadAllahabad, India
| | - Devendra K. Chauhan
- D D Plant Interdisciplinary Research Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Durgesh K. Tripathi
- Centre for Medical Diagnostic and Research, Motilal Nehru National Institute of Technology AllahabadAllahabad, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology AllahabadAllahabad, India
- Centre for Medical Diagnostic and Research, Motilal Nehru National Institute of Technology AllahabadAllahabad, India
| |
Collapse
|