1
|
Udaondo Z, Ramos JL, Abram K. Unraveling the genomic diversity of the Pseudomonas putida group: exploring taxonomy, core pangenome, and antibiotic resistance mechanisms. FEMS Microbiol Rev 2024; 48:fuae025. [PMID: 39390673 PMCID: PMC11585281 DOI: 10.1093/femsre/fuae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
The genus Pseudomonas is characterized by its rich genetic diversity, with over 300 species been validly recognized. This reflects significant progress made through sequencing and computational methods. Pseudomonas putida group comprises highly adaptable species that thrive in diverse environments and play various ecological roles, from promoting plant growth to being pathogenic in immunocompromised individuals. By leveraging the GRUMPS computational pipeline, we scrutinized 26 363 genomes labeled as Pseudomonas in the NCBI GenBank, categorizing all Pseudomonas spp. genomes into 435 distinct species-level clusters or cliques. We identified 224 strains deposited under the taxonomic identifier "Pseudomonas putida" distributed within 31 of these species-level clusters, challenging prior classifications. Nine of these 31 cliques contained at least six genomes labeled as "Pseudomonas putida" and were analysed in depth, particularly clique_1 (P. alloputida) and clique_2 (P. putida). Pangenomic analysis of a set of 413 P. putida group strains revealed over 2.2 million proteins and more than 77 000 distinct protein families. The core genome of these 413 strains includes 2226 protein families involved in essential biological processes. Intraspecific genetic homogeneity was observed within each clique, each possessing a distinct genomic identity. These cliques exhibit distinct core genes and diverse subgroups, reflecting adaptation to specific environments. Contrary to traditional views, nosocomial infections by P. alloputida, P. putida, and P. monteilii have been reported, with strains showing varied antibiotic resistance profiles due to diverse mechanisms. This review enhances the taxonomic understanding of key P. putida group species using advanced population genomics approaches and provides a comprehensive understanding of their genetic diversity, ecological roles, interactions, and potential applications.
Collapse
Affiliation(s)
- Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, c/Profesor Albareda n° 1, 18008 Granada, Spain
| | - Juan Luis Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, c/Profesor Albareda n° 1, 18008 Granada, Spain
| | - Kaleb Abram
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| |
Collapse
|
2
|
Joshi H, Khan A. Competition-driven phenotypic plasticity in Iron acquisition and aromatic utilization confers a fitness advantage to Pseudomonas putida in an Iron-limited rhizospheric environment. World J Microbiol Biotechnol 2024; 40:386. [PMID: 39565458 PMCID: PMC11579168 DOI: 10.1007/s11274-024-04192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
Iron scarcity poses a critical challenge for rhizospheric bacteria like Pseudomonas putida in the competitive rhizosphere. Despite its dependence on iron for essential functions such as root colonization, motility, and aromatic compound utilization, P. putida exhibits limited capability for heterologous siderophore utilization and primarily relies on the secretion of a single siderophore, pyoverdine. This study investigates the mechanisms by which P. putida acquires iron in an iron-limited, aromatic-rich, rhizosphere-like environment. Our findings demonstrate that P. putida exhibits significant phenotypic plasticity, dynamically modulating pyoverdine secretion in response to competitive pressures and substrate availability. This adaptive strategy optimizes energy expenditure and iron acquisition, providing a competitive advantage. Comparative gene expression analysis supports these observations, revealing the molecular underpinnings of this plasticity. Enhanced pyoverdine production driven by competition compensates for the bacterium's limited siderophore repertoire and facilitates rapid aromatic compound utilization, conferring a distinct fitness advantage in iron-deprived conditions. This study elucidates the complex interplay between competition, iron uptake, and aromatic compound utilization that underpins the rhizospheric success of P. putida.
Collapse
Affiliation(s)
- Hiren Joshi
- Biofouling & Biofilms Processes Section, Water & Steam Chemistry Division, BARC Facilities, IGCAR campus, Kalpakkam, 603 102, India.
- Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| | - Atif Khan
- Biofouling & Biofilms Processes Section, Water & Steam Chemistry Division, BARC Facilities, IGCAR campus, Kalpakkam, 603 102, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Jafra S, Jabłońska M, Maciąg T, Matuszewska M, Borowicz M, Prusiński M, Żmudzińska W, Thiel M, Czaplewska P, Krzyżanowska DM, Czajkowski R. An iron fist in a velvet glove: The cooperation of a novel pyoverdine from Pseudomonas donghuensis P482 with 7-hydroxytropolone is pivotal for its antibacterial activity. Environ Microbiol 2024; 26:e16559. [PMID: 38151794 DOI: 10.1111/1462-2920.16559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Pseudomonas donghuensis P482 exhibits broad antimicrobial activity against phytopathogens, including the soft rot bacteria of the Dickeya genus. Here, we report that under limited nutrient availability, the antibacterial activity of P. donghuensis P482 against Dickeya solani requires the reciprocal action of two iron scavengers: 7-hydroxytropolone (7-HT) and a newly characterized pyoverdine (PVDP482 ) and is quenched in the iron-augmented environment. Further, we show that the biosynthesis of pyoverdine and 7-HT is metabolically coordinated, and the functional BV82_4709 gene involved in 7-HT synthesis is pivotal for expressing the BV82_3755 gene, essential for pyoverdine biosynthesis and vice versa. The synthesis of both scavengers is under the control of Gac/Rsm, but only PVD is controlled by Fur. The isoelectric focusing profile of the P482 siderophore differs from that of the other Pseudomonas spp. tested. This finding led to the unveiling of the chemical structure of the new pyoverdine PVDP482 . To summarize, the antibacterial activity of P. donghuensis P482 is attributed to 7-HT and PVDP482 varies depending on the nutrient and iron availability, highlighting the importance of these factors in the competition between P482 and D. solani.
Collapse
Affiliation(s)
- Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Magdalena Jabłońska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Tomasz Maciąg
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Marta Matuszewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Marcin Borowicz
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Michał Prusiński
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Wioletta Żmudzińska
- Laboratory of Biopolymers Structure, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Marcel Thiel
- Laboratory of Biopolymers Structure, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Dorota M Krzyżanowska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of the University of Gdansk and the Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| |
Collapse
|
4
|
Stein NV, Eder M, Burr F, Stoss S, Holzner L, Kunz HH, Jung H. The RND efflux system ParXY affects siderophore secretion in Pseudomonas putida KT2440. Microbiol Spectr 2023; 11:e0230023. [PMID: 37800935 PMCID: PMC10715066 DOI: 10.1128/spectrum.02300-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Gram-negative bacteria from the Pseudomonas group are survivors in various environmental niches. For example, the bacteria secrete siderophores to capture ferric ions under deficiency conditions. Tripartite efflux systems are involved in the secretion of siderophores, which are also important for antibiotic resistance. For one of these efflux systems, the resistance-nodulation-cell division transporter ParXY from the model organism Pseudomonas putida KT2440, we show that it influences the secretion of the siderophore pyoverdine in addition to its already known involvement in antibiotic resistance. Phenotypically, its role in pyoverdine secretion is only apparent when other pyoverdine secretion systems are inactive. The results confirm that the different tripartite efflux systems have overlapping substrate specificities and can at least partially functionally substitute for each other, especially in important physiological activities such as supplying the cell with iron ions. This fact must be taken into account when developing specific inhibitors for tripartite efflux systems.
Collapse
Affiliation(s)
- Nicola Victoria Stein
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Michelle Eder
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Fabienne Burr
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Sarah Stoss
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Lorenz Holzner
- Plant Biochemistry and Physiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Hans-Henning Kunz
- Plant Biochemistry and Physiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Heinrich Jung
- Microbiology, Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
| |
Collapse
|
5
|
Todorović I, Abrouk D, Kyselková M, Lavire C, Rey M, Raičević V, Jovičić-Petrović J, Moënne-Loccoz Y, Muller D. Two novel species isolated from wheat rhizospheres in Serbia: Pseudomonas serbica sp. nov. and Pseudomonas serboccidentalis sp. nov. Syst Appl Microbiol 2023; 46:126425. [PMID: 37146562 DOI: 10.1016/j.syapm.2023.126425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/08/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
Pseudomonas strains IT-194P, IT-215P, IT-P366T and IT-P374T were isolated from the rhizospheres of wheat grown in soils sampled from different fields (some of them known to be disease-suppressive) located near Mionica, Serbia. Phylogenetic analysis of the 16S rRNA genes and of whole genome sequences showed that these strains belong to two potentially new species, one containing strains IT-P366T and IT-194P and clustering (whole genome analysis) next to P. umsongensis DSM16611T, and another species containing strains IT-P374T and IT-215P and clustering next to P. koreensis LMG21318T. Genome analysis confirmed the proposition of novel species, as ANI was below the threshold of 95% and dDDH below 70% for strains IT-P366T (compared with P. umsongensis DSM16611T) and IT-P374T (compared with P. koreensis LMG21318T). Unlike P. umsongensis DSM16611T, strains of P. serbica can grow on D-mannitol, but not on pectin, D-galacturonic acid, L-galactonic acid lactone and α-hydroxybutyric acid. In contrary to P. koreensis LMG21318T, strains of P. serboccidentalis can use sucrose, inosine and α-ketoglutaric acid (but not L-histidine) as carbon sources. Altogether, these results indicate the existence of two novel species for which we propose the names Pseudomonas serbica sp. nov., with the type strain IT-P366T (=CFBP 9060 T = LMG 32732 T = EML 1791 T) and Pseudomonas serboccidentalis sp. nov., with the type strain IT-P374T (=CFBP 9061 T = LMG 32734 T = EML 1792 T). Strains from this study presented a set of phytobeneficial functions modulating plant hormonal balance, plant nutrition and plant protection, suggesting a potential as Plant Growth-Promoting Rhizobacteria (PGPR).
Collapse
Affiliation(s)
- Irena Todorović
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France; University of Belgrade, Faculty of Agriculture, Department of Microbial Ecology, Nemanjina 6, 11080 Zemun, Belgrade, Serbia
| | - Danis Abrouk
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Martina Kyselková
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Céline Lavire
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Marjolaine Rey
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Vera Raičević
- University of Belgrade, Faculty of Agriculture, Department of Microbial Ecology, Nemanjina 6, 11080 Zemun, Belgrade, Serbia
| | - Jelena Jovičić-Petrović
- University of Belgrade, Faculty of Agriculture, Department of Microbial Ecology, Nemanjina 6, 11080 Zemun, Belgrade, Serbia
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Daniel Muller
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| |
Collapse
|
6
|
Acken KA, Li B. Pseudomonas virulence factor controls expression of virulence genes in Pseudomonas entomophila. PLoS One 2023; 18:e0284907. [PMID: 37200397 DOI: 10.1371/journal.pone.0284907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/11/2023] [Indexed: 05/20/2023] Open
Abstract
Quorum sensing is a communication strategy that bacteria use to collectively alter gene expression in response to cell density. Pathogens use quorum sensing systems to control activities vital to infection, such as the production of virulence factors and biofilm formation. The Pseudomonas virulence factor (pvf) gene cluster encodes a signaling system (Pvf) that is present in over 500 strains of proteobacteria, including strains that infect a variety of plant and human hosts. We have shown that Pvf regulates the production of secreted proteins and small molecules in the insect pathogen Pseudomonas entomophila L48. Here, we identified genes that are likely regulated by Pvf using the model strain P. entomophila L48 which does not contain other known quorum sensing systems. Pvf regulated genes were identified through comparing the transcriptomes of wildtype P. entomophila and a pvf deletion mutant (ΔpvfA-D). We found that deletion of pvfA-D affected the expression of approximately 300 genes involved in virulence, the type VI secretion system, siderophore transport, and branched chain amino acid biosynthesis. Additionally, we identified seven putative biosynthetic gene clusters with reduced expression in ΔpvfA-D. Our results indicate that Pvf controls multiple virulence mechanisms in P. entomophila L48. Characterizing genes regulated by Pvf will aid understanding of host-pathogen interactions and development of anti-virulence strategies against P. entomophila and other pvf-containing strains.
Collapse
Affiliation(s)
- Katie A Acken
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bo Li
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
7
|
Grosse C, Brandt N, Van Antwerpen P, Wintjens R, Matthijs S. Two new siderophores produced by Pseudomonas sp. NCIMB 10586: The anti-oomycete non-ribosomal peptide synthetase-dependent mupirochelin and the NRPS-independent triabactin. Front Microbiol 2023; 14:1143861. [PMID: 37032897 PMCID: PMC10080011 DOI: 10.3389/fmicb.2023.1143861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Globisporangium ultimum is an oomycetal pathogen causing damping-off on over 300 different plant hosts. Currently, as for many phytopathogens, its control relies in the use of chemicals with negative impact on health and ecosystems. Therefore, many biocontrol strategies are under investigation to reduce the use of fungicides. Results In this study, the soil bacterium Pseudomonas sp. NCIMB 10586 demonstrates a strong iron-repressed in vitro antagonism against G. ultimum MUCL 38045. This antagonism does not depend on the secretion of the broad-range antibiotic mupirocin or of the siderophore pyoverdine by the bacterial strain. The inhibitor molecule was identified as a novel non-ribosomal peptide synthetase (NRPS) siderophore named mupirochelin. Its putative structure bears similarities to other siderophores and bioactive compounds. The transcription of its gene cluster is affected by the biosynthesis of pyoverdine, the major known siderophore of the strain. Besides mupirochelin, we observed the production of a third and novel NRPS-independent siderophore (NIS), here termed triabactin. The iron-responsive transcriptional repression of the two newly identified siderophore gene clusters corroborates their role as iron scavengers. However, their respective contributions to the strain fitness are dissimilar. Bacterial growth in iron-deprived conditions is greatly supported by pyoverdine production and, to a lesser extent, by triabactin. On the contrary, mupirochelin does not contribute to the strain fitness under the studied conditions. Conclusion Altogether, we have demonstrated here that besides pyoverdine, Pseudomonas sp. NCIMB 10586 produces two newly identified siderophores, namely mupirochelin, a weak siderophore with strong antagonism activity against G. ultimum, and the potent siderophore triabactin.
Collapse
Affiliation(s)
- Camille Grosse
- Unité de Recherche NaturaMonas, Institut de Recherche LABIRIS, Brussels, Belgium
| | - Nathalie Brandt
- Unité de Recherche NaturaMonas, Institut de Recherche LABIRIS, Brussels, Belgium
| | - Pierre Van Antwerpen
- RD3 – Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - René Wintjens
- Unité Microbiologie, Chimie Bioorganique et Macromoléculaire, Department of Research in Drug Development (RD3), Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Sandra Matthijs
- Unité de Recherche NaturaMonas, Institut de Recherche LABIRIS, Brussels, Belgium
- *Correspondence: Sandra Matthijs,
| |
Collapse
|
8
|
Iron acquisition strategies in pseudomonads: mechanisms, ecology, and evolution. Biometals 2022:10.1007/s10534-022-00480-8. [PMID: 36508064 PMCID: PMC10393863 DOI: 10.1007/s10534-022-00480-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
AbstractIron is important for bacterial growth and survival, as it is a common co-factor in essential enzymes. Although iron is very abundant in the earth crust, its bioavailability is low in most habitats because ferric iron is largely insoluble under aerobic conditions and at neutral pH. Consequently, bacteria have evolved a plethora of mechanisms to solubilize and acquire iron from environmental and host stocks. In this review, I focus on Pseudomonas spp. and first present the main iron uptake mechanisms of this taxa, which involve the direct uptake of ferrous iron via importers, the production of iron-chelating siderophores, the exploitation of siderophores produced by other microbial species, and the use of iron-chelating compounds produced by plants and animals. In the second part of this review, I elaborate on how these mechanisms affect interactions between bacteria in microbial communities, and between bacteria and their hosts. This is important because Pseudomonas spp. live in diverse communities and certain iron-uptake strategies might have evolved not only to acquire this essential nutrient, but also to gain relative advantages over competitors in the race for iron. Thus, an integrative understanding of the mechanisms of iron acquisition and the eco-evolutionary dynamics they drive at the community level might prove most useful to understand why Pseudomonas spp., in particular, and many other bacterial species, in general, have evolved such diverse iron uptake repertoires.
Collapse
|
9
|
Costa-Gutierrez SB, Adler C, Espinosa-Urgel M, de Cristóbal RE. Pseudomonas putida and its close relatives: mixing and mastering the perfect tune for plants. Appl Microbiol Biotechnol 2022; 106:3351-3367. [PMID: 35488932 PMCID: PMC9151500 DOI: 10.1007/s00253-022-11881-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022]
Abstract
Abstract Plant growth–promoting rhizobacteria (PGPR) are a group of microorganisms of utmost interest in agricultural biotechnology for their stimulatory and protective effects on plants. Among the various PGPR species, some Pseudomonas putida strains combine outstanding traits such as phytohormone synthesis, nutrient solubilization, adaptation to different stress conditions, and excellent root colonization ability. In this review, we summarize the state of the art and the most relevant findings related to P. putida and its close relatives as PGPR, and we have compiled a detailed list of P. putida sensu stricto, sensu lato, and close relative strains that have been studied for their plant growth–promoting characteristics. However, the mere in vitro analysis of these characteristics does not guarantee correct plant performance under in vivo or field conditions. Therefore, the importance of studying adhesion and survival in the rhizosphere, as well as responses to environmental factors, is emphasized. Although numerous strains of this species have shown good performance in field trials, their use in commercial products is still very limited. Thus, we also analyze the opportunities and challenges related to the formulation and application of bioproducts based on these bacteria. Key points •The mini-review updates the knowledge on Pseudomonas putida as a PGPR. • Some rhizosphere strains are able to improve plant growth under stress conditions. • The metabolic versatility of this species encourages the development of a bioproduct.
Collapse
Affiliation(s)
- Stefanie Bernardette Costa-Gutierrez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano Y Pasaje Caseros, 4000, San Miguel de Tucumán, Tucumán, Argentina
| | - Conrado Adler
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) E Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, 461, 4000 San Miguel de Tucumán, Chacabuco, Tucumán, Argentina
| | - Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Ricardo Ezequiel de Cristóbal
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT) E Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, 461, 4000 San Miguel de Tucumán, Chacabuco, Tucumán, Argentina.
| |
Collapse
|
10
|
Passarelli-Araujo H, Jacobs SH, Franco GR, Venancio TM. Phylogenetic analysis and population structure of Pseudomonas alloputida. Genomics 2021; 113:3762-3773. [PMID: 34530104 DOI: 10.1016/j.ygeno.2021.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/16/2021] [Accepted: 09/11/2021] [Indexed: 11/26/2022]
Abstract
The Pseudomonas putida group comprises strains with biotechnological and clinical relevance. P. alloputida was proposed as a new species and highlighted the misclassification of P. putida. Nevertheless, the population structure of P. alloputida remained unexplored. We retrieved 11,025 Pseudomonas genomes and used P. alloputida Kh7T to delineate the species. The P. alloputida population structure comprises at least 7 clonal complexes (CCs). Clinical isolates are mainly found in CC4 and acquired resistance genes are present at low frequency in plasmids. Virulence profiles support the potential of CC7 members to outcompete other plant or human pathogens through a type VI secretion system. Finally, we found that horizontal gene transfer had an important role in shaping the ability of P. alloputida to bioremediate aromatic compounds such as toluene. Our results provide the grounds to understand P. alloputida genetic diversity and its potential for biotechnological applications.
Collapse
Affiliation(s)
- Hemanoel Passarelli-Araujo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| | - Sarah H Jacobs
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Glória R Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
11
|
Kretsch AM, Morgan GL, Acken KA, Barr SA, Li B. Pseudomonas Virulence Factor Pathway Synthesizes Autoinducers That Regulate the Secretome of a Pathogen. ACS Chem Biol 2021; 16:501-509. [PMID: 33595276 DOI: 10.1021/acschembio.0c00901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell-to-cell communication via chemical signals is an essential mechanism that pathogenic bacteria use to coordinate group behaviors and promote virulence. The Pseudomonas virulence factor (pvf) gene cluster is distributed in more than 500 strains of proteobacteria including both plant and human pathogens. The pvf cluster has been implicated in the production of signaling molecules important for virulence; however, the regulatory impact of these signaling molecules on virulence had not been elucidated. Using the insect pathogen Pseudomonas entomophila L48 as a model, we demonstrated that pvf-encoded biosynthetic enzymes produce PVF autoinducers that regulate the expression of pvf genes and a gene encoding the toxin monalysin via quorum sensing. In addition, PVF autoinducers regulate the expression of nearly 200 secreted and membrane proteins, including toxins, motility proteins, and components of the type VI secretion system, which play key roles in bacterial virulence, colonization, and competition with other microbes. Deletion of pvf also altered the secondary metabolome. Six major compounds upregulated by PVF autoinducers were isolated and structurally characterized, including three insecticidal 3-indolyl oxazoles, the labradorins, and three antimicrobial pyrrolizidine alkaloids, the pyreudiones. The signaling properties of PVF autoinducers and their wide-ranging regulatory effects indicate multifaceted roles of PVF in controlling cell physiology and promoting virulence. The broad genome distribution of pvf suggests that PVF-mediated signaling is relevant to many bacteria of agricultural and biomedical significance.
Collapse
|
12
|
Sambyal K, Singh RV. Production of salicylic acid; a potent pharmaceutically active agent and its future prospects. Crit Rev Biotechnol 2021; 41:394-405. [PMID: 33618601 DOI: 10.1080/07388551.2020.1869687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Salicylic acid is one of the potent pharmaceutical organic acids that have various applications in the medical field. It acts as a plant hormone and helps in plant's growth & defence against pathogens. Beyond its numerous functions in plants, SA has great pharmaceutical importance since it acts as an intermediate for the synthesis of various drugs and dyes e.g. aspirin. At the industrial scale, chemical methods are used for the synthesis of SA but presently, several other sources are available that have the capability to alternate the chemical process which will be a step forward toward green synthesis. Aim of this paper is to provide comprehensive knowledge of SA production and its biological application.
Collapse
Affiliation(s)
- Krishika Sambyal
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab
| | | |
Collapse
|
13
|
Kügler S, Cooper RE, Boessneck J, Küsel K, Wichard T. Rhizobactin B is the preferred siderophore by a novel Pseudomonas isolate to obtain iron from dissolved organic matter in peatlands. Biometals 2020; 33:415-433. [PMID: 33026607 PMCID: PMC7676072 DOI: 10.1007/s10534-020-00258-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/30/2020] [Indexed: 01/12/2023]
Abstract
Bacteria often release diverse iron-chelating compounds called siderophores to scavenge iron from the environment for many essential biological processes. In peatlands, where the biogeochemical cycle of iron and dissolved organic matter (DOM) are coupled, bacterial iron acquisition can be challenging even at high total iron concentrations. We found that the bacterium Pseudomonas sp. FEN, isolated from an Fe-rich peatland in the Northern Bavarian Fichtelgebirge (Germany), released an unprecedented siderophore for its genus. High-resolution mass spectrometry (HR-MS) using metal isotope-coded profiling (MICP), MS/MS experiments, and nuclear magnetic resonance spectroscopy (NMR) identified the amino polycarboxylic acid rhizobactin and a novel derivative at even higher amounts, which was named rhizobactin B. Interestingly, pyoverdine-like siderophores, typical for this genus, were not detected. With peat water extract (PWE), studies revealed that rhizobactin B could acquire Fe complexed by DOM, potentially through a TonB-dependent transporter, implying a higher Fe binding constant of rhizobactin B than DOM. The further uptake of Fe-rhizobactin B by Pseudomonas sp. FEN suggested its role as a siderophore. Rhizobactin B can complex several other metals, including Al, Cu, Mo, and Zn. The study demonstrates that the utilization of rhizobactin B can increase the Fe availability for Pseudomonas sp. FEN through ligand exchange with Fe-DOM, which has implications for the biogeochemical cycling of Fe in this peatland.
Collapse
Affiliation(s)
- Stefan Kügler
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, 07743, Jena, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Rebecca E Cooper
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Johanna Boessneck
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, 07743, Jena, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Kirsten Küsel
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743, Jena, Germany
- The German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, 07743, Jena, Germany.
| |
Collapse
|
14
|
David SR, Geoffroy VA. A Review of Asbestos Bioweathering by Siderophore-Producing Pseudomonas: A Potential Strategy of Bioremediation. Microorganisms 2020; 8:microorganisms8121870. [PMID: 33256219 PMCID: PMC7761222 DOI: 10.3390/microorganisms8121870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Abstract
Asbestos, silicate minerals present in soil and used for building constructions for many years, are highly toxic due primarily to the presence of high concentrations of the transition metal iron. Microbial weathering of asbestos occurs through various alteration mechanisms. Siderophores, complex agents specialized in metal chelation, are common mechanisms described in mineral alteration. Solubilized metals from the fiber can serve as micronutrients for telluric microorganisms. The review focuses on the bioweathering of asbestos fibers, found in soil or manufactured by humans with gypsum (asbestos flocking) or cement, by siderophore-producing Pseudomonas. A better understanding of the interactions between asbestos and bacteria will give a perspective of a detoxification process inhibiting asbestos toxicity.
Collapse
Affiliation(s)
| | - Valérie A. Geoffroy
- Department of Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, Illkirch, 67413 Strasbourg, France
- Correspondence:
| |
Collapse
|
15
|
Gu Y, Ma Y, Wang J, Xia Z, Wei H. Genomic insights into a plant growth-promoting Pseudomonas koreensis strain with cyclic lipopeptide-mediated antifungal activity. Microbiologyopen 2020; 9:e1092. [PMID: 32537904 PMCID: PMC7520995 DOI: 10.1002/mbo3.1092] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 11/06/2022] Open
Abstract
Strain S150 was isolated from the tobacco rhizosphere as a plant growth-promoting rhizobacterium. It increased plant fresh weight significantly and lateral root development, and it antagonized plant pathogenic fungi but not phytobacteria. Further tests showed that strain S150 solubilized organic phosphate and produced ammonia, siderophore, protease, amylase, and cellulase, but it did not produce indole-3-acetic acid. Using morphology, physiological characteristics, and multi-locus sequence analysis, strain S150 was identified as Pseudomonas koreensis. The complete genome of strain S150 was sequenced, and it showed a single circular chromosome of 6,304,843 bp with a 61.09% G + C content. The bacterial genome contained 5,454 predicted genes that occupied 87.7% of the genome. Venn diagrams of the identified orthologous clusters of P. koreensis S150 with the other three sequenced P. koreensis strains revealed up to 4,167 homologous gene clusters that were shared among them, and 21 orthologous clusters were only present in the genome of strain S150. Genome mining of the bacterium P. koreensis S150 showed that the strain possessed 10 biosynthetic gene clusters for secondary metabolites, which included four clusters of non-ribosomal peptide synthetases (NRPSs) involved in the biosynthesis of cyclic lipopeptides (CLPs). One of the NRPSs possibly encoded lokisin, a cyclic lipopeptide produced by fluorescent Pseudomonas. Genomic mutation of the lokA gene, which is one of the three structural NRPS genes for lokisin in strain S150, led to a deficiency in fungal antagonism that could be restored fully by gene complementation. The results suggested that P. koreensis S150 is a novel plant growth-promoting agent with specific cyclic lipopeptides and contains a lokisin-encoding gene cluster that is dominant against plant fungal pathogens.
Collapse
Affiliation(s)
- Yilin Gu
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesKey Laboratory of Microbial Resources Collection and PreservationMinistry of Agriculture and Rural AffairsBeijingChina
| | - Yi‐Nan Ma
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesKey Laboratory of Microbial Resources Collection and PreservationMinistry of Agriculture and Rural AffairsBeijingChina
| | - Jing Wang
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesKey Laboratory of Microbial Resources Collection and PreservationMinistry of Agriculture and Rural AffairsBeijingChina
| | - Zhenyuan Xia
- Yunnan Academy of Tobacco Agricultural ScienceKunmingChina
| | - Hai‐Lei Wei
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesKey Laboratory of Microbial Resources Collection and PreservationMinistry of Agriculture and Rural AffairsBeijingChina
| |
Collapse
|
16
|
Henríquez T, Stein NV, Jung H. Resistance to Bipyridyls Mediated by the TtgABC Efflux System in Pseudomonas putida KT2440. Front Microbiol 2020; 11:1974. [PMID: 32973714 PMCID: PMC7461776 DOI: 10.3389/fmicb.2020.01974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/27/2020] [Indexed: 01/26/2023] Open
Abstract
Resistance-nodulation-division (RND) transporters are involved in antibiotic resistance and have a broad substrate specificity. However, the physiological significance of these efflux pumps is not fully understood. Here, we have investigated the role of the RND system TtgABC in resistance to metal ion chelators in the soil bacterium Pseudomonas putida KT2440. We observed that the combined action of an RND inhibitor and the chelator 2,2'-bipyridyl inhibited bacterial growth. In addition, the deletion of ttgB made the strain susceptible to 2,2'-bipyridyl and natural bipyridyl derivatives such as caerulomycin A, indicating that TtgABC is required for detoxification of compounds of the bipyridyl family. Searching for the basis of growth inhibition by bipyridyls, we found reduced adenosine triphosphate (ATP) levels in the ttgB mutant compared to the wild type. Furthermore, the expression of genes related to iron acquisition and the synthesis of the siderophore pyoverdine were reduced in the mutant compared to the wild type. Investigating the possibility that 2,2'-bipyridyl in the ttgB mutant mediates iron accumulation in cells (which would cause the upregulation of genes involved in oxidative stress via the Fenton reaction), we measured the expression of genes coding for proteins involved in intracellular iron storage and the response to oxidative stress. However, none of the genes was significantly upregulated. In a further search for a possible link between 2,2'-bipyridyl and the observed phenotypes, we considered the possibility that the ion chelator limits the intracellular availability of metabolically important metal ions. In this context, we found that the addition of copper restores the growth of the ttgB mutant and the production of pyoverdine, suggesting a relationship between copper availability and iron acquisition. Taken together, the results suggest that detoxification of metal chelating compounds of the bipyridyl family produced by other bacteria or higher ordered organisms is one of the native functions of the RND efflux pump TtgABC. Without the efflux pump, these compounds may interfere with cell ion homeostasis with adverse effects on cell metabolism, including siderophore production. Finally, our results suggest that TtgABC is involved in resistance to bile salts and deoxycholate.
Collapse
Affiliation(s)
- Tania Henríquez
- Mikrobiologie, Biozentrum, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Heinrich Jung
- Mikrobiologie, Biozentrum, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
17
|
Schalk IJ, Rigouin C, Godet J. An overview of siderophore biosynthesis among fluorescent Pseudomonads and new insights into their complex cellular organization. Environ Microbiol 2020; 22:1447-1466. [PMID: 32011068 DOI: 10.1111/1462-2920.14937] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 01/02/2023]
Abstract
Siderophores are iron-chelating molecules produced by bacteria to access iron, a key nutrient. These compounds have highly diverse chemical structures, with various chelating groups. They are released by bacteria into their environment to scavenge iron and bring it back into the cells. The biosynthesis of siderophores requires complex enzymatic processes and expression of the enzymes involved is very finely regulated by iron availability and diverse transcriptional regulators. Recent data have also highlighted the organization of the enzymes involved in siderophore biosynthesis into siderosomes, multi-enzymatic complexes involved in siderophore synthesis. An understanding of siderophore biosynthesis is of great importance, as these compounds have many potential biotechnological applications because of their metal-chelating properties and their key role in bacterial growth and virulence. This review focuses on the biosynthesis of siderophores produced by fluorescent Pseudomonads, bacteria capable of colonizing a large variety of ecological niches. They are characterized by the production of chromopeptide siderophores, called pyoverdines, which give the typical green colour characteristic of fluorescent pseudomonad cultures. Secondary siderophores are also produced by these strains and can have highly diverse structures (such as pyochelins, pseudomonine, yersiniabactin, corrugatin, achromobactin and quinolobactin).
Collapse
Affiliation(s)
- Isabelle J Schalk
- CNRS, UMR7242, ESBS, Illkirch, Strasbourg, France.,Université de Strasbourg, UMR7242, ESBS, Illkirch, Strasbourg, France
| | - Coraline Rigouin
- CNRS, UMR7242, ESBS, Illkirch, Strasbourg, France.,Université de Strasbourg, UMR7242, ESBS, Illkirch, Strasbourg, France
| | - Julien Godet
- Université de Strasbourg, Laboratoire de BioImagerie et Pathologies, UMR CNRS, 7021, Illkirch, France
| |
Collapse
|
18
|
Hofmann M, Heine T, Schulz V, Hofmann S, Tischler D. Draft genomes and initial characteriaztion of siderophore producing pseudomonads isolated from mine dump and mine drainage. ACTA ACUST UNITED AC 2019; 25:e00403. [PMID: 31867228 PMCID: PMC6906695 DOI: 10.1016/j.btre.2019.e00403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
High and stable siderophore production. Identification of siderophore biosynthesis gene clusters. Beech wood hydrolysate as alternative carbon source.
Siderophores are of high interest for biotechnological, pharmaceutical, agricultural and industrial applications. Although they are synthesized by various organisms, the yield is usually low which hindrances their suitability for broad range uses. Thus, it is necessary to identify novel producers and to increase the understanding of the biosynthesis pathways. Herein we report the isolation of two novel Pseudomonas strains and the identification of the gene clusters for the biosynthesis of pseudomonine as well as pyochelin and pyoverdine.
Collapse
Affiliation(s)
- Marika Hofmann
- Institute of Biosciences, Chemistry and Physics Faculty, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Thomas Heine
- Institute of Biosciences, Chemistry and Physics Faculty, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Vivian Schulz
- Institute of Biosciences, Chemistry and Physics Faculty, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Sarah Hofmann
- Institute of Biosciences, Chemistry and Physics Faculty, TU Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Dirk Tischler
- Institute of Biosciences, Chemistry and Physics Faculty, TU Bergakademie Freiberg, 09599 Freiberg, Germany.,Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
19
|
Nogales J, Mueller J, Gudmundsson S, Canalejo FJ, Duque E, Monk J, Feist AM, Ramos JL, Niu W, Palsson BO. High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities. Environ Microbiol 2019; 22:255-269. [PMID: 31657101 PMCID: PMC7078882 DOI: 10.1111/1462-2920.14843] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/27/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
Genome-scale reconstructions of metabolism are computational species-specific knowledge bases able to compute systemic metabolic properties. We present a comprehensive and validated reconstruction of the biotechnologically relevant bacterium Pseudomonas putida KT2440 that greatly expands computable predictions of its metabolic states. The reconstruction represents a significant reactome expansion over available reconstructed bacterial metabolic networks. Specifically, iJN1462 (i) incorporates several hundred additional genes and associated reactions resulting in new predictive capabilities, including new nutrients supporting growth; (ii) was validated by in vivo growth screens that included previously untested carbon (48) and nitrogen (41) sources; (iii) yielded gene essentiality predictions showing large accuracy when compared with a knock-out library and Bar-seq data; and (iv) allowed mapping of its network to 82 P. putida sequenced strains revealing functional core that reflect the large metabolic versatility of this species, including aromatic compounds derived from lignin. Thus, this study provides a thoroughly updated metabolic reconstruction and new computable phenotypes for P. putida, which can be leveraged as a first step toward understanding the pan metabolic capabilities of Pseudomonas.
Collapse
Affiliation(s)
- Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Joshua Mueller
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Francisco J Canalejo
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Estrella Duque
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Jonathan Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Juan Luis Ramos
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Wei Niu
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Cremer J, Melbinger A, Wienand K, Henriquez T, Jung H, Frey E. Cooperation in Microbial Populations: Theory and Experimental Model Systems. J Mol Biol 2019; 431:4599-4644. [PMID: 31634468 DOI: 10.1016/j.jmb.2019.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 01/07/2023]
Abstract
Cooperative behavior, the costly provision of benefits to others, is common across all domains of life. This review article discusses cooperative behavior in the microbial world, mediated by the exchange of extracellular products called public goods. We focus on model species for which the production of a public good and the related growth disadvantage for the producing cells are well described. To unveil the biological and ecological factors promoting the emergence and stability of cooperative traits we take an interdisciplinary perspective and review insights gained from both mathematical models and well-controlled experimental model systems. Ecologically, we include crucial aspects of the microbial life cycle into our analysis and particularly consider population structures where ensembles of local communities (subpopulations) continuously emerge, grow, and disappear again. Biologically, we explicitly consider the synthesis and regulation of public good production. The discussion of the theoretical approaches includes general evolutionary concepts, population dynamics, and evolutionary game theory. As a specific but generic biological example, we consider populations of Pseudomonas putida and its regulation and use of pyoverdines, iron scavenging molecules, as public goods. The review closes with an overview on cooperation in spatially extended systems and also provides a critical assessment of the insights gained from the experimental and theoretical studies discussed. Current challenges and important new research opportunities are discussed, including the biochemical regulation of public goods, more realistic ecological scenarios resembling native environments, cell-to-cell signaling, and multispecies communities.
Collapse
Affiliation(s)
- J Cremer
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands
| | - A Melbinger
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - K Wienand
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - T Henriquez
- Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, Martinsried, Germany
| | - H Jung
- Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, Martinsried, Germany.
| | - E Frey
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany.
| |
Collapse
|
21
|
Genomic analysis of siderophore β-hydroxylases reveals divergent stereocontrol and expands the condensation domain family. Proc Natl Acad Sci U S A 2019; 116:19805-19814. [PMID: 31527229 DOI: 10.1073/pnas.1903161116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genome mining of biosynthetic pathways streamlines discovery of secondary metabolites but can leave ambiguities in the predicted structures, which must be rectified experimentally. Through coupling the reactivity predicted by biosynthetic gene clusters with verified structures, the origin of the β-hydroxyaspartic acid diastereomers in siderophores is reported herein. Two functional subtypes of nonheme Fe(II)/α-ketoglutarate-dependent aspartyl β-hydroxylases are identified in siderophore biosynthetic gene clusters, which differ in genomic organization-existing either as fused domains (IβHAsp) at the carboxyl terminus of a nonribosomal peptide synthetase (NRPS) or as stand-alone enzymes (TβHAsp)-and each directs opposite stereoselectivity of Asp β-hydroxylation. The predictive power of this subtype delineation is confirmed by the stereochemical characterization of β-OHAsp residues in pyoverdine GB-1, delftibactin, histicorrugatin, and cupriachelin. The l-threo (2S, 3S) β-OHAsp residues of alterobactin arise from hydroxylation by the β-hydroxylase domain integrated into NRPS AltH, while l-erythro (2S, 3R) β-OHAsp in delftibactin arises from the stand-alone β-hydroxylase DelD. Cupriachelin contains both l-threo and l-erythro β-OHAsp, consistent with the presence of both types of β-hydroxylases in the biosynthetic gene cluster. A third subtype of nonheme Fe(II)/α-ketoglutarate-dependent enzymes (IβHHis) hydroxylates histidyl residues with l-threo stereospecificity. A previously undescribed, noncanonical member of the NRPS condensation domain superfamily is identified, named the interface domain, which is proposed to position the β-hydroxylase and the NRPS-bound amino acid prior to hydroxylation. Through mapping characterized β-OHAsp diastereomers to the phylogenetic tree of siderophore β-hydroxylases, methods to predict β-OHAsp stereochemistry in silico are realized.
Collapse
|
22
|
Suárez-Estrella F, Jurado M, López M, López-González J, Moreno J. Role of bacteria isolated from a plant waste-based compost producing bioactive substances in the control of bacterial spot syndrome caused by Xanthomonas campestris pv. vesicatoria. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Pleiotropic Effects of c-di-GMP Content in Pseudomonas syringae. Appl Environ Microbiol 2019; 85:AEM.00152-19. [PMID: 30850427 PMCID: PMC6498148 DOI: 10.1128/aem.00152-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/27/2019] [Indexed: 12/27/2022] Open
Abstract
The present work comprehensively analyzed the transcriptome and phenotypes that were regulated by c-di-GMP in P. syringae. Given that the majority of diguanylate cyclases and phosphodiesterases have not been characterized in P. syringae, this work provided a very useful database for the future study on regulatory mechanism (especially its relationship with T3SS) of c-di-GMP in P. syringae. In particular, we identified three promoters that were sensitive to elevated c-di-GMP levels and inserted them into luciferase-based reporters that effectively respond to intracellular levels of c-di-GMP in P. syringae, which could be used as an economic and efficient way to measure relative c-di-GMP levels in vivo in the future. Although the ubiquitous bacterial secondary messenger cyclic diguanylate (c-di-GMP) has important cellular functions in a wide range of bacteria, its function in the model plant pathogen Pseudomonas syringae remains largely elusive. To this end, we overexpressed Escherichia coli diguanylate cyclase (YedQ) and phosphodiesterase (YhjH) in P. syringae, resulting in high and low in vivo levels of c-di-GMP, respectively. Via genome-wide RNA sequencing of these two strains, we found that c-di-GMP regulates (i) fliN, fliE, and flhA, which are associated with flagellar assembly; (ii) alg8 and alg44, which are related to the exopolysaccharide biosynthesis pathway; (iii) pvdE, pvdP, and pvsA, which are associated with the siderophore biosynthesis pathway; and (iv) sodA, which encodes a superoxide dismutase. In particular, we identified three promoters that are sensitive to elevated levels of c-di-GMP and inserted them into luciferase-based reporters that respond effectively to the c-di-GMP levels in P. syringae; these promoters could be useful in the measurement of in vivo levels of c-di-GMP in real time. Further phenotypic assays validated the RNA sequencing (RNA-seq) results and confirmed the effect on c-di-GMP-associated pathways, such as repressing the type III secretion system (T3SS) and motility while inducing biofilm production, siderophore production, and oxidative stress resistance. Taken together, these results demonstrate that c-di-GMP regulates the virulence and stress response in P. syringae, which suggests that tuning its level could be a new strategy to protect plants from attacks by this pathogen. IMPORTANCE The present work comprehensively analyzed the transcriptome and phenotypes that were regulated by c-di-GMP in P. syringae. Given that the majority of diguanylate cyclases and phosphodiesterases have not been characterized in P. syringae, this work provided a very useful database for the future study on regulatory mechanism (especially its relationship with T3SS) of c-di-GMP in P. syringae. In particular, we identified three promoters that were sensitive to elevated c-di-GMP levels and inserted them into luciferase-based reporters that effectively respond to intracellular levels of c-di-GMP in P. syringae, which could be used as an economic and efficient way to measure relative c-di-GMP levels in vivo in the future.
Collapse
|
24
|
Henríquez T, Stein NV, Jung H. PvdRT-OpmQ and MdtABC-OpmB efflux systems are involved in pyoverdine secretion in Pseudomonas putida KT2440. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:98-106. [PMID: 30346656 DOI: 10.1111/1758-2229.12708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Fluorescent pseudomonads produce and secrete a siderophore termed pyoverdine to capture iron when it becomes scarce. The molecular basis of pyoverdine secretion is only partially understood. Here, we investigate the role of the putative PvdRT-OpmQ and MdtABC-OpmB efflux systems in pyoverdine secretion in the soil bacterium Pseudomonas putida KT2440. Expression from the respective promoters is stimulated by iron limitation albeit to varying degrees. Deletion of pvdRT-opmQ leads to reduced amounts of pyoverdine in the medium and decreased growth under iron limitation. Deletion of mdtABC-opmB does not affect growth. However, when both systems are deleted, strong effects on growth and pyoverdine secretion (yellow colony phenotype, less pyoverdine in medium, more pyoverdine in the periplasm) are observed. Overexpression of pvdRT-opmQ causes the opposite effect. These results provide first evidence for an involvement of the multidrug efflux system MdtABC-OpmB in pyoverdine secretion. In addition, the PvdRT-OpmQ system was shown to contribute to pyoverdine secretion in P. putida KT2440, extending previous investigations on its role in Pseudomonas species. Since the double deletion mutant still secrets pyoverdine, at least one additional efflux system participates in the transport of the siderophore. Furthermore, our results suggest a contribution of both efflux systems to ampicillin resistance.
Collapse
Affiliation(s)
- Tania Henríquez
- Ludwig-Maximilians-Universität München, Biozentrum, Martinsried, Germany
| | | | - Heinrich Jung
- Ludwig-Maximilians-Universität München, Biozentrum, Martinsried, Germany
| |
Collapse
|
25
|
Sánchez-Hevia DL, Yuste L, Moreno R, Rojo F. Influence of the Hfq and Crc global regulators on the control of iron homeostasis inPseudomonas putida. Environ Microbiol 2018; 20:3484-3503. [DOI: 10.1111/1462-2920.14263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Dione L. Sánchez-Hevia
- Departamento de Biotecnología Microbiana; Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco; Madrid, 28049 Spain
| | - Luis Yuste
- Departamento de Biotecnología Microbiana; Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco; Madrid, 28049 Spain
| | - Renata Moreno
- Departamento de Biotecnología Microbiana; Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco; Madrid, 28049 Spain
| | - Fernando Rojo
- Departamento de Biotecnología Microbiana; Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco; Madrid, 28049 Spain
| |
Collapse
|
26
|
β-Hydroxyaspartic acid in siderophores: biosynthesis and reactivity. J Biol Inorg Chem 2018; 23:957-967. [DOI: 10.1007/s00775-018-1584-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/20/2018] [Indexed: 01/18/2023]
|
27
|
Becker F, Wienand K, Lechner M, Frey E, Jung H. Interactions mediated by a public good transiently increase cooperativity in growing Pseudomonas putida metapopulations. Sci Rep 2018; 8:4093. [PMID: 29511247 PMCID: PMC5840296 DOI: 10.1038/s41598-018-22306-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/21/2018] [Indexed: 01/13/2023] Open
Abstract
Bacterial communities have rich social lives. A well-established interaction involves the exchange of a public good in Pseudomonas populations, where the iron-scavenging compound pyoverdine, synthesized by some cells, is shared with the rest. Pyoverdine thus mediates interactions between producers and non-producers and can constitute a public good. This interaction is often used to test game theoretical predictions on the "social dilemma" of producers. Such an approach, however, underestimates the impact of specific properties of the public good, for example consequences of its accumulation in the environment. Here, we experimentally quantify costs and benefits of pyoverdine production in a specific environment, and build a model of population dynamics that explicitly accounts for the changing significance of accumulating pyoverdine as chemical mediator of social interactions. The model predicts that, in an ensemble of growing populations (metapopulation) with different initial producer fractions (and consequently pyoverdine contents), the global producer fraction initially increases. Because the benefit of pyoverdine declines at saturating concentrations, the increase need only be transient. Confirmed by experiments on metapopulations, our results show how a changing benefit of a public good can shape social interactions in a bacterial population.
Collapse
Affiliation(s)
- Felix Becker
- Microbiology, Department Biology 1, Ludwig-Maximilians-Universität Munich, Grosshaderner Strasse 2-4, D-82152 Martinsried, Germany
| | - Karl Wienand
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität, Theresienstrasse 37, D-80333, Munich, Germany
| | - Matthias Lechner
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität, Theresienstrasse 37, D-80333, Munich, Germany
| | - Erwin Frey
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for Nanoscience, Ludwig-Maximilians-Universität, Theresienstrasse 37, D-80333, Munich, Germany.
| | - Heinrich Jung
- Microbiology, Department Biology 1, Ludwig-Maximilians-Universität Munich, Grosshaderner Strasse 2-4, D-82152 Martinsried, Germany.
| |
Collapse
|
28
|
Balado M, Segade Y, Rey D, Osorio CR, Rodríguez J, Lemos ML, Jiménez C. Identification of the Ferric-Acinetobactin Outer Membrane Receptor in Aeromonas salmonicida subsp. salmonicida and Structure-Activity Relationships of Synthetic Acinetobactin Analogues. ACS Chem Biol 2017; 12:479-493. [PMID: 27936588 DOI: 10.1021/acschembio.6b00805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aeromonas salmonicida subsp. salmonicida, the causative agent of furunculosis in several fish species, produces acinetobactin and amonabactin as siderophores. In a previous study, we chemically characterized these siderophores and proposed a biosynthetic pathway based on genetic analysis. However, the internalization mechanisms of ferric-acinetobactin and ferric-amonabactin remain largely unknown. In the present study, we demonstrate that the outer membrane protein FstB is the ferric-acinetobactin receptor in A. salmonicida since an fstB defective mutant is unable to grow under iron limitation and does not use acinetobactin as an iron source. In order to study the effect that structural changes in acinetobactin have on its siderophore activity, a collection of acinetobactin-based analogues was synthesized, including its enantiomer and four demethylated derivatives. The biological activity of these analogues on an fstB(+) strain compared to an fstB(-) strain allowed structure-activity relationships to be elucidated. We found a lack of enantiomer preference on the siderophore activity of acinetobactin over A. salmonicida or on the molecular recognition by FstB protein receptor. In addition, it was observed that A. salmonicida could not use acinetobactin analogues when imidazole or a similar heterocyclic ring was absent from the structure. Surprisingly, removal of the methyl group at the isoxazolidinone ring induced a higher biological activity, thus suggesting alternative route(s) of entry into the cell that must be further investigated. It is proposed that some of the synthetic acinetobactin analogues described here could be used as starting points in the development of novel drugs against A. salmonicida and probably against other acinetobactin producers like the human pathogen Acinetobacter baumannii.
Collapse
Affiliation(s)
- Miguel Balado
- Department
of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| | - Yuri Segade
- Centro
de Investigacións Científicas Avanzadas (CICA), Departamento
de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Diego Rey
- Department
of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| | - Carlos R. Osorio
- Department
of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| | - Jaime Rodríguez
- Centro
de Investigacións Científicas Avanzadas (CICA), Departamento
de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Manuel L. Lemos
- Department
of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| | - Carlos Jiménez
- Centro
de Investigacións Científicas Avanzadas (CICA), Departamento
de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
29
|
Molina L, Geoffroy VA, Segura A, Udaondo Z, Ramos JL. Iron Uptake Analysis in a Set of Clinical Isolates of Pseudomonas putida. Front Microbiol 2016; 7:2100. [PMID: 28082966 PMCID: PMC5187384 DOI: 10.3389/fmicb.2016.02100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/12/2016] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas putida strains are frequent inhabitants of soil and aquatic niches and they are occasionally isolated from hospital environments. As the available iron sources in human tissues, edaphic, and aquatic niches are different, we have analyzed iron-uptake related genes in different P. putida strains that were isolated from all these environments. We found that these isolates can be grouped into different clades according to the genetics of siderophore biosynthesis and recycling. The pyoverdine locus of the six P. putida clinical isolates that have so far been completely sequenced, are not closely related; three strains (P. putida HB13667, HB3267, and NBRC14164T) are grouped in Clade I and the other three in Clade II, suggesting possible different origins and evolution. In one clinical strain, P. putida HB4184, the production of siderophores is induced under high osmolarity conditions. The pyoverdine locus in this strain is closely related to that of strain P. putida HB001 which was isolated from sandy shore soil of the Yellow Sea in Korean marine sand, suggesting their possible origin, and evolution. The acquisition of two unique TonB-dependent transporters for xenosiderophore acquisition, similar to those existing in the opportunistic pathogen P. aeruginosa PAO, is an interesting adaptation trait of the clinical strain P. putida H8234 that may confer adaptive advantages under low iron availability conditions.
Collapse
Affiliation(s)
- Lázaro Molina
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Valérie A Geoffroy
- Centre National de la Recherche Scientifique, UMR 7242, Université de Strasbourg, (ESBS) Illkirch, France
| | - Ana Segura
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Zulema Udaondo
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| | - Juan-Luis Ramos
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas Granada, Spain
| |
Collapse
|
30
|
Canchignia H, Altimira F, Montes C, Sánchez E, Tapia E, Miccono M, Espinoza D, Aguirre C, Seeger M, Prieto H. Candidate nematicidal proteins in a new Pseudomonas veronii isolate identified by its antagonistic properties against Xiphinema index. J GEN APPL MICROBIOL 2016; 63:11-21. [PMID: 27989999 DOI: 10.2323/jgam.2016.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The nematode Xiphinema index affects grape vines and transmits important viruses associated with fanleaf degeneration. Pseudomonas spp. are an extensive bacterial group in which important biodegradation and/or biocontrol properties can occur for several strains in the group. The aim of this study was to identify new Pseudomonas isolates with antagonist activity against X. index. Forty bacterial isolates were obtained from soil and root samples from Chilean vineyards. Thirteen new fluorescent pseudomonads were found and assessed for their antagonistic capability. The nematicide Pseudomonas protegens CHA0 was used as a control. Challenges of nematode individuals in King's B semi-solid agar Petri dishes facilitated the identification of the Pseudomonas veronii isolate R4, as determined by a 16S rRNA sequence comparison. This isolate was as effective as CHA0 as an antagonist of X. index, although it had a different lethality kinetic. Milk-induced R4 cultures exhibited protease and lipase activities in cell supernatants using both gelatin/tributyrin Petri dish assays and zymograms. Three proteins with these activities were isolated and subjected to mass spectrometry. Amino acid partial sequences enabled the identification of a 49-kDa protease similar to metalloprotease AprA and two lipases of 50 kDa and 69 kDa similar to LipA and ExoU, respectively. Electron microscopy analyses of challenged nematodes revealed degraded cuticle after R4 supernatant treatment. These results represent a new and unexplored property in this species associated with the presence of secretable lipases and protease, similar to characterized enzymes present in biocontrol pseudomonads.
Collapse
Affiliation(s)
- Hayron Canchignia
- Biotechnology Doctoral Program, Universidad Técnica Federico Santa María-Pontificia Universidad Católica de Valparaíso
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Henry PM, Gebben SJ, Tech JJ, Yip JL, Leveau JHJ. Inhibition of Xanthomonas fragariae, Causative Agent of Angular Leaf Spot of Strawberry, through Iron Deprivation. Front Microbiol 2016; 7:1589. [PMID: 27790193 PMCID: PMC5062028 DOI: 10.3389/fmicb.2016.01589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/22/2016] [Indexed: 12/16/2022] Open
Abstract
In commercial production settings, few options exist to prevent or treat angular leaf spot (ALS) of strawberry, a disease of economic importance and caused by the bacterial pathogen Xanthomonas fragariae. In the process of isolating and identifying X. fragariae bacteria from symptomatic plants, we observed growth inhibition of X. fragariae by bacterial isolates from the same leaf macerates. Identified as species of Pseudomonas and Rhizobium, these isolates were confirmed to suppress growth of X. fragariae in agar overlay plates and in microtiter plate cultures, as did our reference strain Pseudomonas putida KT2440. Screening of a transposon mutant library of KT2440 revealed that disruption of the biosynthetic pathway for the siderophore pyoverdine resulted in complete loss of X. fragariae antagonism, suggesting iron competition as a mode of action. Antagonism could be replicated on plate and in culture by addition of purified pyoverdine or by addition of the chelating agents tannic acid and dipyridyl, while supplementing the medium with iron negated the inhibitory effects of pyoverdine, tannic acid and dipyridyl. When co-inoculated with tannic acid onto strawberry plants, X. fragariae's ability to cause foliar symptoms was greatly reduced, suggesting a possible opportunity for iron-based management of ALS. We discuss our findings in the context of 'nutritional immunity,' the idea that plant hosts restrict pathogen access to iron, either directly, or indirectly through their associated microbiota.
Collapse
Affiliation(s)
| | | | | | | | - Johan H. J. Leveau
- Department of Plant Pathology, University of California at Davis, DavisCA, USA
| |
Collapse
|
32
|
Selective ciprofloxacin antibiotic detection by fluorescent siderophore pyoverdin. Biosens Bioelectron 2016; 81:274-279. [DOI: 10.1016/j.bios.2016.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 11/17/2022]
|
33
|
Pyoverdine and histicorrugatin-mediated iron acquisition in Pseudomonas thivervalensis. Biometals 2016; 29:467-85. [DOI: 10.1007/s10534-016-9929-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/19/2016] [Indexed: 12/17/2022]
|
34
|
Molina L, Udaondo Z, Duque E, Fernández M, Bernal P, Roca A, de la Torre J, Ramos JL. Specific Gene Loci of Clinical Pseudomonas putida Isolates. PLoS One 2016; 11:e0147478. [PMID: 26820467 PMCID: PMC4731212 DOI: 10.1371/journal.pone.0147478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/05/2016] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas putida are ubiquitous inhabitants of soils and clinical isolates of this species have been seldom described. Clinical isolates show significant variability in their ability to cause damage to hosts because some of them are able to modulate the host’s immune response. In the current study, comparisons between the genomes of different clinical and environmental strains of P. putida were done to identify genetic clusters shared by clinical isolates that are not present in environmental isolates. We show that in clinical strains specific genes are mostly present on transposons, and that this set of genes exhibit high identity with genes found in pathogens and opportunistic pathogens. The set of genes prevalent in P. putida clinical isolates, and absent in environmental isolates, are related with survival under oxidative stress conditions, resistance against biocides, amino acid metabolism and toxin/antitoxin (TA) systems. This set of functions have influence in colonization and survival within human tissues, since they avoid host immune response or enhance stress resistance. An in depth bioinformatic analysis was also carried out to identify genetic clusters that are exclusive to each of the clinical isolates and that correlate with phenotypical differences between them, a secretion system type III-like was found in one of these clinical strains, a determinant of pathogenicity in Gram-negative bacteria.
Collapse
Affiliation(s)
- Lázaro Molina
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- * E-mail:
| | - Zulema Udaondo
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Abengoa Research, Campus de las Palmas Altas, Sevilla, Spain
| | - Estrella Duque
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Abengoa Research, Campus de las Palmas Altas, Sevilla, Spain
| | - Matilde Fernández
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
| | - Patricia Bernal
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Imperial College London, South Kensington Campus, London, United Kingdom
| | - Amalia Roca
- Bio-Iliberis R&D, C/ Capileira 7, 18210 Peligros, Granada, Spain
| | - Jesús de la Torre
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
| | - Juan Luis Ramos
- Environmental Protection Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas. C/ Profesor Albareda 1, Granada, Spain
- Abengoa Research, Campus de las Palmas Altas, Sevilla, Spain
| |
Collapse
|
35
|
Fazary AE, Ju YH, Al-Shihri AS, Alfaifi MY, Alshehri MA. Biodegradable siderophores: survey on their production, chelating and complexing properties. REV INORG CHEM 2016. [DOI: 10.1515/revic-2016-0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe academic and industrial research on the interactions of complexing agents with the environment has received more attention for more than half a century ago and has always been concerned with the applications of chelating agents in the environment. In contrast, in recent years, an increasing scholarly interest has been demonstrated in the chemical and biological degradation of chelating agents. This is reflected by the increasing number of chelating agents-related publications between 1950 and middle of 2016. Consequently, the discovery of new green biodegradable chelating agents is of great importance and has an impact in the non-biodegradable chelating agent’s replacement with their green chemistry analogs. To acquire iron, many bacteria growing aerobically, including marine species, produce siderophores, which are low-molecular-weight compounds produced to facilitate acquisition of iron. To date and to the best of our knowledge, this is a concise and complete review article of the current and previous relevant studies conducted in the field of production, purification of siderophore compounds and their metal complexes, and their roles in biology and medicine.
Collapse
|
36
|
Balado M, Souto A, Vences A, Careaga VP, Valderrama K, Segade Y, Rodríguez J, Osorio CR, Jiménez C, Lemos ML. Two Catechol Siderophores, Acinetobactin and Amonabactin, Are Simultaneously Produced by Aeromonas salmonicida subsp. salmonicida Sharing Part of the Biosynthetic Pathway. ACS Chem Biol 2015; 10:2850-60. [PMID: 26463084 DOI: 10.1021/acschembio.5b00624] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The iron uptake mechanisms based on siderophore synthesis used by the fish pathogen Aeromonas salmonicida subsp. salmonicida are still not completely understood, and the precise structure of the siderophore(s) is unknown. The analysis of genome sequences revealed that this bacterium possesses two gene clusters putatively involved in the synthesis of siderophores. One cluster is a candidate to encode the synthesis of acinetobactin, the siderophore of the human pathogen Acinetobacter baumannii, while the second cluster shows high similarity to the genes encoding amonabactin synthesis in Aeromonas hydrophila. Using a combination of genomic analysis, mutagenesis, biological assays, chemical purification, and structural determination procedures, here we demonstrate that most A. salmonicida subsp. salmonicida strains produce simultaneously the two siderophores, acinetobactin and amonabactin. Interestingly, the synthesis of both siderophores relies on a single copy of the genes encoding the synthesis of the catechol moiety (2,3-dihydroxybenzoic acid) and on one encoding a phosphopantetheinyl transferase. These genes are present only in the amonabactin cluster, and a single mutation in any of them abolishes production of both siderophores. We could also demonstrate that some strains, isolated from fish raised in seawater, produce only acinetobactin since they present a deletion in the amonabactin biosynthesis gene amoG. Our study represents the first evidence of simultaneous production of acinetobactin and amonabactin by a bacterial pathogen and reveals the plasticity of bacterial genomes and biosynthetic pathways. The fact that the same siderophore is produced by unrelated pathogens highlights the importance of these systems and their interchangeability between different bacteria.
Collapse
Affiliation(s)
- Miguel Balado
- Department
of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| | - Alba Souto
- Centro
de Investigacións Científicas Avanzadas (CICA), Departamento
de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Ana Vences
- Department
of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| | - Valeria P. Careaga
- Centro
de Investigacións Científicas Avanzadas (CICA), Departamento
de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Katherine Valderrama
- Centro
de Investigacións Científicas Avanzadas (CICA), Departamento
de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Yuri Segade
- Centro
de Investigacións Científicas Avanzadas (CICA), Departamento
de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Jaime Rodríguez
- Centro
de Investigacións Científicas Avanzadas (CICA), Departamento
de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Carlos R. Osorio
- Department
of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| | - Carlos Jiménez
- Centro
de Investigacións Científicas Avanzadas (CICA), Departamento
de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Manuel L. Lemos
- Department
of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| |
Collapse
|
37
|
Wienand K, Lechner M, Becker F, Jung H, Frey E. Non-Selective Evolution of Growing Populations. PLoS One 2015; 10:e0134300. [PMID: 26274606 PMCID: PMC4537121 DOI: 10.1371/journal.pone.0134300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/07/2015] [Indexed: 11/24/2022] Open
Abstract
Non-selective effects, like genetic drift, are an important factor in modern conceptions of evolution, and have been extensively studied for constant population sizes (Kimura, 1955; Otto and Whitlock, 1997). Here, we consider non-selective evolution in the case of growing populations that are of small size and have varying trait compositions (e.g. after a population bottleneck). We find that, in these conditions, populations never fixate to a trait, but tend to a random limit composition, and that the distribution of compositions “freezes” to a steady state. This final state is crucially influenced by the initial conditions. We obtain these findings from a combined theoretical and experimental approach, using multiple mixed subpopulations of two Pseudomonas putida strains in non-selective growth conditions (Matthijs et al, 2009) as model system. The experimental results for the population dynamics match the theoretical predictions based on the Pólya urn model (Eggenberger and Pólya, 1923) for all analyzed parameter regimes. In summary, we show that exponential growth stops genetic drift. This result contrasts with previous theoretical analyses of non-selective evolution (e.g. genetic drift), which investigated how traits spread and eventually take over populations (fixate) (Kimura, 1955; Otto and Whitlock, 1997). Moreover, our work highlights how deeply growth influences non-selective evolution, and how it plays a key role in maintaining genetic variability. Consequently, it is of particular importance in life-cycles models (Melbinger et al, 2010; Cremer et al, 2011; Cremer et al, 2012) of periodically shrinking and expanding populations.
Collapse
Affiliation(s)
- Karl Wienand
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Physics Department, Ludwig-Maximilians-Universität, Munich, Germany
| | - Matthias Lechner
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Physics Department, Ludwig-Maximilians-Universität, Munich, Germany
| | - Felix Becker
- Department of Biology 1, Microbiology, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Heinrich Jung
- Department of Biology 1, Microbiology, Ludwig-Maximilians-Universität, Martinsried, Germany
| | - Erwin Frey
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Physics Department, Ludwig-Maximilians-Universität, Munich, Germany
- * E-mail:
| |
Collapse
|
38
|
Berendsen RL, van Verk MC, Stringlis IA, Zamioudis C, Tommassen J, Pieterse CMJ, Bakker PAHM. Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. BMC Genomics 2015. [PMID: 26198432 PMCID: PMC4509608 DOI: 10.1186/s12864-015-1632-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Plant growth-promoting rhizobacteria (PGPR) can protect plants against pathogenic microbes through a diversity of mechanisms including competition for nutrients, production of antibiotics, and stimulation of the host immune system, a phenomenon called induced systemic resistance (ISR). In the past 30 years, the Pseudomonas spp. PGPR strains WCS358, WCS374 and WCS417 of the Willie Commelin Scholten (WCS) collection have been studied in detail in pioneering papers on the molecular basis of PGPR-mediated ISR and mechanisms of biological control of soil-borne pathogens via siderophore-mediated competition for iron. Results The genomes of the model WCS PGPR strains were sequenced and analyzed to unearth genetic cues related to biological questions that surfaced during the past 30 years of functional studies on these plant-beneficial microbes. Whole genome comparisons revealed important novel insights into iron acquisition strategies with consequences for both bacterial ecology and plant protection, specifics of bacterial determinants involved in plant-PGPR recognition, and diversity of protein secretion systems involved in microbe-microbe and microbe-plant communication. Furthermore, multi-locus sequence alignment and whole genome comparison revealed the taxonomic position of the WCS model strains within the Pseudomonas genus. Despite the enormous diversity of Pseudomonas spp. in soils, several plant-associated Pseudomonas spp. strains that have been isolated from different hosts at different geographic regions appear to be nearly isogenic to WCS358, WCS374, or WCS417. Interestingly, all these WCS look-a-likes have been selected because of their plant protective or plant growth-promoting properties. Conclusions The genome sequences of the model WCS strains revealed that they can be considered representatives of universally-present plant-beneficial Pseudomonas spp. With their well-characterized functions in the promotion of plant growth and health, the fully sequenced genomes of the WCS strains provide a genetic framework that allows for detailed analysis of the biological mechanisms of the plant-beneficial traits of these PGPR. Considering the increasing focus on the role of the root microbiome in plant health, functional genomics of the WCS strains will enhance our understanding of the diversity of functions of the root microbiome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1632-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roeland L Berendsen
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Marcel C van Verk
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands. .,Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Christos Zamioudis
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Jan Tommassen
- Molecular Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Peter A H M Bakker
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
39
|
Wei H, Aristilde L. Structural characterization of multiple pyoverdines secreted by two Pseudomonas strains using liquid chromatography-high resolution tandem mass spectrometry with varying dissociation energies. Anal Bioanal Chem 2015; 407:4629-38. [DOI: 10.1007/s00216-015-8659-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 01/01/2023]
|
40
|
Cellular organization of siderophore biosynthesis in Pseudomonas aeruginosa: Evidence for siderosomes. J Inorg Biochem 2015; 148:27-34. [PMID: 25697961 DOI: 10.1016/j.jinorgbio.2015.01.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 11/24/2022]
Abstract
Pyoverdine I (PVDI) and pyochelin (PCH) are the two major siderophores produced by Pseudomonas aeruginosa PAO1 to import iron. The biochemistry of the biosynthesis of these two siderophores has been described in detail in the literature over recent years. PVDI assembly requires the coordinated action of seven cytoplasmic enzymes and is followed by a periplasmic maturation before secretion of the siderophore into the extracellular medium by the efflux system PvdRT-OpmQ. PCH biosynthesis also involves seven cytoplasmic enzymes but no periplasmic maturation. Recent findings indicate that the cytoplasmic enzymes involved in each of these two siderophore biosynthesis pathways can form siderophore-specific multi-enzymatic complexes called siderosomes associated with the inner leaflet of the cytoplasmic membrane. This organization may optimize the transfer of the siderophore precursors between the various participating enzymes and avoid the diffusion of siderophore precursors, able to chelate metals, throughout the cytoplasm. Here, we describe these recently published findings and discuss the existence of these siderosomes in P. aeruginosa.
Collapse
|
41
|
Ye L, Hildebrand F, Dingemans J, Ballet S, Laus G, Matthijs S, Berendsen R, Cornelis P. Draft genome sequence analysis of a Pseudomonas putida W15Oct28 strain with antagonistic activity to Gram-positive and Pseudomonas sp. pathogens. PLoS One 2014; 9:e110038. [PMID: 25369289 PMCID: PMC4219678 DOI: 10.1371/journal.pone.0110038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/09/2014] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas putida is a member of the fluorescent pseudomonads known to produce the yellow-green fluorescent pyoverdine siderophore. P. putida W15Oct28, isolated from a stream in Brussels, was found to produce compound(s) with antimicrobial activity against the opportunistic pathogens Staphylococcus aureus, Pseudomonas aeruginosa, and the plant pathogen Pseudomonas syringae, an unusual characteristic for P. putida. The active compound production only occurred in media with low iron content and without organic nitrogen sources. Transposon mutants which lost their antimicrobial activity had the majority of insertions in genes involved in the biosynthesis of pyoverdine, although purified pyoverdine was not responsible for the antagonism. Separation of compounds present in culture supernatants revealed the presence of two fractions containing highly hydrophobic molecules active against P. aeruginosa. Analysis of the draft genome confirmed the presence of putisolvin biosynthesis genes and the corresponding lipopeptides were found to contribute to the antimicrobial activity. One cluster of ten genes was detected, comprising a NAD-dependent epimerase, an acetylornithine aminotransferase, an acyl CoA dehydrogenase, a short chain dehydrogenase, a fatty acid desaturase and three genes for a RND efflux pump. P. putida W15Oct28 genome also contains 56 genes encoding TonB-dependent receptors, conferring a high capacity to utilize pyoverdines from other pseudomonads. One unique feature of W15Oct28 is also the presence of different secretion systems including a full set of genes for type IV secretion, and several genes for type VI secretion and their VgrG effectors.
Collapse
Affiliation(s)
- Lumeng Ye
- Department of Bioengineering Sciences, Research group Microbiology, Vrije Universiteit Brussel and VIB Structural Biology Brussels, Brussels, Belgium
| | - Falk Hildebrand
- Department of Bioengineering Sciences, Research group Microbiology, Vrije Universiteit Brussel and VIB Structural Biology Brussels, Brussels, Belgium
| | - Jozef Dingemans
- Department of Bioengineering Sciences, Research group Microbiology, Vrije Universiteit Brussel and VIB Structural Biology Brussels, Brussels, Belgium
| | - Steven Ballet
- Chemistry Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - George Laus
- Chemistry Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Sandra Matthijs
- Institut de Recherches Microbiologiques - Wiame, Campus du CERIA, Brussels, Belgium
| | - Roeland Berendsen
- Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
| | - Pierre Cornelis
- Department of Bioengineering Sciences, Research group Microbiology, Vrije Universiteit Brussel and VIB Structural Biology Brussels, Brussels, Belgium
- * E-mail:
| |
Collapse
|
42
|
Becerra G, Merchán F, Blasco R, Igeño MI. Characterization of a ferric uptake regulator (Fur)-mutant of the cyanotrophic bacterium Pseudomonas pseudoalcaligenes CECT5344. J Biotechnol 2014; 190:2-10. [DOI: 10.1016/j.jbiotec.2014.03.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/17/2014] [Accepted: 03/25/2014] [Indexed: 11/25/2022]
|
43
|
Matthijs S, Vander Wauven C, Cornu B, Ye L, Cornelis P, Thomas CM, Ongena M. Antimicrobial properties of Pseudomonas strains producing the antibiotic mupirocin. Res Microbiol 2014; 165:695-704. [PMID: 25303834 DOI: 10.1016/j.resmic.2014.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 09/17/2014] [Accepted: 09/29/2014] [Indexed: 11/19/2022]
Abstract
Mupirocin is a polyketide antibiotic with broad antibacterial activity. It was isolated and characterized about 40 years ago from Pseudomonas fluorescens NCIMB 10586. To study the phylogenetic distribution of mupirocin producing strains in the genus Pseudomonas a large collection of Pseudomonas strains of worldwide origin, consisting of 117 Pseudomonas type strains and 461 strains isolated from different biological origins, was screened by PCR for the mmpD gene of the mupirocin gene cluster. Five mmpD(+) strains from different geographic and biological origin were identified. They all produced mupirocin and were strongly antagonistic against Staphylococcus aureus. Phylogenetic analysis showed that mupirocin production is limited to a single species. Inactivation of mupirocin production leads to complete loss of in vitro antagonism against S. aureus, except on certain iron-reduced media where the siderophore pyoverdine is responsible for the in vitro antagonism of a mupirocin-negative mutant. In addition to mupirocin some of the strains produced lipopeptides of the massetolide group. These lipopeptides do not play a role in the observed in vitro antagonism of the mupirocin producing strains against S. aureus.
Collapse
Affiliation(s)
- Sandra Matthijs
- Institut de Recherches Microbiologiques - Wiame, Campus du CERIA, 1 avenue Emile Gryson, bât 4B, B-1070 Bruxelles, Belgium.
| | - Corinne Vander Wauven
- Institut de Recherches Microbiologiques - Wiame, Campus du CERIA, 1 avenue Emile Gryson, bât 4B, B-1070 Bruxelles, Belgium.
| | - Bertrand Cornu
- Institut de Recherches Microbiologiques - Wiame, Campus du CERIA, 1 avenue Emile Gryson, bât 4B, B-1070 Bruxelles, Belgium.
| | - Lumeng Ye
- Department of Bioengineering Sciences, Research Group of Microbiology and Vlaams Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Pierre Cornelis
- Department of Bioengineering Sciences, Research Group of Microbiology and Vlaams Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Marc Ongena
- Walloon Center for Industrial Biology, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium.
| |
Collapse
|
44
|
Alcanivorax borkumensis produces an extracellular siderophore in iron-limitation condition maintaining the hydrocarbon-degradation efficiency. Mar Genomics 2014; 17:43-52. [PMID: 25088485 DOI: 10.1016/j.margen.2014.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/20/2014] [Accepted: 07/21/2014] [Indexed: 11/20/2022]
Abstract
Obligate marine hydrocarbonoclastic bacteria possess genetic and physiological features to use hydrocarbons as sole source of carbon and to compete for the uptake of nutrients in usually nutrient-depleted marine habitats. In the present work we have studied the siderophore-based iron uptake systems in Alcanivorax borkumensis SK2 and their functioning during biodegradation of an aliphatic hydrocarbon, tetradecane, under iron limitation conditions. The antiSMASH analysis of SK2 genome revealed the presence of two different putative operons of siderophore synthetases. Search for the predicted core structures indicated that one siderophore is clearly affiliated to the family of complex oligopeptidic siderophores possessing an Orn-Ser-Orn carboxyl motif whereas the second one is likely to belong to the family of SA (salicylic acid)-based siderophores. Analyzing the supernatant of SK2 culture, an extracellular siderophore was identified and its structure was resolved. Thus, along with the recently described membrane-associated amphiphilic tetrapeptidic siderophore amphibactin, strain SK2 additionally produces an extracellular type of iron-chelating molecule with structural similarity to pseudomonins. Comparative Q-PCR analysis of siderophore synthetases demonstrated their significant up-regulation in iron-depleted medium. Different expression patterns were recorded for two operons during the early and late exponential phases of growth, suggesting a different function of these two siderophores under iron-depleted conditions.
Collapse
|
45
|
Joshi H, Dave R, Venugopalan VP. Pumping iron to keep fit: modulation of siderophore secretion helps efficient aromatic utilization in Pseudomonas putida KT2440. Microbiology (Reading) 2014; 160:1393-1400. [DOI: 10.1099/mic.0.079277-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies of biotechnology applications of Pseudomonas putida KT2440 have been predominantly focused on regulation and expression of the toluene degradation (TOL) pathway. Unfortunately, there is limited information on the role of other physiological factors influencing aromatic utilization. In this report, we demonstrate that P. putida KT2440 increases its siderophore secretion in response to the availability of benzyl alcohol, a model aromatic substrate. It is argued that accelerated siderophore secretion in response to aromatic substrates provides an iron ‘boost’ which is required for the effective functioning of the iron-dependent oxygenases responsible for ring opening. Direct evidence for the cardinal role of siderophores in aromatic utilization is provided by evaluation of per capita siderophore secretion and comparative growth assessments of wild-type and siderophore-negative mutant strains grown on an alternative carbon source. Accelerated siderophore secretion can be viewed as a compensatory mechanism in P. putida in the context of its inability to secrete more than one type of siderophore (pyoverdine) or to utilize heterologous siderophores. Stimulated siderophore secretion might be a key factor in successful integration and proliferation of this organism as a bio-augmentation agent for aromatic degradation. It not only facilitates efficient aromatic utilization, but also provides better opportunities for iron assimilation amongst diverse microbial communities, thereby ensuring better survival and proliferation.
Collapse
Affiliation(s)
- Hiren Joshi
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam 603 102, India
| | - Rachna Dave
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam 603 102, India
| | - V. P. Venugopalan
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam 603 102, India
| |
Collapse
|
46
|
Lee SW, Parker DL, Geszvain K, Tebo BM. Effects of exogenous pyoverdines on Fe availability and their impacts on Mn(II) oxidation by Pseudomonas putida GB-1. Front Microbiol 2014; 5:301. [PMID: 25009534 PMCID: PMC4070179 DOI: 10.3389/fmicb.2014.00301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/02/2014] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas putida GB-1 is a Mn(II)-oxidizing bacterium that produces pyoverdine-type siderophores (PVDs), which facilitate the uptake of Fe(III) but also influence MnO2 formation. Recently, a non-ribosomal peptide synthetase mutant that does not synthesize PVD was described. Here we identified a gene encoding the PVDGB-1 (PVD produced by strain GB-1) uptake receptor (PputGB1_4082) of strain GB-1 and confirmed its function by in-frame mutagenesis. Growth and other physiological responses of these two mutants and of wild type were compared during cultivation in the presence of three chemically distinct sets of PVDs (siderotypes n°1, n°2, and n°4) derived from various pseudomonads. Under iron-limiting conditions, Fe(III) complexes of various siderotype n°1 PVDs (including PVDGB-1) allowed growth of wild type and the synthetase mutant, but not the receptor mutant, confirming that iron uptake with any tested siderotype n°1 PVD depended on PputGB1_4082. Fe(III) complexes of a siderotype n°2 PVD were not utilized by any strain and strongly induced PVD synthesis. In contrast, Fe(III) complexes of siderotype n°4 PVDs promoted the growth of all three strains and did not induce PVD synthesis by the wild type, implying these complexes were utilized for iron uptake independent of PputGB1_4082. These differing properties of the three PVD types provided a way to differentiate between effects on MnO2 formation that resulted from iron limitation and others that required participation of the PVDGB-1 receptor. Specifically, MnO2 production was inhibited by siderotype n°1 but not n°4 PVDs indicating PVD synthesis or PputGB1_4082 involvement rather than iron-limitation caused the inhibition. In contrast, iron limitation was sufficient to explain the inhibition of Mn(II) oxidation by siderotype n°2 PVDs. Collectively, our results provide insight into how competition for iron via siderophores influences growth, iron nutrition and MnO2 formation in more complex environmental systems.
Collapse
Affiliation(s)
- Sung-Woo Lee
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University Portland, OR, USA
| | - Dorothy L Parker
- Geosciences Research Division, Scripps Institution of Oceanography, University of California, San Diego San Diego, CA, USA
| | - Kati Geszvain
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University Portland, OR, USA
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University Portland, OR, USA
| |
Collapse
|
47
|
Parker DL, Lee SW, Geszvain K, Davis RE, Gruffaz C, Meyer JM, Torpey JW, Tebo BM. Pyoverdine synthesis by the Mn(II)-oxidizing bacterium Pseudomonas putida GB-1. Front Microbiol 2014; 5:202. [PMID: 24847318 PMCID: PMC4019867 DOI: 10.3389/fmicb.2014.00202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/16/2014] [Indexed: 11/13/2022] Open
Abstract
When iron-starved, the Mn(II)-oxidizing bacteria Pseudomonas putida strains GB-1 and MnB1 produce pyoverdines (PVDGB-1 and PVDMnB1), siderophores that both influence iron uptake and inhibit manganese(II) oxidation by these strains. To explore the properties and genetics of a PVD that can affect manganese oxidation, LC-MS/MS, and various siderotyping techniques were used to identify the peptides of PVDGB-1 and PVDMnB1 as being (for both PVDs): chromophore-Asp-Lys-OHAsp-Ser-Gly-aThr-Lys-cOHOrn, resembling a structure previously reported for P. putida CFML 90-51, which does not oxidize Mn. All three strains also produced an azotobactin and a sulfonated PVD, each with the peptide sequence above, but with unknown regulatory or metabolic effects. Bioinformatic analysis of the sequenced genome of P. putida GB-1 suggested that a particular non-ribosomal peptide synthetase (NRPS), coded by the operon PputGB1_4083-4086, could produce the peptide backbone of PVDGB-1. To verify this prediction, plasmid integration disruption of PputGB1_4083 was performed and the resulting mutant failed to produce detectable PVD. In silico analysis of the modules in PputGB1_4083-4086 predicted a peptide sequence of Asp-Lys-Asp-Ser-Ala-Thr-Lsy-Orn, which closely matches the peptide determined by MS/MS. To extend these studies to other organisms, various Mn(II)-oxidizing and non-oxidizing isolates of P. putida, P. fluorescens, P. marincola, P. fluorescens-syringae group, P. mendocina-resinovorans group, and P. stutzerii group were screened for PVD synthesis. The PVD producers (12 out of 16 tested strains) were siderotyped and placed into four sets of differing PVD structures, some corresponding to previously characterized PVDs and some to novel PVDs. These results combined with previous studies suggested that the presence of OHAsp or the flexibility of the pyoverdine polypeptide may enable efficient binding of Mn(III).
Collapse
Affiliation(s)
- Dorothy L. Parker
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San DiegoLa Jolla, CA, USA
| | - Sung-Woo Lee
- Division of Environmental and Biomolecular Systems, Oregon Health and Science UniversityBeaverton, OR, USA
| | - Kati Geszvain
- Division of Environmental and Biomolecular Systems, Oregon Health and Science UniversityBeaverton, OR, USA
| | - Richard E. Davis
- Division of Environmental and Biomolecular Systems, Oregon Health and Science UniversityBeaverton, OR, USA
| | - Christelle Gruffaz
- Laboratoire de Génétique Moléculaire, Génomique et Microbiologie, Université de StrasbourgStrasbourg, France
| | - Jean-Marie Meyer
- Laboratoire de Génétique Moléculaire, Génomique et Microbiologie, Université de StrasbourgStrasbourg, France
| | - Justin W. Torpey
- Biomolecular Mass Spectrometry Facility, Department of Chemistry and Biochemistry, University of California San DiegoLa Jolla, CA, USA
| | - Bradley M. Tebo
- Division of Environmental and Biomolecular Systems, Oregon Health and Science UniversityBeaverton, OR, USA
| |
Collapse
|
48
|
Ye L, Matthijs S, Bodilis J, Hildebrand F, Raes J, Cornelis P. Analysis of the draft genome of Pseudomonas fluorescens ATCC17400 indicates a capacity to take up iron from a wide range of sources, including different exogenous pyoverdines. Biometals 2014; 27:633-44. [PMID: 24756978 DOI: 10.1007/s10534-014-9734-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 12/16/2022]
Abstract
All fluorescent pseudomonads (Pseudomonas aeruginosa, P. putida, P. fluorescens, P. syringae and others) are known to produce the high-affinity peptidic yellow-green fluorescent siderophore pyoverdine. These siderophores have peptide chains that are quite diverse and more than 50 pyoverdine structures have been elucidated. In the majority of the cases, a Pseudomonas species is also able to produce a second siderophore of lower affinity for iron. Pseudomonas fluorescens ATCC 17400 has been shown to produce a unique second siderophore, (thio)quinolobactin, which has an antimicrobial activity against the phytopathogenic Oomycete Pythium debaryanum. We show that this strain has the capacity to utilize 16 different pyoverdines, suggesting the presence of several ferripyoverdine receptors. Analysis of the draft genome of P. fluorescens ATCC 17400 confirmed the presence of 55 TonB-dependent receptors, the largest so far for Pseudomonas, among which 15 are predicted to be ferripyoverdine receptors (Fpv). Phylogenetic analysis revealed the presence of two different clades containing ferripyoverdine receptors, with sequences similar to the P. aeruginosa type II FpvA forming a separate cluster. Among the other receptors we confirmed the presence of the QbsI (thio)quinolobactin receptor, an ferri-achromobactin and an ornicorrugatin receptor, several catecholate and four putative heme receptors. Twenty five of the receptors genes were found to be associated with genes encoding extracytoplasmic sigma factors (ECF σ) and transmembrane anti-σ sensors.
Collapse
Affiliation(s)
- Lumeng Ye
- Department of Bioengineering Sciences, Research Group Microbiology, VIB Structural Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
49
|
Ghosh S, Sar P. Identification and characterization of metabolic properties of bacterial populations recovered from arsenic contaminated ground water of North East India (Assam). WATER RESEARCH 2013; 47:6992-7005. [PMID: 24210546 DOI: 10.1016/j.watres.2013.08.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/20/2013] [Accepted: 08/17/2013] [Indexed: 05/25/2023]
Abstract
Diversity of culturable bacterial populations within the Arsenic (As) contaminated groundwater of North Eastern state (Assam) of India is studied. From nine As contaminated samples 89 bacterial strains are isolated. 16S rRNA gene sequence analysis reveals predominance of Brevundimonas (35%) and Acidovorax (23%) along with Acinetobacter (10%), Pseudomonas (9%) and relatively less abundant (<5%) Undibacterium, Herbaspirillum, Rhodococcus, Staphylococcus, Bosea, Bacillus, Ralstonia, Caulobacter and Rhizobiales members. High As(III) resistance (MTC 10-50 mM) is observed for the isolates obtained from As(III) enrichment, particularly for 3 isolates of genus Brevundimonas (MTC 50 mM). In contrast, high resistance to As(V) (MTC as high as 550 mM) is present as a ubiquitous property, irrespective of isolates' enrichment condition. Bacterial genera affiliated to other groups showed relatively lower degree of As resistance [MTCs of 15-20 mM As(III) and 250-350 mM As(V)]. As(V) reductase activity is detected in strains with high As(V) as well as As(III) resistance. A strong correlation could be established among isolates capable of reductase activity and siderophore production as well as As(III) tolerance. A large number of isolates (nearly 50%) is capable of anaerobic respiration using alternate inorganic electron acceptors [As(V), Se(VI), Fe(III), [NO(3)(2), SO(4)(2), S(2)O(3)(2). Ability to utilize different carbon sources ranging from C2-C6 compounds along with some complex sugars is also observed. Particularly, a number of strains is found to possess ability to grow chemolithotrophically using As(III) as the electron donor. The study reports for the first time the identity and metabolic abilities of bacteria in As contaminated ground water of North East India, useful to elucidate the microbial role in influencing mobilization of As in the region.
Collapse
Affiliation(s)
- Soma Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, 721302 West Bengal, India
| | | |
Collapse
|
50
|
A combinatorial approach to the structure elucidation of a pyoverdine siderophore produced by a Pseudomonas putida isolate and the use of pyoverdine as a taxonomic marker for typing P. putida subspecies. Biometals 2013; 26:561-75. [PMID: 23877277 DOI: 10.1007/s10534-013-9653-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
The structure of a pyoverdine produced by Pseudomonas putida, W15Oct28, was elucidated by combining mass spectrometric methods and bioinformatics by the analysis of non-ribosomal peptide synthetase genes present in the newly sequenced genome. The only form of pyoverdine produced by P. putida W15Oct28 is characterized to contain α-ketoglutaric acid as acyl side chain, a dihydropyoverdine chromophore, and a 12 amino acid peptide chain. The peptide chain is unique among all pyoverdines produced by Pseudomonas subspecies strains. It was characterized as -L-Asp-L-Ala-D-AOHOrn-L-Thr-Gly-c[L-Thr(O-)-L-Hse-D-Hya-L-Ser-L-Orn-L-Hse-L-Ser-O-]. The chemical formula and the detected and calculated molecular weight of this pyoverdine are: C65H93N17O32, detected mass 1624.6404 Da, calculated mass 1624.6245. Additionally, pyoverdine structures from both literature reports and bioinformatics prediction of the genome sequenced P. putida strains are summarized allowing us to propose a scheme based on pyoverdines structures as tool for the phylogeny of P. putida. This study shows the strength of the combination of in silico analysis together with analytical data and literature mining in determining the structure of secondary metabolites such as peptidic siderophores.
Collapse
|