1
|
Patel J, Parmar M, Shahabuddin S, Tyagi I, Suhas, Gaur R. Designing a Z-scheme rGO-SnS 2 synergistic photocatalyst for photocatalytic mineralization of atrazine and 2,4-dichlorophenoxyacetic acid and applying machine learning for predictive modelling of photocatalytic performance. NANOSCALE ADVANCES 2025; 7:3485-3507. [PMID: 40303975 PMCID: PMC12036600 DOI: 10.1039/d5na00143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025]
Abstract
The extensive use of agrochemicals for crop protection and quality enhancement has raised environmental concerns due to their negative effects on human health. This study focuses on the design and synthesis of a Z-scheme rGO-SnS2 photocatalyst for wastewater treatment. rGO-SnS2 nanocomposites with varying SnS2 nanoparticle loadings were synthesized using a thermal decomposition method and characterized using various analytical techniques to confirm their composition, phase, structure, morphology, optical properties, and functional groups. The photocatalytic performance of the rGO-SnS2 nanocomposites was evaluated for the degradation of atrazine (ATZ) and 2,4-dichlorophenoxyacetic acid (2,4-D) in aqueous solutions under natural sunlight. The optimized nanocomposite achieved fast and efficient degradation, with a removal efficiency of 91% for ATZ and 87% for 2,4-D within 3 minutes, compared to only 18% and 26% removal by pure rGO. The study also explored key parameters affecting photocatalytic performance, including catalyst loading, pH, dosage, and regeneration. The degradation pathways and major intermediates of ATZ and 2,4-D were identified using LC-MS analysis, and a detailed reaction mechanism was proposed based on scavenger and mineralization studies. Additionally, machine learning (ML) models, including Gaussian process (GP), artificial neural network (ANN), and support vector machine (SVM), were employed exclusively for predictive analysis of the photocatalytic performance. ANN demonstrated the best predictive capability, with an R 2 value of 0.974 and an error of 0.002. This work highlights the potential of rGO-SnS2 nanocomposites as effective photocatalysts for agrochemical mineralization, with ML aiding in performance prediction for real-world applications.
Collapse
Affiliation(s)
- Jinal Patel
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University Gandhinagar 382426 Gujarat India
| | - Megha Parmar
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University Gandhinagar 382426 Gujarat India
| | - Syed Shahabuddin
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University Gandhinagar 382426 Gujarat India
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Ministry of Environment, Forests and Climate Change Kolkata 700053 West Bengal India
| | - Suhas
- Department of Chemistry, Gurukul Kangri (Deemed to be University) Hardwar 249404 Uttarakhand India
| | - Rama Gaur
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University Gandhinagar 382426 Gujarat India
| |
Collapse
|
2
|
Nguyen THT, Nguyen KT, Le BH, Nghiem XT, La DD, Nguyen DK, Nguyen HPT. Synthesis of magnetic Fe 3O 4/graphene aerogel for the removal of 2,4-dichlorophenoxyacetic acid herbicide from water. RSC Adv 2024; 14:22304-22311. [PMID: 39010918 PMCID: PMC11247437 DOI: 10.1039/d4ra03567d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
Graphene-based aerogels are among the lightest materials in the world and have been extensively studied for environmental remediation. In this work, an Fe3O4/graphene aerogel material was synthesized using the co-precipitation method. The prepared material was characterized using X-ray diffraction (XRD), scanning electron microscopy/X-ray energy dispersive spectroscopy (FESEM/EDX), infrared spectroscopy (FT-IR), and vibration sample magnetization (VSM). The results showed that the Fe3O4 nanoparticles with a particle size of less than 100 nm were well-distributed on the surface of the graphene aerogel. The prepared Fe3O4/graphene aerogel showed effective removal of 2,4-D herbicide from the aqueous solution with a maximal adsorption capacity of approximately 42.918 mg g-1. The adsorption isotherms and kinetics were investigated to study the adsorption behaviour of the resultant material. The saturation magnetism value of the aerogel was determined to be about 20.66 emu g-1, indicating that the adsorbent could be easily collected from the solution using an external magnet. These results implied that the prepared Fe3O4/graphene aerogel could be a promising adsorbent for the removal of 2,4-D herbicide from water.
Collapse
Affiliation(s)
- Thu Hang Thi Nguyen
- Department of Chemistry and Environment, Joint Vietnam-Russia Tropical Science and Technology Research Center 63 Nguyen Văn Huyen Ha Noi Vietnam
| | - Kim Thuy Nguyen
- Department of Chemistry and Environment, Joint Vietnam-Russia Tropical Science and Technology Research Center 63 Nguyen Văn Huyen Ha Noi Vietnam
| | - Bao Hung Le
- Department of Chemistry and Environment, Joint Vietnam-Russia Tropical Science and Technology Research Center 63 Nguyen Văn Huyen Ha Noi Vietnam
| | - Xuan Truong Nghiem
- Department of Chemistry and Environment, Joint Vietnam-Russia Tropical Science and Technology Research Center 63 Nguyen Văn Huyen Ha Noi Vietnam
| | - Duc Duong La
- Institute of Chemistry & Materials Science 17 Hoang Sam Hanoi Vietnam
| | - Duy Khiem Nguyen
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University 03 Quang Trung Da Nang Vietnam
- Faculty of Natural Sciences, Duy Tan University 03 Quang Trung Da Nang Vietnam
| | - Hoai Phuong Thi Nguyen
- Department of Chemistry and Environment, Joint Vietnam-Russia Tropical Science and Technology Research Center 63 Nguyen Văn Huyen Ha Noi Vietnam
| |
Collapse
|
3
|
Branco RHR, Meulepas RJW, Rijnaarts HHM, Sutton NB. Exploring long-term retention and reactivation of micropollutant biodegradation capacity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47055-47070. [PMID: 38985427 PMCID: PMC11296967 DOI: 10.1007/s11356-024-34186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
The factors limiting micropollutant biodegradation in the environment and how to stimulate this process have often been investigated. However, little information is available on the capacity of microbial communities to retain micropollutant biodegradation capacity in the absence of micropollutants or to reactivate micropollutant biodegradation in systems with fluctuating micropollutant concentrations. This study investigated how a period of 2 months without the addition of micropollutants and other organic carbon affected micropollutant biodegradation by a micropollutant-degrading microbial community. Stimulation of micropollutant biodegradation was performed by adding different types of dissolved organic carbon (DOC)-extracted from natural sources and acetate-increasing 10 × the micropollutant concentration, and inoculating with activated sludge. The results show that the capacity to biodegrade 3 micropollutants was permanently lost. However, the biodegradation activity of 2,4-D, antipyrine, chloridazon, and its metabolites restarted when these micropollutants were re-added to the community. Threshold concentrations similar to those obtained before the period of no substrate addition were achieved, but biodegradation rates were lower for some compounds. Through the addition of high acetate concentrations (108 mg-C/L), gabapentin biodegradation activity was regained, but 2,4-D biodegradation capacity was lost. An increase of bentazon concentration from 50 to 500 µg/L was necessary for biodegradation to be reactivated. These results provide initial insights into the longevity of micropollutant biodegradation capacity in the absence of the substance and strategies for reactivating micropollutant biodegrading communities.
Collapse
Affiliation(s)
- Rita H R Branco
- Environmental Technology, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900 CC, Leeuwarden, the Netherlands
| | - Roel J W Meulepas
- Wetsus, European Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900 CC, Leeuwarden, the Netherlands
| | - Huub H M Rijnaarts
- Environmental Technology, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Nora B Sutton
- Environmental Technology, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands.
| |
Collapse
|
4
|
Lamnoi S, Boonupara T, Sumitsawan S, Vongruang P, Prapamontol T, Udomkun P, Kaewlom P. Residues of atrazine and diuron in rice straw, soils, and air post herbicide-contaminated straw biomass burning. Sci Rep 2024; 14:13327. [PMID: 38858445 PMCID: PMC11164915 DOI: 10.1038/s41598-024-64291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Abstract
This study investigates the environmental impact of burning herbicide-contaminated biomass, focusing on atrazine (ATZ) and diuron (DIU) sprayed on rice straw prior to burning. Samples of soil, biomass residues, total suspended particulate (TSP), particulate matter with an aerodynamic diameter ≤ 10 µm (PM10), and aerosols were collected and analyzed. Soil analysis before and after burning contaminated biomass showed significant changes, with 2,4-dichlorophenoxyacetic acid (2,4-D) initially constituting 79.2% and decreasing by 3.3 times post-burning. Atrazine-desethyl, sebuthylazine, and terbuthylazine were detected post-burning. In raw rice straw biomass, terbuthylazine dominated at 80.0%, but burning ATZ-contaminated biomass led to the detection of atrazine-desethyl and notable increases in sebuthylazine and terbuthylazine. Conversely, burning DIU-contaminated biomass resulted in a shift to 2,4-D dominance. Analysis of atmospheric components showed changes in TSP, PM10, and aerosol samples. Linuron in ambient TSP decreased by 1.6 times after burning ATZ-contaminated biomass, while atrazine increased by 2.9 times. Carcinogenic polycyclic aromatic hydrocarbons (PAHs), including benzo[a]anthracene (BaA), benzo[a]pyrene (BaP), and benzo[b]fluoranthene (BbF), increased by approximately 9.9 to 13.9 times after burning ATZ-contaminated biomass. In PM10, BaA and BaP concentrations increased by approximately 11.4 and 19.0 times, respectively, after burning ATZ-contaminated biomass. This study sheds light on the environmental risks posed by burning herbicide-contaminated biomass, emphasizing the need for sustainable agricultural practices and effective waste management. The findings underscore the importance of regulatory measures to mitigate environmental contamination and protect human health.
Collapse
Affiliation(s)
- Suteekan Lamnoi
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thirasant Boonupara
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sulak Sumitsawan
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Patipat Vongruang
- School of Public Health, Environmental Health, University of Phayao, Phayao, 56000, Thailand
| | - Tippawan Prapamontol
- Environmental and Health Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Patchimaporn Udomkun
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Puangrat Kaewlom
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
5
|
Aldas-Vargas A, Kers JG, Smidt H, Rijnaarts HHM, Sutton NB. Bioaugmentation has temporary effect on anaerobic pesticide biodegradation in simulated groundwater systems. Biodegradation 2024; 35:281-297. [PMID: 37439919 PMCID: PMC10951022 DOI: 10.1007/s10532-023-10039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/30/2023] [Indexed: 07/14/2023]
Abstract
Groundwater is the most important source for drinking water in The Netherlands. Groundwater quality is threatened by the presence of pesticides, and biodegradation is a natural process that can contribute to pesticide removal. Groundwater conditions are oligotrophic and thus biodegradation can be limited by the presence and development of microbial communities capable of biodegrading pesticides. For that reason, bioremediation technologies such as bioaugmentation (BA) can help to enhance pesticide biodegradation. We studied the effect of BA using enriched mixed inocula in two column bioreactors that simulate groundwater systems at naturally occurring redox conditions (iron and sulfate-reducing conditions). Columns were operated for around 800 days, and two BA inoculations (BA1 and BA2) were conducted in each column. Inocula were enriched from different wastewater treatment plants (WWTPs) under different redox-conditions. We observed a temporary effect of BA1, reaching 100% removal efficiency of the pesticide 2,4-D after 100 days in both columns. In the iron-reducing column, 2,4-D removal was in general higher than under sulfate-reducing conditions demonstrating the influence of redox conditions on overall biodegradation. We observed a temporary shift in microbial communities after BA1 that is relatable to the increase in 2,4-D removal efficiency. After BA2 under sulfate-reducing conditions, 2,4-D removal efficiency decreased, but no change in the column microbial communities was observed. The present study demonstrates that BA with a mixed inoculum can be a valuable technique for improving biodegradation in anoxic groundwater systems at different redox-conditions.
Collapse
Affiliation(s)
- Andrea Aldas-Vargas
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands
| | - Jannigje G Kers
- Laboratory of Microbiology, Wageningen University & Research, P.O. Box 8033, 6700 EH, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, P.O. Box 8033, 6700 EH, Wageningen, The Netherlands
| | - Huub H M Rijnaarts
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands
| | - Nora B Sutton
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands.
| |
Collapse
|
6
|
Chen J, Zhang B, Wang C, Wang P, Cui G, Gao H, Feng B, Zhang J. Insight into the enhancement effect of humic acid on microbial degradation of triclosan in anaerobic sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132549. [PMID: 37717441 DOI: 10.1016/j.jhazmat.2023.132549] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Humic acid (HA) as one class of macromolecular substances plays important roles in mediating environmental behaviors of pollutants in sediments, but its effect on microbial degradation of triclosan (TCS), a common antibacterial drug, remains unclear. In this study, the effects of HA addition with different dosages (0-5%) on TCS degradation in anaerobic sediment slurries and the underlying microbial mechanisms were investigated. The results showed that HA addition significantly accelerated the TCS removal and the maximum removal percentage (30.2%) was observed in the sediment slurry with 5% HA addition. The iron reduction rate, relative abundances of the genera Comamonas, Pseudomonas and Geobacter, and bacterial network complexity in sediment slurry were significantly enhanced due to HA addition. Based on the partial least squares path modeling analysis, the enhancement effect of HA on TCS degradation was mainly explained by Fe(II):Fe(III) ratio with the highest influence on TCS removal (total effect: 0.723), followed by dominant genera abundances (total effect: 0.391), module relative abundance (total effect: 0.272), and network topological features (total effect: 0.263). This finding enhanced our understanding of the role of HA in TCS biodegradation in contaminated sediments for bioremediation purposes.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Bo Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Ge Cui
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Gao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Bingbing Feng
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jingjing Zhang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
7
|
Huang Y, Li Z. Streamlining Pesticide Regulation Across International River Basins for Effective Transboundary Environmental Management. ENVIRONMENTAL MANAGEMENT 2024; 73:67-80. [PMID: 37782327 DOI: 10.1007/s00267-023-01891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Pesticide standard values (PSVs) are critical for environmental management, environmental quality control, and remediation. Some countries or regions share river basins; however, their pesticide regulations are inconsistent, which could create a barrier to transboundary environmental management. To address this issue, we propose PSV scores for neighboring countries in order to promote pesticide regulatory harmonization within international river basins. Representative pesticides were selected to define PSV scores, including chemicals that are currently and historically widely used. Countries or regions from five international river basins were chosen for analysis: the Amazon, Mekong-Lancang, Rhine-Meuse, Danube, and Great Lakes. PSV scores were calculated for each of four environmental compartments: soil, surface freshwater, groundwater, and drinking water. The results revealed that current regulatory agencies lack PSVs of current used pesticides for surface freshwater. With the exception of the member states of the European Union and the Great Lakes states of the United States, the majority of basin countries or regions lack uniform pesticide regulations in environmental compartments to facilitate transboundary environmental management. In addition, PSVs have not been established for a large number of pesticides currently used in agriculture, which could lead to water contamination by pesticides used in upstream environmental compartments (e.g., croplands). Also, current PSVs do not align across environmental compartments, which could cause inter-environmental contamination by pesticides used in upstream compartments. In light of the fact that current river basins lack uniform pesticide regulations, the following recommendations are provided to promote transboundary environmental management: (1) river basin regions should collaborate on pesticide regulation establishment, (2) pesticide regulations should be aligned across environmental compartments, (3) current-use pesticides should receive more attention, and (4) quantitative approaches should be proposed for linking PSVs across environmental compartments. This study provides a regulatory tool to identify possible gaps in transboundary environmental management and improve the pesticide regulatory policies. It is expected to establish cooperation organizations to enhance regulatory communications and collaborations for transboundary environmental pesticide management.
Collapse
Affiliation(s)
- Yabi Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
8
|
H R Branco R, Meulepas RJW, van Veelen HPJ, Rijnaarts HHM, Sutton NB. Influence of redox condition and inoculum on micropollutant biodegradation by soil and activated sludge communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165233. [PMID: 37394071 DOI: 10.1016/j.scitotenv.2023.165233] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
Micropollutant biodegradation is selected by the interplay among environmental conditions and microbial community composition. This study investigated how different electron acceptors, and different inocula with varying microbial diversity, pre-exposed to distinct redox conditions and micropollutants, affect micropollutant biodegradation. Four tested inocula comprised of agricultural soil (Soil), sediment from a ditch in an agricultural field (Ditch), activated sludge from a municipal WWTP (Mun AS), and activated sludge from an industrial WWTP (Ind AS). Removal of 16 micropollutants was investigated for each inoculum under aerobic, nitrate reducing, iron reducing, sulfate reducing, and methanogenic conditions. Micropollutant biodegradation was highest under aerobic conditions with removal of 12 micropollutants. Most micropollutants were biodegraded by Soil (n = 11) and Mun AS inocula (n = 10). A positive correlation was observed between inoculum community richness and the number of different micropollutants a microbial community initially degraded. The redox conditions to which a microbial community had been exposed appeared to positively affect micropollutant biodegradation performance more than pre-exposure to micropollutants. Additionally, depletion of the organic carbon present in the inocula resulted in lower micropollutant biodegradation and overall microbial activities, suggesting that i) an additional carbon source is needed to promote micropollutant biodegradation; and ii) overall microbial activity can be a good indirect indicator for micropollutant biodegradation activity. These results could help to develop novel micropollutant removal strategies.
Collapse
Affiliation(s)
- Rita H R Branco
- Environmental Technology, Wageningen University & Research, 47, 6700 AA Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, 1113, 8900 CC Leeuwarden, the Netherlands
| | - Roel J W Meulepas
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 1113, 8900 CC Leeuwarden, the Netherlands
| | - H Pieter J van Veelen
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 1113, 8900 CC Leeuwarden, the Netherlands
| | - Huub H M Rijnaarts
- Environmental Technology, Wageningen University & Research, 47, 6700 AA Wageningen, the Netherlands
| | - Nora B Sutton
- Environmental Technology, Wageningen University & Research, 47, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
9
|
Lisiecka N, Ciesielski T, Sopata O, Parus A, Woźniak-Karczewska M, Simpson M, Frankowski R, Zgoła-Grześkowiak A, Kloziński A, Siwińska-Ciesielczyk K, Klapiszewski Ł, Niemczak M, Owsianiak M, Heipieper HJ, Chrzanowski Ł. Sorption of ionic liquids in soil enriched with polystyrene microplastic reveals independent behavior of cations and anions. CHEMOSPHERE 2023; 341:139927. [PMID: 37633614 DOI: 10.1016/j.chemosphere.2023.139927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Recently, much attention has been focused on the application of the Ionic Liquids (ILs) with herbicidal activity in agriculture. It has been suggested that through the appropriate selection of cations and anions, one can adjust the properties of ILs, particularly the hydrophobicity, solubility, bioavailability, toxicity. In practical agricultural conditions, it will be beneficial to reduce the mobility of herbicidal anions, such as the commonly applied 2,4-dichlorophenoxyacetic acid [2,4-D] in the soil. Furthermore, microplastics are becoming increasingly prevalent in the soil, potentially stimulating herbicidal sorption. Therefore, we investigated whether cations in ILs influence the mobility of anions in OECD soil supplemented with polystyrene microplastic (PS). For this purpose, we used the 2,4-D based ILs consisting of: a hydrophilic choline cation [Chol][2,4-D] and a hydrophobic choline cation with a C12chain [C12Chol][2,4-D]. Characterization of selected micropolystyrene was carried out using the BET sorption-desorption isotherm, particle size distribution and changes in soil sorption parameters such as soil sorption capacity and cation exchange capacity. Based on the batch sorption experiment, the effect of microplastic on the sorption of individual cations and anions in soil contaminated with micropolystyrene was evaluated. The results obtained indicate that the introduction of a 1-10% (w/w) PS resulted in an 18-23% increase of the soil sorption capacity. However, the sorption of both ILs' cations increased only by 3-5%. No sorption of the [2,4-D] anion was noted. This suggests that cations and anions forming ILs, behave independently of each other in the environment. The results indicate the fact that ILs upon introduction into the environment are not a new type of emerging contaminant, but rather a typical mixture of ions. It is worth noting that when analyzing the behavior of ILs in the environment, it is necessary to follow the fate of both cations and anions.
Collapse
Affiliation(s)
- Natalia Lisiecka
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Tomasz Ciesielski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Olga Sopata
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Anna Parus
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| | - Marta Woźniak-Karczewska
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Maria Simpson
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Robert Frankowski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | | | - Arkadiusz Kloziński
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | | | - Łukasz Klapiszewski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Michał Niemczak
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Mikołaj Owsianiak
- Quantitative Sustainability Assessment Division, Department of Environmental and Resources Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Łukasz Chrzanowski
- Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland; Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
10
|
Iasakov T. Evolution End Classification of tfd Gene Clusters Mediating Bacterial Degradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D). Int J Mol Sci 2023; 24:14370. [PMID: 37762674 PMCID: PMC10531765 DOI: 10.3390/ijms241814370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The tfd (tfdI and tfdII) are gene clusters originally discovered in plasmid pJP4 which are involved in the bacterial degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) via the ortho-cleavage pathway of chlorinated catechols. They share this activity, with respect to substituted catechols, with clusters tcb and clc. Although great effort has been devoted over nearly forty years to exploring the structural diversity of these clusters, their evolution has been poorly resolved to date, and their classification is clearly obsolete. Employing comparative genomic and phylogenetic approaches has revealed that all tfd clusters can be classified as one of four different types. The following four-type classification and new nomenclature are proposed: tfdI, tfdII, tfdIII and tfdIV(A,B,C). Horizontal gene transfer between Burkholderiales and Sphingomonadales provides phenomenal linkage between tfdI, tfdII, tfdIII and tfdIV type clusters and their mosaic nature. It is hypothesized that the evolution of tfd gene clusters proceeded within first (tcb, clc and tfdI), second (tfdII and tfdIII) and third (tfdIV(A,B,C)) evolutionary lineages, in each of which, the genes were clustered in specific combinations. Their clustering is discussed through the prism of hot spots and driving forces of various models, theories, and hypotheses of cluster and operon formation. Two hypotheses about series of gene deletions and displacements are also proposed to explain the structural variations across members of clusters tfdII and tfdIII, respectively. Taking everything into account, these findings reconstruct the phylogeny of tfd clusters, have delineated their evolutionary trajectories, and allow the contribution of various evolutionary processes to be assessed.
Collapse
Affiliation(s)
- Timur Iasakov
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| |
Collapse
|
11
|
Serbent MP, Gonçalves Timm T, Vieira Helm C, Benathar Ballod Tavares L. Growth, laccase activity and role in 2,4-D degradation of Lentinus crinitus (L.) Fr. in a liquid medium. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
12
|
Vanitha TK, Suresh G, Bhandi MM, Mudiam MKR, Mohan SV. Microbial degradation of organochlorine pesticide: 2,4-Dichlorophenoxyacetic acid by axenic and mixed consortium. BIORESOURCE TECHNOLOGY 2023; 382:129031. [PMID: 37037331 DOI: 10.1016/j.biortech.2023.129031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/31/2023]
Abstract
The presence of 2,4-dichlorophenoxyacetic acid (2,4-D), an organochlorine herbicide, in the environment has raised public concern as it poses hazard to both humans and the ecosystem. Three potential strains having the capability to degrade 2,4-D were isolated from on site agricultural soil and identified as Arthrobacter sp. SVMIICT25, Sphingomonas sp. SVMIICT11 and Stenotrophomonas sp. SVMIICT13. Over 12 days of incubation, 81-90% of 100 mg/L of 2,4-D degradation was observed at 2% inoculum. A shorter lag phase with 80% of degradation efficiency was observed within 5 days when the inoculum size was increased to 10%. Six microbial consortia were prepared by combining the isolates along with in-house strains, Bacillus sp. and Pseudomonas sp. Consortia R3 (Arthrobacter sp. + Sphingomonas sp.), operated with 10% of inoculum, showed 85-90% degradation within 4 days and 98-100% in 9 days. Further, targeted exo-metabolite analysis confirmed the presence and catabolism of intermediate 2,4-dichlorophenol and 4-chlorophenol compounds.
Collapse
Affiliation(s)
- T K Vanitha
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, Telangana 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - G Suresh
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, Telangana 500 007, India
| | - Murali Mohan Bhandi
- Analytical & Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, Telangana 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohana Krishna Reddy Mudiam
- Analytical & Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, Telangana 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, Telangana 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
13
|
Rodríguez JL, Valenzuela MA. Ni-based catalysts used in heterogeneous catalytic ozonation for organic pollutant degradation: a minireview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84056-84075. [PMID: 36251197 DOI: 10.1007/s11356-022-23634-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Among various advanced oxidation processes for wastewater treatment, heterogeneous catalytic ozonation (HCO) has a growing interest in pollutant degradation, e.g., pesticides, pharmaceuticals, cresols, detergents, polymers, dyes, and others. Direct oxidation with ozone can occur by this route or indirectly, generating reactive oxygen species through the catalytic activation of the ozone molecule. Then, many catalytic materials were evaluated, such as unsupported and supported oxides, activated carbon, nanocarbons, carbon nitride, and mesoporous materials. This review focuses on the properties and performance of Ni-based catalysts (NiO, supported NiO, Ni ferrites, and M-Ni bimetallic), emphasizing the reaction mechanisms and the importance of the reactive oxygen species in removing toxic organic compounds.
Collapse
Affiliation(s)
- Julia L Rodríguez
- Lab. Ing. Química Ambiental, ESIQIE-Instituto Politécnico Nacional, Zacatenco, 07738, Ciudad de México, México.
| | - Miguel A Valenzuela
- Lab. Catálisis Y Materiales, ESIQIE-Instituto Politécnico Nacional, Zacatenco, 07738, Ciudad de México, México
| |
Collapse
|
14
|
Mandal M, Mandal S. Cross-biome metagenomic analyses of the impact of pollutants on taxonomic and functional diversity of bacterial communities from different geographical regions. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
White AM, Nault ME, McMahon KD, Remucal CK. Synthesizing Laboratory and Field Experiments to Quantify Dominant Transformation Mechanisms of 2,4-Dichlorophenoxyacetic Acid (2,4-D) in Aquatic Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10838-10848. [PMID: 35856571 DOI: 10.1021/acs.est.2c03132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Laboratory studies used to assess the environmental fate of organic chemicals such as pesticides fail to replicate environmental conditions, resulting in large errors in predicted transformation rates. We combine laboratory and field data to identify the dominant loss processes of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in lakes for the first time. Microbial and photochemical degradation are individually assessed using laboratory-based microcosms and irradiation studies, respectively. Field campaigns are conducted in six lakes to quantify 2,4-D loss following large-scale herbicide treatments. Irradiation studies show that 2,4-D undergoes direct photodegradation, but modeling efforts demonstrated that this process is negligible under environmental conditions. Microcosms constructed using field inocula show that sediment microbial communities are responsible for degradation of 2,4-D in lakes. Attempts to quantify transformation products are unsuccessful in both laboratory and field studies, suggesting that their persistence is not a major concern. The synthesis of laboratory and field experiments is used to demonstrate best practices in designing laboratory persistence studies and in using those results to mechanistically predict contaminant fate in complex aquatic environments.
Collapse
Affiliation(s)
- Amber M White
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michelle E Nault
- Wisconsin Department of Natural Resources Madison, Bureau of Water Quality, Madison, Wisconsin 53707, United States
| | - Katherine D McMahon
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Bacteriology, University of Wisconsin-Madison Madison, Wisconsin 53706, United States
| | - Christina K Remucal
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Pan D, Xu Y, Ni Y, Zhang H, Hua R, Wu X. The efficient persistence and migration of Cupriavidus gilardii T1 contribute to the removal of MCPA in laboratory and field soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119220. [PMID: 35358633 DOI: 10.1016/j.envpol.2022.119220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The application of exogenous biodegradation strains in pesticide-polluted soils encounters the challenges of migration and persistence of inoculants. In this study, the degradation characteristics, vertical migration capacity, and microbial ecological risk assessment of an enhanced green fluorescent protein (EGFP)-tagged 2-Methyl-4-chlorophenoxyacetic acid (MCPA)-degrading strain Cupriavidus gilardii T1 (EGFP) were investigated in the laboratory and field soils. The optimum remediation conditions for T1 (EGFP) was characterized in soils. Meanwhile, leaching experiments showed that T1 (EGFP) migrated vertically downwards in soil and contribute to the degradation of MCPA at different depths. After inoculation with T1 (EGFP), a high expression levels of EGFP gene was observed at 28 d in the laboratory soil and at 45 d in the field soil. The degradation rates of MCPA were ≥ 60% in the laboratory soil and ≥ 48% in the field soil, indicating that T1 (EGFP) can efficiently and continuously remove MCPA in both laboratory and field conditions. In addition, the inoculation of T1 (EGFP) not only showed no significant impact on the soil microbial community structure but also can alleviate the negative effects induced by MCPA to some extent. Overall, our findings suggested that T1 (EGFP) strain is an ecologically safe resource for the in situ bioremediation of MCPA-contaminated soils.
Collapse
Affiliation(s)
- Dandan Pan
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, 230036, China; Research Academy of Green Development of Anhui Agricultural University, Hefei, 230036, China
| | - Yue Xu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, 230036, China
| | - Yaxin Ni
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, 230036, China
| | - Houpu Zhang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, 230036, China; Research Academy of Green Development of Anhui Agricultural University, Hefei, 230036, China
| | - Rimao Hua
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, 230036, China; Research Academy of Green Development of Anhui Agricultural University, Hefei, 230036, China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei, 230036, China; Research Academy of Green Development of Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|