1
|
Chatzikalil E, Arvanitakis K, Kalopitas G, Florentin M, Germanidis G, Koufakis T, Solomou EE. Hepatic Iron Overload and Hepatocellular Carcinoma: New Insights into Pathophysiological Mechanisms and Therapeutic Approaches. Cancers (Basel) 2025; 17:392. [PMID: 39941760 PMCID: PMC11815926 DOI: 10.3390/cancers17030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver cancer, is rising in global incidence and mortality. Metabolic dysfunction-associated steatotic liver disease (MASLD), one of the leading causes of chronic liver disease, is strongly linked to metabolic conditions that can progress to liver cirrhosis and HCC. Iron overload (IO), whether inherited or acquired, results in abnormal iron hepatic deposition, significantly impacting MASLD development and progression to HCC. While the pathophysiological connections between hepatic IO, MASLD, and HCC are not fully understood, dysregulation of glucose and lipid metabolism and IO-induced oxidative stress are being investigated as the primary drivers. Genomic analyses of inherited IO conditions reveal inconsistencies in the association of certain mutations with liver malignancies. Moreover, hepatic IO is also associated with hepcidin dysregulation and activation of ferroptosis, representing promising targets for HCC risk assessment and therapeutic intervention. Understanding the relationship between hepatic IO, MASLD, and HCC is essential for advancing clinical strategies against liver disease progression, particularly with recent IO-targeted therapies showing potential at improving liver biochemistry and insulin sensitivity. In this review, we summarize the current evidence on the pathophysiological association between hepatic IO and the progression of MASLD to HCC, underscoring the importance of early diagnosis, risk stratification, and targeted treatment for these interconnected conditions.
Collapse
Affiliation(s)
- Elena Chatzikalil
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgios Kalopitas
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Matilda Florentin
- Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Georgios Germanidis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece; (K.A.); (G.K.); (G.G.)
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propaedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| |
Collapse
|
2
|
Raptania CN, Zakia S, Fahira AI, Amalia R. Article review: Brazilin as potential anticancer agent. Front Pharmacol 2024; 15:1355533. [PMID: 38515856 PMCID: PMC10955326 DOI: 10.3389/fphar.2024.1355533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Brazilin is the main compound in Caesalpinia sappan and Haematoxylum braziletto, which is identified as a homoisoflavonoid based on its molecular structure. These plants are traditionally used as an anti-inflammatory to treat fever, hemorrhage, rheumatism, skin problems, diabetes, and cardiovascular diseases. Recently, brazilin has increased its interest in cancer studies. Several findings have shown that brazilin has cytotoxic effects on colorectal cancer, breast cancer, lung cancer, multiple myeloma, osteosarcoma, cervical cancer, bladder carcinoma, also other cancers, along with numerous facts about its possible mechanisms that will be discussed. Besides its flavonoid content, brazilin is able to chelate metal ions. A study has proved that brazilin could be used as an antituberculosis agent based on its ability to chelate iron. This possible iron-chelating of brazilin and all the studies discussed in this review will lead us to the statement that, in the future, brazilin has the potency to be a chemo-preventive and anticancer agent. The article review aimed to determine the brazilin mechanism and pathogenesis of cancer.
Collapse
Affiliation(s)
- Callista Najla Raptania
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Syifa Zakia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Alistia Ilmiah Fahira
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Laboratory of Cell and Molecular Biology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Laboratory of Cell and Molecular Biology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence in Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
3
|
Hu Y, Jiao S, Wang Y, Chen R, Li G, Zou Z. Design, Synthesis, Molecular Docking Studies of Deferasirox Derivatives of 1,2,4‐Triazole as Potential Antimicrobial Agents. ChemistrySelect 2021. [DOI: 10.1002/slct.202103955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yiping Hu
- College of chemistry and chemical engineering Southeast University Nanjing 211189 People's Republic of China
| | - Shulin Jiao
- College of chemistry and chemical engineering Southeast University Nanjing 211189 People's Republic of China
| | - Yanyan Wang
- College of chemistry and chemical engineering Southeast University Nanjing 211189 People's Republic of China
| | - Ruicheng Chen
- College of chemistry and chemical engineering Southeast University Nanjing 211189 People's Republic of China
| | - Gen Li
- College of chemistry and chemical engineering Southeast University Nanjing 211189 People's Republic of China
| | - Zhihong Zou
- College of chemistry and chemical engineering Southeast University Nanjing 211189 People's Republic of China
| |
Collapse
|
4
|
Bailey DK, Clark W, Kosman DJ. The iron chelator, PBT434, modulates transcellular iron trafficking in brain microvascular endothelial cells. PLoS One 2021; 16:e0254794. [PMID: 34310628 PMCID: PMC8312958 DOI: 10.1371/journal.pone.0254794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/03/2021] [Indexed: 12/28/2022] Open
Abstract
Iron and other transition metals, such as copper and manganese, are essential for supporting brain function, yet over-accumulation is cytotoxic. This over-accumulation of metals, particularly iron, is common to several neurological disorders; these include Alzheimer’s disease, Parkinson’s disease, Friedrich’s ataxia and other disorders presenting with neurodegeneration and associated brain iron accumulation. The management of iron flux by the blood-brain barrier provides the first line of defense against the over-accumulation of iron in normal physiology and in these pathological conditions. In this study, we determined that the iron chelator PBT434, which is currently being developed for treatment of Parkinson’s disease and multiple system atrophy, modulates the uptake of iron by human brain microvascular endothelial cells (hBMVEC) by chelation of extracellular Fe2+. Treatment of hBMVEC with PBT434 results in an increase in the abundance of the transcripts for transferrin receptor (TfR) and ceruloplasmin (Cp). Western blot and ELISA analyses reveal a corresponding increase in the proteins as well. Within the cell, PBT434 increases the detectable level of chelatable, labile Fe2+; data indicate that this Fe2+ is released from ferritin. In addition, PBT434 potentiates iron efflux likely due to the increase in cytosolic ferrous iron, the substrate for the iron exporter, ferroportin. PBT434 equilibrates rapidly and bi-directionally across an hBMVEC blood-brain barrier. These results indicate that the PBT434-iron complex is not substrate for hBMVEC uptake and thus support a model in which PBT434 would chelate interstitial iron and inhibit re-uptake of iron by endothelial cells of the blood-brain barrier, as well as inhibit its uptake by the other cells of the neurovascular unit. Overall, this presents a novel and promising mechanism for therapeutic iron chelation.
Collapse
Affiliation(s)
- Danielle K. Bailey
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Whitney Clark
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Daniel J. Kosman
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States of America
- * E-mail:
| |
Collapse
|
5
|
Jiang X, Zhou T, Bai R, Xie Y. Hydroxypyridinone-Based Iron Chelators with Broad-Ranging Biological Activities. J Med Chem 2020; 63:14470-14501. [PMID: 33023291 DOI: 10.1021/acs.jmedchem.0c01480] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Iron plays an essential role in all living cells because of its unique chemical properties. It is also the most abundant trace element in mammals. However, when iron is present in excess or inappropriately located, it becomes toxic. Excess iron can become involved in free radical formation, resulting in oxidative stress and cellular damage. Iron chelators are used to treat serious pathological disorders associated with systemic iron overload. Hydroxypyridinones stand out for their outstanding chelation properties, including high selectivity for Fe3+ in the biological environment, ease of derivatization, and good biocompatibility. Herein, we overview the potential for multifunctional hydroxypyridinone-based chelators to be used as therapeutic agents against a wide range of diseases associated either with systemic or local elevated iron levels.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China
| | - Renren Bai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Yuanyuan Xie
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P.R. China.,College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| |
Collapse
|
6
|
Liu J, Hou JS, Li YB, Miao ZY, Sun PH, Lin J, Chen WM. Novel 2-Substituted 3-Hydroxy-1,6-dimethylpyridin-4(1H)-ones as Dual-Acting Biofilm Inhibitors of Pseudomonas aeruginosa. J Med Chem 2020; 63:10921-10945. [DOI: 10.1021/acs.jmedchem.0c00763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jun Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jin-Song Hou
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Yi-Bin Li
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Zhi-Ying Miao
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Ping-Hua Sun
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jing Lin
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
7
|
Brissot E, Bernard DG, Loréal O, Brissot P, Troadec MB. Too much iron: A masked foe for leukemias. Blood Rev 2020; 39:100617. [DOI: 10.1016/j.blre.2019.100617] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
|
8
|
Theerasilp M, Chalermpanapun P, Ponlamuangdee K, Sukvanitvichai D, Nasongkla N. Imidazole-modified deferasirox encapsulated polymeric micelles as pH-responsive iron-chelating nanocarrier for cancer chemotherapy. RSC Adv 2017. [DOI: 10.1039/c6ra26669j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Modified deferasirox encapsulated polymeric micelles demonstrate pH-responsive and ON–OFF release behavior to deplete the iron level in cancer cells. The cellular iron deficiency is a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Man Theerasilp
- Department of Biomedical Engineering
- Faculty of Engineering
- Mahidol University
- Thailand
| | - Punlop Chalermpanapun
- Department of Biomedical Engineering
- Faculty of Engineering
- Mahidol University
- Thailand
| | | | - Dusita Sukvanitvichai
- Department of Biomedical Engineering
- Faculty of Engineering
- Mahidol University
- Thailand
| | - Norased Nasongkla
- Department of Biomedical Engineering
- Faculty of Engineering
- Mahidol University
- Thailand
| |
Collapse
|
9
|
Sato I, Umemura M, Mitsudo K, Fukumura H, Kim JH, Hoshino Y, Nakashima H, Kioi M, Nakakaji R, Sato M, Fujita T, Yokoyama U, Okumura S, Oshiro H, Eguchi H, Tohnai I, Ishikawa Y. Simultaneous hyperthermia-chemotherapy with controlled drug delivery using single-drug nanoparticles. Sci Rep 2016; 6:24629. [PMID: 27103308 PMCID: PMC4840378 DOI: 10.1038/srep24629] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/31/2016] [Indexed: 11/09/2022] Open
Abstract
We previously investigated the utility of μ-oxo N,N'- bis(salicylidene)ethylenediamine iron (Fe(Salen)) nanoparticles as a new anti-cancer agent for magnet-guided delivery with anti-cancer activity. Fe(Salen) nanoparticles should rapidly heat up in an alternating magnetic field (AMF), and we hypothesized that these single-drug nanoparticles would be effective for combined hyperthermia-chemotherapy. Conventional hyperthermic particles are usually made of iron oxide, and thus cannot exhibit anti-cancer activity in the absence of an AMF. We found that Fe(Salen) nanoparticles induced apoptosis in cultured cancer cells, and that AMF exposure enhanced the apoptotic effect. Therefore, we evaluated the combined three-fold strategy, i.e., chemotherapy with Fe(Salen) nanoparticles, magnetically guided delivery of the nanoparticles to the tumor, and AMF-induced heating of the nanoparticles to induce local hyperthermia, in a rabbit model of tongue cancer. Intravenous administration of Fe(Salen) nanoparticles per se inhibited tumor growth before the other two modalities were applied. This inhibition was enhanced when a magnet was used to accumulate Fe(Salen) nanoparticles at the tongue. When an AMF was further applied (magnet-guided chemotherapy plus hyperthermia), the tumor masses were dramatically reduced. These results indicate that our strategy of combined hyperthermia-chemotherapy using Fe(Salen) nanoparticles specifically delivered with magnetic guidance represents a powerful new approach for cancer treatment.
Collapse
Affiliation(s)
- Itaru Sato
- Cardiovascular Research Institute, Yokohama City University, Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University, Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hidenobu Fukumura
- Department of Orthopedic Surgery, Yokohama Touhoukai Hospital, Yokohama, 236-0031, Japan
| | - Jeong-Hwan Kim
- Cardiovascular Research Institute, Yokohama City University, Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Yujiro Hoshino
- Department of Environment and Natural Sciences, Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, 240-8501, Japan
| | - Hideyuki Nakashima
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Mitomu Kioi
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Rina Nakakaji
- Cardiovascular Research Institute, Yokohama City University, Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Motohiko Sato
- Department of Physiology, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University, Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University, Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Satoshi Okumura
- Tsurumi University School of Dental Medicine, Tsurumi, 230-8501, Japan
| | - Hisashi Oshiro
- Department of Pathology, Jichi Medical Universityepartment of Pathology, Tochigi, 329-2111, Japan
| | - Haruki Eguchi
- Advanced Applied Science Department, Research Laboratory, IHI Corporation, Yokohama, 235-8501, Japan
| | - Iwai Tohnai
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University, Graduate School of Medicine, Yokohama, 236-0004, Japan
| |
Collapse
|
10
|
Urano S, Ohara T, Noma K, Katsube R, Ninomiya T, Tomono Y, Tazawa H, Kagawa S, Shirakawa Y, Kimura F, Nouso K, Matsukawa A, Yamamoto K, Fujiwara T. Iron depletion enhances the effect of sorafenib in hepatocarcinoma. Cancer Biol Ther 2016; 17:648-56. [PMID: 27089255 DOI: 10.1080/15384047.2016.1177677] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ABSTACT Human hepatocellular carcinoma (HCC) is known to have a poor prognosis. Sorafenib, a molecular targeted drug, is most commonly used for HCC treatment. However, its effect on HCC is limited in clinical use and therefore new strategies regarding sorafenib treatment are required. Iron overload is known to be associated with progression of chronic hepatitis and increased risk of HCC. We previously reported that iron depletion inhibited cancer cell proliferation and conversely induced angiogenesis. Indeed iron depletion therapy including iron chelator needs to be combined with anti-angiogenic drug for its anti-cancer effect. Since sorafenib has an anti-angiogenic effect by its inhibitory targeting VEGFR, we hypothesized that sorafenib could complement the anti-cancer effect of iron depletion. We retrospectively analyzed the relationship between the efficacy of sorafenib and serum iron-related markers in clinical HCC patients. In clinical cases, overall survival was prolonged in total iron binding capacity (TIBC) high- and ferritin low-patients. This result suggested that the low iron-pooled patients, who could have a potential of more angiogenic properties in/around HCC tumors, could be adequate for sorafenib treatment. We determined the effect of sorafenib (Nexavar®) and/or deferasirox (EXJADE®) on cancer cell viability, and on cell signaling of human hepatocarcinoma HepG2 and HLE cells. Both iron depletion by deferasirox and sorafenib revealed insufficient cytotoxic effect by each monotherapy, however, on the basis of increased angiogenesis by iron depletion, the addition of deferasirox enhanced anti-proliferative effect of sorafenib. Deferasirox was confirmed to increase vascular endothelial growth factor (VEGF) secretion into cellular supernatants by ELISA analysis. In in vivo study sorafenib combined with deferasirox also enhanced sorafenib-induced apoptosis. These results suggested that sorafenib combined with deferasirox could be a novel combination chemotherapy for HCC.
Collapse
Affiliation(s)
- Shinichi Urano
- a Department of Gastroenterological Surgery , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Toshiaki Ohara
- a Department of Gastroenterological Surgery , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan.,b Department of Pathology & Experimental Medicine , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Kazuhiro Noma
- a Department of Gastroenterological Surgery , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Ryoichi Katsube
- a Department of Gastroenterological Surgery , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Takayuki Ninomiya
- a Department of Gastroenterological Surgery , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Yasuko Tomono
- c Shigei Medical Research Institute , Okayama , Japan
| | - Hiroshi Tazawa
- a Department of Gastroenterological Surgery , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan.,d Center for Innovative Clinical Medicine, Okayama University Hospital , Okayama , Japan
| | - Shunsuke Kagawa
- a Department of Gastroenterological Surgery , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Yasuhiro Shirakawa
- a Department of Gastroenterological Surgery , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Fumiaki Kimura
- e Department of Internal Medicine , Tamano City Hospital , Okayama , Japan
| | - Kazuhiro Nouso
- f Department of Gastroenterology and Hepatology , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Akihiro Matsukawa
- b Department of Pathology & Experimental Medicine , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Kazuhide Yamamoto
- f Department of Gastroenterology and Hepatology , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Toshiyoshi Fujiwara
- a Department of Gastroenterological Surgery , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| |
Collapse
|
11
|
Legendre C, Avril S, Guillet C, Garcion E. Low oxygen tension reverses antineoplastic effect of iron chelator deferasirox in human glioblastoma cells. BMC Cancer 2016; 16:51. [PMID: 26832741 PMCID: PMC4736662 DOI: 10.1186/s12885-016-2074-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 01/19/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Overcoming resistance to treatment is an essential issue in many cancers including glioblastoma (GBM), the deadliest primary tumor of the central nervous system. As dependence on iron is a key feature of tumor cells, using chelators to reduce iron represents an opportunity to improve conventional GBM therapies. The aim of the present study was, therefore, to investigate the cytostatic and cytotoxic impact of the new iron chelator deferasirox (DFX) on human GBM cells in well-defined clinical situations represented by radiation therapy and mild-hypoxia. RESULTS Under experimental normoxic condition (21% O2), deferasirox (DFX) used at 10 μM for 3 days reduced proliferation, led cell cycle arrest in S and G2-M phases and induced cytotoxicity and apoptosis in U251 and U87 GBM cells. The abolition of the antineoplastic DFX effects when cells were co-treated with ferric ammonium sulfate supports the hypothesis that its effects result from its ability to chelate iron. As radiotherapy is the main treatment for GBM, the combination of DFX and X-ray beam irradiation was also investigated. Irradiation at a dose of 16 Gy repressed proliferation, cytotoxicity and apoptosis, but only in U251 cells, while no synergy with DFX was observed in either cell line. Importantly, when the same experiment was conducted in mild-hypoxic conditions (3% O2), the antiproliferative and cytotoxic effects of DFX were abolished, and its ability to deplete iron was also impaired. CONCLUSIONS Taken together, these in vitro results could raise the question of the benefit of using iron chelators in their native forms under the hypoxic conditions often encountered in solid tumors such as GBM. Developing new chemistry or a new drug delivery system that would keep DFX active in hypoxic cells may be the next step toward their application.
Collapse
Affiliation(s)
- Claire Legendre
- INSERM U1066, Micro et Nanomédecines Biomimétiques, IBS - CHU, 4 Rue Larrey, F-49933, Angers, France
| | - Sylvie Avril
- INSERM U1066, Micro et Nanomédecines Biomimétiques, IBS - CHU, 4 Rue Larrey, F-49933, Angers, France
| | - Catherine Guillet
- PACeM : Plate-forme d'Analyses Cellulaire et Moléculaire, IBS - CHU, 4 Rue Larrey, F-49933, Angers, France
| | - Emmanuel Garcion
- INSERM U1066, Micro et Nanomédecines Biomimétiques, IBS - CHU, 4 Rue Larrey, F-49933, Angers, France.
| |
Collapse
|
12
|
García-Nebot MJ, Alegría A, Barberá R, Gaboriau F, Bouhallab S. Effect of Caseinophosphopeptides from αs- and β-Casein on Iron Bioavailability in HuH7 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6757-6763. [PMID: 26154705 DOI: 10.1021/acs.jafc.5b02424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Two pools of caseinophosphopeptides (CPPs) obtained from αs- and β-casein fractions (α-CPPs and β-CPPs) were characterized. A total of 16 CPPs were identified in the α-CPPs pool, 9 of them derived from αs1-casein and 7 from αs2-casein. A total of 18 CPPs were identified in the β-CPPs pool. Four of the identified CPPs contained the characteristic phosphoseryl-glutamic acid cluster SpSpSpEE. Calcein assay was used to compare the iron-binding capacity of the α- and β-CPPs pools. At the concentration of 12.5 μM CPPs used in the iron bioavailability assays, β-CPPs pools show greater iron-binding capacity than α-CPPs pools. HuH7 human hepatoma cells show many differentiated functions of liver cells in vivo and can be used to evaluate iron bioavailability (ferritin content and soluble transferrin receptor) from Fe-α-CPPs and Fe-β-CPPs complexes. The α-CPPs and β-CPPs pools did not improve ferritin content or soluble transferrin receptor in HuH7 cells.
Collapse
Affiliation(s)
- María José García-Nebot
- †Nutrition and Food Chemistry, Faculty of Pharmacy, University of Valencia, Avenida Vicente Andrés Estellés s/n, 46100 Burjassot (Valencia), Spain
| | - Amparo Alegría
- †Nutrition and Food Chemistry, Faculty of Pharmacy, University of Valencia, Avenida Vicente Andrés Estellés s/n, 46100 Burjassot (Valencia), Spain
| | - Reyes Barberá
- †Nutrition and Food Chemistry, Faculty of Pharmacy, University of Valencia, Avenida Vicente Andrés Estellés s/n, 46100 Burjassot (Valencia), Spain
| | - François Gaboriau
- §INSERM, UMR991, Université de Rennes 1, Hôpital Pontchaillou, 2 Avenue Henri le Guilloux, F-35033 Rennes Cedex, France
| | | |
Collapse
|
13
|
Hamilton JL, Kizhakkedathu JN. Polymeric nanocarriers for the treatment of systemic iron overload. MOLECULAR AND CELLULAR THERAPIES 2015; 3:3. [PMID: 26056604 PMCID: PMC4451967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/25/2015] [Indexed: 11/21/2023]
Abstract
Desferrioxamine (DFO), deferiprone (L1) and desferasirox (ICL-670) are clinically approved iron chelators used to treat secondary iron overload. Although iron chelators have been utilized since the 1960s and there has been much improvement in available therapy, there is still the need for new drug candidates due to limited long-term efficacy and drug toxicity. Moreover, all currently approved iron chelators are of low molecular weight (MW) (<600 Da) and the objectives reported for the "ideal" chelator of low MW, including possessing the ability to promote iron excretion without causing toxic side effects, has proven difficult to realize in practice. With prolonged iron chelator use, patients may develop toxicities or become insensitive. In contrast, the limited research that has been geared towards developing higher MW, polymeric, long circulating iron chelators has shown promise. The inherent potential of polymeric iron chelators toward longer plasma half-lives and reduction in toxicity provides optimism and may be a significant addition to the currently available low MW iron chelators. This article reviews knowledge pertaining to this theme, highlights some unique advantages that these nanomedicines have in treating systemic iron overload as well as their potential utility in the treatment of other disease states.
Collapse
Affiliation(s)
- Jasmine L Hamilton
- />The Centre for Blood Research, Department of Pathology and Laboratory Medicine, Vancouver, BC V6T 1Z3 Canada
| | - Jayachandran N Kizhakkedathu
- />The Centre for Blood Research, Department of Pathology and Laboratory Medicine, Vancouver, BC V6T 1Z3 Canada
- />Department of Chemistry, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada
| |
Collapse
|
14
|
Hamilton JL, Kizhakkedathu JN. Polymeric nanocarriers for the treatment of systemic iron overload. MOLECULAR AND CELLULAR THERAPIES 2015; 3:3. [PMID: 26056604 PMCID: PMC4451967 DOI: 10.1186/s40591-015-0039-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/25/2015] [Indexed: 01/19/2023]
Abstract
Desferrioxamine (DFO), deferiprone (L1) and desferasirox (ICL-670) are clinically approved iron chelators used to treat secondary iron overload. Although iron chelators have been utilized since the 1960s and there has been much improvement in available therapy, there is still the need for new drug candidates due to limited long-term efficacy and drug toxicity. Moreover, all currently approved iron chelators are of low molecular weight (MW) (<600 Da) and the objectives reported for the “ideal” chelator of low MW, including possessing the ability to promote iron excretion without causing toxic side effects, has proven difficult to realize in practice. With prolonged iron chelator use, patients may develop toxicities or become insensitive. In contrast, the limited research that has been geared towards developing higher MW, polymeric, long circulating iron chelators has shown promise. The inherent potential of polymeric iron chelators toward longer plasma half-lives and reduction in toxicity provides optimism and may be a significant addition to the currently available low MW iron chelators. This article reviews knowledge pertaining to this theme, highlights some unique advantages that these nanomedicines have in treating systemic iron overload as well as their potential utility in the treatment of other disease states.
Collapse
Affiliation(s)
- Jasmine L Hamilton
- The Centre for Blood Research, Department of Pathology and Laboratory Medicine, Vancouver, BC V6T 1Z3 Canada
| | - Jayachandran N Kizhakkedathu
- The Centre for Blood Research, Department of Pathology and Laboratory Medicine, Vancouver, BC V6T 1Z3 Canada ; Department of Chemistry, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3 Canada
| |
Collapse
|
15
|
Jeon SR, Lee JW, Jang PS, Chung NG, Cho B, Jeong DC. Anti-leukemic properties of deferasirox via apoptosis in murine leukemia cell lines. Blood Res 2015; 50:33-9. [PMID: 25830128 PMCID: PMC4377336 DOI: 10.5045/br.2015.50.1.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/17/2014] [Accepted: 02/05/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Although deferasirox (DFX) is reported to have anti-tumor effects, its anti-leukemic activity remains unclear. We evaluated the effect of DFX treatment on two murine lymphoid leukemia cell lines, and clarified the mechanisms underlying its potential anti-leukemic activity. METHODS L1210 and A20 murine lymphoid leukemia cell lines were treated with DFX. Cell viability and apoptosis were evaluated by the 3-(4,5-dimethylthaizol-2-yl)-5-(3-carboxymethylphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and fluorescence-activated cell sorting (FACS) analysis, respectively. Immunoblotting was performed to detect the expression of key apoptotic proteins. RESULTS In dose- and time-dependent manner, DFX decreased viability and increased apoptosis of murine leukemic cells. Fas expression was significantly higher in A20 cells than in L1210 cells at all DFX concentrations tested. Although both cell lines exhibited high caspase 3 and caspase 9 expression, a critical component of the intrinsic mitochondrial apoptotic pathway, expression was greater in L1210 cells. In contrast, caspase 8, a key factor in the extrinsic apoptotic pathway, showed greater expression in A20 cells. Cytochrome c expression was significantly higher in L1210 cells. In both cell lines, co-treatment with ferric chloride and DFX diminished the expression of these intracellular proteins, as compared to DFX treatment alone. CONCLUSION Treatment with DFX increased caspase-dependent apoptosis in two murine lymphoid leukemia cell lines, with differing apoptotic mechanisms in each cell line.
Collapse
Affiliation(s)
- Sol-Rim Jeon
- Department of Pediatrics, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae-Wook Lee
- Department of Pediatrics, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Pil-Sang Jang
- Department of Pediatrics, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Nack-Gyun Chung
- Department of Pediatrics, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Bin Cho
- Department of Pediatrics, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dae-Chul Jeong
- Department of Pediatrics, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
16
|
Minden MD, Hogge DE, Weir SJ, Kasper J, Webster DA, Patton L, Jitkova Y, Hurren R, Gronda M, Goard CA, Rajewski LG, Haslam JL, Heppert KE, Schorno K, Chang H, Brandwein JM, Gupta V, Schuh AC, Trudel S, Yee KWL, Reed GA, Schimmer AD. Oral ciclopirox olamine displays biological activity in a phase I study in patients with advanced hematologic malignancies. Am J Hematol 2014; 89:363-8. [PMID: 24273151 DOI: 10.1002/ajh.23640] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 12/12/2022]
Abstract
The antimycotic ciclopirox olamine is an intracellular iron chelator that has anticancer activity in vitro and in vivo. We developed an oral formulation of ciclopirox olamine and conducted the first-in-human phase I study of this drug in patients with relapsed or refractory hematologic malignancies (Trial registration ID: NCT00990587). Patients were treated with 5-80 mg/m² oral ciclopirox olamine once daily for five days in 21-day treatment cycles. Pharmacokinetic and pharmacodynamic companion studies were performed in a subset of patients. Following definition of the half-life of ciclopirox olamine, an additional cohort was enrolled and treated with 80 mg/m² ciclopirox olamine four times daily. Adverse events and clinical response were monitored throughout the trial. Twenty-three patients received study treatment. Ciclopirox was rapidly absorbed and cleared with a short half-life. Plasma concentrations of an inactive ciclopirox glucuronide metabolite were greater than those of ciclopirox. Repression of survivin expression was observed in peripheral blood cells isolated from patients treated once daily with ciclopirox olamine at doses greater than 10 mg/m², demonstrating biological activity of the drug. Dose-limiting gastrointestinal toxicities were observed in patients receiving 80 mg/m² four times daily, and no dose limiting toxicity was observed at 40 mg/m² once daily. Hematologic improvement was observed in two patients. Once-daily dosing of oral ciclopirox olamine was well tolerated in patients with relapsed or refractory hematologic malignancies, and further optimization of dosing regimens is warranted in this patient population.
Collapse
Affiliation(s)
- Mark D. Minden
- Princess Margaret Cancer Centre; University Health Network; Toronto Ontario Canada
| | - Donna E. Hogge
- Division of Hematology and Leukemia/BMT; University of British Columbia; Vancouver British Columbia Canada
| | - Scott J. Weir
- University of Kansas Cancer Center; Kansas City Kansas
| | - Jim Kasper
- The Leukemia & Lymphoma Society; White Plains New York
| | | | | | - Yulia Jitkova
- Princess Margaret Cancer Centre; University Health Network; Toronto Ontario Canada
| | - Rose Hurren
- Princess Margaret Cancer Centre; University Health Network; Toronto Ontario Canada
| | - Marcela Gronda
- Princess Margaret Cancer Centre; University Health Network; Toronto Ontario Canada
| | - Carolyn A. Goard
- Princess Margaret Cancer Centre; University Health Network; Toronto Ontario Canada
| | - Lian G. Rajewski
- Biotechnology Innovation and Optimization (BIO) Center; University of Kansas; Lawrence Kansas
| | - John L. Haslam
- Biotechnology Innovation and Optimization (BIO) Center; University of Kansas; Lawrence Kansas
| | - Kathleen E. Heppert
- Biotechnology Innovation and Optimization (BIO) Center; University of Kansas; Lawrence Kansas
| | - Kevin Schorno
- University of Kansas Cancer Center; Kansas City Kansas
| | - Hong Chang
- Department of Laboratory Hematology; University Health Network; Toronto Ontario Canada
| | - Joseph M. Brandwein
- Princess Margaret Cancer Centre; University Health Network; Toronto Ontario Canada
| | - Vikas Gupta
- Princess Margaret Cancer Centre; University Health Network; Toronto Ontario Canada
| | - Andre C. Schuh
- Princess Margaret Cancer Centre; University Health Network; Toronto Ontario Canada
| | - Suzanne Trudel
- Princess Margaret Cancer Centre; University Health Network; Toronto Ontario Canada
| | - Karen W. L. Yee
- Princess Margaret Cancer Centre; University Health Network; Toronto Ontario Canada
| | | | - Aaron D. Schimmer
- Princess Margaret Cancer Centre; University Health Network; Toronto Ontario Canada
| |
Collapse
|
17
|
Do THT, Gaboriau F, Cannie I, Batusanski F, Ropert M, Moirand R, Brissot P, Loreal O, Lescoat G. Iron-mediated effect of alcohol on hepatocyte differentiation in HepaRG cells. Chem Biol Interact 2013; 206:117-25. [PMID: 24025710 DOI: 10.1016/j.cbi.2013.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 08/19/2013] [Accepted: 08/30/2013] [Indexed: 01/16/2023]
Abstract
The development of alcoholic liver diseases depends on the ability of hepatocyte to proliferate and differentiate in the case of alcohol-induced injury. Our previous work showed an inhibitory effect of alcohol on hepatocyte proliferation. However, the effect of alcohol on hepatocyte differentiation has not yet been precisely characterized. In the present study, we evaluated the effect of alcohol on hepatocyte differentiation in relationship with changes of iron metabolism in HepaRG cells. This unique bipotent human cell line can differentiate into hepatocytes and biliary epithelial cells, paralleling liver development. Results showed that alcohol reduced cell viability, total protein level and enhanced hepatic enzymes leakage in differentiated HepaRG cells. Moreover, it caused cell enlargement, decreased number of hepatocyte and expression of C/EBPα as well as bile canaliculi F-actin. Alcohol increased expression of hepatic cell-specific markers and alcohol-metabolizing enzymes (ADH2, CYP2E1). This was associated with a lipid peroxidation and an iron excess expressed by an increase in total iron content, ferritin level, iron uptake as well as an overexpression of genes involved in iron transport and storage. Alcohol-induced hepatoxicity was amplified by exogenous iron via exceeding iron overload. Taken together, our data demonstrate that in differentiated hepatocytes, alcohol reduces proliferation while increasing expression of hepatic cell-specific markers. Moreover, iron overload could be one of the underlying mechanisms of effect of alcohol on the whole differentiation process of hepatocytes.
Collapse
Affiliation(s)
- Thi Hong Tuoi Do
- Inserm, UMR 991, «Foie, Métabolismes et Cancer», F-35033 Rennes, France; Université de Rennes 1, F-35043 Rennes, France; University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rouge P, Dassonville-Klimpt A, Cézard C, Boudesocque S, Ourouda R, Amant C, Gaboriau F, Forfar I, Guillon J, Guillon E, Vanquelef E, Cieplak P, Dupradeau FY, Dupont L, Sonnet P. Synthesis, Physicochemical Studies, Molecular Dynamics Simulations, and Metal-Ion-Dependent Antiproliferative and Antiangiogenic Properties of Cone ICL670-Substituted Calix[4]arenes. Chempluschem 2012; 77:1001-1016. [PMID: 25599014 DOI: 10.1002/cplu.201200141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Iron chelators, through their capacity to modulate the iron concentration in cells, are promising molecules for cancer chemotherapy. Chelators with high lipophilicity easily enter into cells and deplete the iron intracellular pool. Consequently, iron-dependent enzymes, such as ribonucleotide reductase, which is over-expressed in cancer cells, become nonfunctional. A series of calix[4]arene derivatives substituted at the lower rim by ICL670, a strong FeIII chelator, have been synthesized. Physicochemical properties and antiproliferative, angiogenesis, and tumorigenesis effects of two calix[4]arenes mono- (5a) or disubstituted (5b) with ICL670 have been studied. These compounds form metal complexes in a ratio of one to two ligands per FeIII atom as shown by combined analyses of the protometric titration curves and ESIMS spectra. The grafting of an ICL670 group on a calix[4]arene core does not significantly alter the acid-base properties, but improves the iron-chelating and lipophilicity properties. The best antiproliferative and anti-angiogenic results were obtained with calix[4]arene ligand 5a, which possesses the highest corresponding properties. Analyses of molecular dynamics simulations performed on the two calix[4]arenes provide three-dimensional structures of the complexes and proved 5a to be the most stable upon complexation.
Collapse
Affiliation(s)
- Pascal Rouge
- Laboratoire des Glucides, CNRS FRE 3517, UFR de Pharmacie, Université de Picardie Jules Verne, 1, rue des Louvels, 80037 Amiens cedex 1 (France)
| | - Alexandra Dassonville-Klimpt
- Laboratoire des Glucides, CNRS FRE 3517, UFR de Pharmacie, Université de Picardie Jules Verne, 1, rue des Louvels, 80037 Amiens cedex 1 (France)
| | - Christine Cézard
- Laboratoire des Glucides, CNRS FRE 3517, UFR de Pharmacie, Université de Picardie Jules Verne, 1, rue des Louvels, 80037 Amiens cedex 1 (France)
| | - Stéphanie Boudesocque
- Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims (France)
| | - Roger Ourouda
- Hémostase et remodelage vasculaire post-ischémique, EA3801, Université de Picardie Jules Verne, 1, rue des Louvels, 80037 Amiens cedex 1 (France)
| | - Carole Amant
- Hémostase et remodelage vasculaire post-ischémique, EA3801, Université de Picardie Jules Verne, 1, rue des Louvels, 80037 Amiens cedex 1 (France) ; Laboratoire d'Oncobiologie Moléculaire, CHU d'Amiens, Amiens (France)
| | - François Gaboriau
- Inserm U991 (EA/MDC), Université de Rennes I, Hôpital Pontchaillou, Rennes (France)
| | - Isabelle Forfar
- CNRS FRE 3396 (Pharmacochimie), UFR de Pharmacie, Université de Bordeaux Segalen, Bordeaux (France)
| | - Jean Guillon
- CNRS FRE 3396 (Pharmacochimie), UFR de Pharmacie, Université de Bordeaux Segalen, Bordeaux (France)
| | - Emmanuel Guillon
- Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims (France)
| | - Enguerran Vanquelef
- Laboratoire des Glucides, CNRS FRE 3517, UFR de Pharmacie, Université de Picardie Jules Verne, 1, rue des Louvels, 80037 Amiens cedex 1 (France)
| | - Piotr Cieplak
- Sandford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - François-Yves Dupradeau
- Laboratoire des Glucides, CNRS FRE 3517, UFR de Pharmacie, Université de Picardie Jules Verne, 1, rue des Louvels, 80037 Amiens cedex 1 (France)
| | - Laurent Dupont
- Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR des Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, Reims (France)
| | - Pascal Sonnet
- Laboratoire des Glucides, CNRS FRE 3517, UFR de Pharmacie, Université de Picardie Jules Verne, 1, rue des Louvels, 80037 Amiens cedex 1 (France)
| |
Collapse
|
19
|
Antiproliferative and iron chelating efficiency of the new bis-8-hydroxyquinoline benzylamine chelator S1 in hepatocyte cultures. Chem Biol Interact 2012; 195:165-72. [DOI: 10.1016/j.cbi.2011.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 12/23/2022]
|
20
|
Pennell DJ, Carpenter JP, Roughton M, Cabantchik ZI. On improvement in ejection fraction with iron chelation in thalassemia major and the risk of future heart failure. J Cardiovasc Magn Reson 2011; 13:45. [PMID: 21910880 PMCID: PMC3180261 DOI: 10.1186/1532-429x-13-45] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/12/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Trials of iron chelator regimens have increased the treatment options for cardiac siderosis in beta-thalassemia major (TM) patients. Treatment effects with improved left ventricular (LV) ejection fraction (EF) have been observed in patients without overt heart failure, but it is unclear whether these changes are clinically meaningful. METHODS This retrospective study of a UK database of TM patients modelled the change in EF between serial scans measured by cardiovascular magnetic resonance (CMR) to the relative risk (RR) of future development of heart failure over 1 year. Patients were divided into 2 strata by baseline LVEF of 56-62% (below normal for TM) and 63-70% (lower half of the normal range for TM). RESULTS A total of 315 patients with 754 CMR scans were analyzed. A 1% absolute increase in EF from baseline was associated with a statistically significant reduction in the risk of future development of heart failure for both the lower EF stratum (EF 56-62%, RR 0.818, p < 0.001) and the higher EF stratum (EF 63-70%, RR 0.893 p = 0.001). CONCLUSION These data show that during treatment with iron chelators for cardiac siderosis, small increases in LVEF in TM patients are associated with a significantly reduced risk of the development of heart failure. Thus the iron chelator induced improvements in LVEF of 2.6% to 3.1% that have been observed in randomized controlled trials, are associated with risk reductions of 25.5% to 46.4% for the development of heart failure over 12 months, which is clinically meaningful. In cardiac iron overload, heart mitochondrial dysfunction and its relief by iron chelation may underlie the changes in LV function.
Collapse
Affiliation(s)
- DJ Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London UK
- National Heart and Lung Institute, Imperial College, London UK
| | - JP Carpenter
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London UK
- National Heart and Lung Institute, Imperial College, London UK
| | - M Roughton
- Department of Statistics, University College London, UK
| | - ZI Cabantchik
- Life Sciences Institute, Hebrew University of Jerusalem, Safra Campus-Givat Ram, Jerusalem, Israel
| |
Collapse
|
21
|
Tuoi Do TH, Gaboriau F, Ropert M, Moirand R, Cannie I, Brissot P, Loréal O, Lescoat G. Ethanol Effect on Cell Proliferation in the Human Hepatoma HepaRG Cell Line: Relationship With Iron Metabolism. Alcohol Clin Exp Res 2010; 35:408-19. [DOI: 10.1111/j.1530-0277.2010.01358.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|