1
|
Zhu XX, Shi LN, Shi HM, Ye JR. Characterization of the Priestia megaterium ZS-3 siderophore and studies on its growth-promoting effects. BMC Microbiol 2025; 25:133. [PMID: 40075263 PMCID: PMC11899797 DOI: 10.1186/s12866-024-03669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/20/2024] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The ability of plant growth-promoting rhizobacteria (PGPR) to alleviate iron deficiency-induced chlorosis in plants has been widely reported, but the role of siderophores in the re-greening process has rarely been investigated. In this study, the Priestia megaterium ZS-3 (ZS-3) siderophore was first characterized, and a 100-fold concentration of the crude extract of the siderophore was extracted by solid-phase extraction and used to inoculate Arabidopsis thaliana to investigate whether the ZS-3 siderophore could alleviate plant iron deficiency-induced chlorosis in the presence of an insoluble iron source and to determine how it promoted plant growth. RESULTS The results indicated that -Fe + Fe2O3 (Fe2O3) treatment induced a decrease in plant growth and iron nutritional status compared with those in the 1/2 MS (one-half-strength Murashige and Skoog medium). Expression levels of representative genes for chlorophyll synthesis, CHLM and CHLG, increased by 85.41% and 77.05% compared to Fe2O3 treatment; the IRT1 and FRO2 in Fe2O3 inoculated with the ZS-3 siderophore (T2 treatment) were upregulated by 88.1% and 87.20%, respectively. These results indicate that the ZS-3 siderophore upregulates the expressions of chlorophyll genes to increases photosynthesis and helps plants increase the transcription of iron and the activity of ferric-chelate reductase. Compared with the Fe2O3 treatment, the T2 group increased the soluble protein and chlorophyll contents by 2.64- and 3.47-fold, and improved the activities of ferric-chelate reductase and peroxidase (POD) by 3.69- and 2.9-fold, respectively, indicating that the ZS-3 siderophore maintained normal plant growth under Fe2O3 stress by increasing the activity of antioxidant enzymes. CONCLUSIONS This study revealed that the ZS-3 siderophore Ferrioxamine E [M + Fe-2 H] enhances plant iron uptake and transport activity at the transcriptional level, confirming the important role of the ZS-3 siderophore in plant iron deficiency status, and the results suggest that the ZS-3 siderophore helps plants acquire iron, alleviates plant chlorosis and promotes plant growth through mechanism I of plant iron acquisition. In this study, we closely linked the structural characterization and quantification of siderophores with Fe deficiency-induced chlorosis to elucidate the promotional mechanism of siderophores in Fe-deficient environments.
Collapse
Affiliation(s)
- Xiao-Xia Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Li-Na Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Hui-Min Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
2
|
Lee SD, Yang HL, Han JH, Kim IS. Speluncibacter jeojiensis gen. nov. sp. nov., a novel bacterium of the order Mycobacteriales isolated from a cave and a proposal of Speluncibacteraceae fam. nov. Int J Syst Evol Microbiol 2024; 74. [PMID: 38345846 DOI: 10.1099/ijsem.0.006267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Two Gram-stain-positive, aerobic, non-spore-forming, non-motile, irregular rod-shaped actinobacteria, designated as D2-41T and D3-21, were isolated from soil samples collected in a natural cave in Jeju, Republic of Korea. Both of the isolates were shown to share 100 % 16S rRNA sequence identity. The cell wall contained meso-diaminopimelic acid, arabinose and galactose. The predominant menaquinone was MK-8(H2). The polar lipids contained phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, an unidentified aminolipid, an unidentified aminoglycolipid, an unidentified phospholipid and two unidentified lipids. The predominant fatty acids were C16 : 0 and summed feature 3 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH). Mycolic acids of C30-C38 were present. The 16S rRNA gene trees showed that the organisms occupied a distinct position remotely located from recognized genera within the order Mycobacteriales, albeit with the 16S rRNA gene similarities of 97.0-97.1 % with Rhodococcus olei, Rhodococcus rhodnii and Rhodococcus triatomae. The genome sizes and DNA G+C contents of strains D2-41T and D3-21 were 4.77-4.88 Mbp and 69.8 mol%, respectively. Both of the isolates shared an average nucleotide identity of 99.4 % and digital DNA-DNA hybridization of 95.2 % to each other, revealing that strains D2-41T and D3-21 belonged to the same species. In the core genome-based phylogenomic tree, both of the isolates were found to be closely associated with members of the genus Tomitella. However, strains D2-41T and D3-21 revealed the highest amino acid identity values (mean 66.5 %, range 66.2-67.0 % with the genus Prescottella of the family Nocardiaceae, followed by the genus Tomitella (mean 64.1 %, range 63.6-64.7 %) of the family Tomitellaceae. Based on the combined data obtained here, the novel isolates belong to a new genus of the new family for which the name Speluncibacter jeojiensis gen. nov. sp. nov. is proposed, with Speluncibacteraceae fam. nov. The type strain is strain D2-41T (=KACC 17930T=DSM 101875T).
Collapse
Affiliation(s)
- Soon Dong Lee
- Institute of Jeju Microbial Resources, BioPS Co., Ltd., Jeju 63243, Republic of Korea
| | - Hong-Lim Yang
- Institute of Jeju Microbial Resources, BioPS Co., Ltd., Jeju 63243, Republic of Korea
| | - Jong-Heon Han
- Bio Conversion Center, JTP Jeju Technopark, Jeju 63243, Republic of Korea
| | - In Seop Kim
- Department of Biological Sciences and Biotechnology, Hannam University, Daejon 34054, Republic of Korea
| |
Collapse
|
3
|
Timofeeva AM, Galyamova MR, Sedykh SE. Plant Growth-Promoting Soil Bacteria: Nitrogen Fixation, Phosphate Solubilization, Siderophore Production, and Other Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:4074. [PMID: 38140401 PMCID: PMC10748132 DOI: 10.3390/plants12244074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
This review covers the literature data on plant growth-promoting bacteria in soil, which can fix atmospheric nitrogen, solubilize phosphates, produce and secrete siderophores, and may exhibit several different behaviors simultaneously. We discuss perspectives for creating bacterial consortia and introducing them into the soil to increase crop productivity in agrosystems. The application of rhizosphere bacteria-which are capable of fixing nitrogen, solubilizing organic and inorganic phosphates, and secreting siderophores, as well as their consortia-has been demonstrated to meet the objectives of sustainable agriculture, such as increasing soil fertility and crop yields. The combining of plant growth-promoting bacteria with mineral fertilizers is a crucial trend that allows for a reduction in fertilizer use and is beneficial for crop production.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Maria R. Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Sergey E. Sedykh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
4
|
Timofeeva AM, Galyamova MR, Sedykh SE. Bacterial Siderophores: Classification, Biosynthesis, Perspectives of Use in Agriculture. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223065. [PMID: 36432794 PMCID: PMC9694258 DOI: 10.3390/plants11223065] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 06/07/2023]
Abstract
Siderophores are synthesized and secreted by many bacteria, yeasts, fungi, and plants for Fe (III) chelation. A variety of plant-growth-promoting bacteria (PGPB) colonize the rhizosphere and contribute to iron assimilation by plants. These microorganisms possess mechanisms to produce Fe ions under iron-deficient conditions. Under appropriate conditions, they synthesize and release siderophores, thereby increasing and regulating iron bioavailability. This review focuses on various bacterial strains that positively affect plant growth and development through synthesizing siderophores. Here we discuss the diverse chemical nature of siderophores produced by plant root bacteria; the life cycle of siderophores, from their biosynthesis to the Fe-siderophore complex degradation; three mechanisms of siderophore biosynthesis in bacteria; the methods for analyzing siderophores and the siderophore-producing activity of bacteria and the methods for screening the siderophore-producing activity of bacterial colonies. Further analysis of biochemical, molecular-biological, and physiological features of siderophore synthesis by bacteria and their use by plants will allow one to create effective microbiological preparations for improving soil fertility and increasing plant biomass, which is highly relevant for sustainable agriculture.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
| | - Maria R. Galyamova
- Center for Entrepreneurial Initiatives, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey E. Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Soares EV. Perspective on the biotechnological production of bacterial siderophores and their use. Appl Microbiol Biotechnol 2022. [PMID: 35672469 DOI: 10.1007/s00253-022-11995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Iron (Fe) is an essential element in several fundamental cellular processes. Although present in high amounts in the Earth's crust, Fe can be a scarce element due to its low bioavailability. To mitigate Fe limitation, microorganism (bacteria and fungi) and grass plant biosynthesis and secret secondary metabolites, called siderophores, with capacity to chelate Fe(III) with high affinity and selectivity. This review focuses on the current state of knowledge concerning the production of siderophores by bacteria. The main siderophore types and corresponding siderophore-producing bacteria are summarized. A concise outline of siderophore biosynthesis, secretion and regulation is given. Important aspects to be taken into account in the selection of a siderophore-producing bacterium, such as biological safety, complexing properties of the siderophores and amount of siderophores produced are summarized and discussed. An overview containing recent scientific advances on culture medium formulation and cultural conditions that influence the production of siderophores by bacteria is critically presented. The recovery, purification and processing of siderophores are outlined. Potential applications of siderophores in different sectors including agriculture, environment, biosensors and the medical field are sketched. Finally, future trends regarding the production and use of siderophores are discussed. KEY POINTS : • An overview of siderophore production by bacteria is critically presented • Scientific advances on factors that influence siderophores production are discussed • Potential applications of siderophores, in different fields, are outlined.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga-Guimaraes, Portugal.
| |
Collapse
|
6
|
Soares EV. Perspective on the biotechnological production of bacterial siderophores and their use. Appl Microbiol Biotechnol 2022; 106:3985-4004. [PMID: 35672469 DOI: 10.1007/s00253-022-11995-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022]
Abstract
Iron (Fe) is an essential element in several fundamental cellular processes. Although present in high amounts in the Earth's crust, Fe can be a scarce element due to its low bioavailability. To mitigate Fe limitation, microorganism (bacteria and fungi) and grass plant biosynthesis and secret secondary metabolites, called siderophores, with capacity to chelate Fe(III) with high affinity and selectivity. This review focuses on the current state of knowledge concerning the production of siderophores by bacteria. The main siderophore types and corresponding siderophore-producing bacteria are summarized. A concise outline of siderophore biosynthesis, secretion and regulation is given. Important aspects to be taken into account in the selection of a siderophore-producing bacterium, such as biological safety, complexing properties of the siderophores and amount of siderophores produced are summarized and discussed. An overview containing recent scientific advances on culture medium formulation and cultural conditions that influence the production of siderophores by bacteria is critically presented. The recovery, purification and processing of siderophores are outlined. Potential applications of siderophores in different sectors including agriculture, environment, biosensors and the medical field are sketched. Finally, future trends regarding the production and use of siderophores are discussed. KEY POINTS : • An overview of siderophore production by bacteria is critically presented • Scientific advances on factors that influence siderophores production are discussed • Potential applications of siderophores, in different fields, are outlined.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal. .,CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal. .,LABBELS - Associate Laboratory, Braga-Guimaraes, Portugal.
| |
Collapse
|
7
|
Aguirre-Noyola JL, Rosenblueth M, Santiago-Martínez MG, Martínez-Romero E. Transcriptomic Responses of Rhizobium phaseoli to Root Exudates Reflect Its Capacity to Colonize Maize and Common Bean in an Intercropping System. Front Microbiol 2021; 12:740818. [PMID: 34777287 PMCID: PMC8581550 DOI: 10.3389/fmicb.2021.740818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Corn and common bean have been cultivated together in Mesoamerica for thousands of years in an intercropping system called "milpa," where the roots are intermingled, favoring the exchange of their microbiota, including symbionts such as rhizobia. In this work, we studied the genomic expression of Rhizobium phaseoli Ch24-10 (by RNA-seq) after a 2-h treatment in the presence of root exudates of maize and bean grown in monoculture and milpa system under hydroponic conditions. In bean exudates, rhizobial genes for nodulation and degradation of aromatic compounds were induced; while in maize, a response of genes for degradation of mucilage and ferulic acid was observed, as well as those for the transport of sugars, dicarboxylic acids and iron. Ch24-10 transcriptomes in milpa resembled those of beans because they both showed high expression of nodulation genes; some genes that were expressed in corn exudates were also induced by the intercropping system, especially those for the degradation of ferulic acid and pectin. Beans grown in milpa system formed nitrogen-fixing nodules similar to monocultured beans; therefore, the presence of maize did not interfere with Rhizobium-bean symbiosis. Genes for the metabolism of sugars and amino acids, flavonoid and phytoalexin tolerance, and a T3SS were expressed in both monocultures and milpa system, which reveals the adaptive capacity of rhizobia to colonize both legumes and cereals. Transcriptional fusions of the putA gene, which participates in proline metabolism, and of a gene encoding a polygalacturonase were used to validate their participation in plant-microbe interactions. We determined the enzymatic activity of carbonic anhydrase whose gene was also overexpressed in response to root exudates.
Collapse
Affiliation(s)
- José Luis Aguirre-Noyola
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mónica Rosenblueth
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Esperanza Martínez-Romero
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
8
|
Fields B, Moffat EK, Harrison E, Andersen SU, Young JPW, Friman VP. Genetic variation is associated with differences in facilitative and competitive interactions in the Rhizobium leguminosarum species complex. Environ Microbiol 2021; 24:3463-3485. [PMID: 34398510 DOI: 10.1111/1462-2920.15720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 12/01/2022]
Abstract
Competitive and facilitative interactions influence bacterial community composition, diversity and functioning. However, the role of genetic diversity for determining interactions between coexisting strains of the same, or closely related, species remains poorly understood. Here, we investigated the type (facilitative/inhibitory) and potential underlying mechanisms of pairwise interactions between 24 genetically diverse bacterial strains belonging to three genospecies (gsA,C,E) of the Rhizobium leguminosarum species complex. Interactions were determined indirectly, based on secreted compounds in cell-free supernatants, and directly, as growth inhibition in cocultures. We found supernatants mediated both facilitative and inhibitory interactions that varied greatly between strains and genospecies. Overall, gsE strains indirectly suppressed growth of gsA strains, while their own growth was facilitated by other genospecies' supernatants. Similar genospecies-level patterns were observed in direct competition, where gsA showed the highest susceptibility and gsE the highest inhibition capacity. At the genetic level, increased gsA susceptibility was associated with a non-random distribution of quorum sensing and secondary metabolite genes across genospecies. Together, our results suggest that genetic variation is associated with facilitative and competitive interactions, which could be important ecological mechanisms explaining R. leguminosarum diversity.
Collapse
Affiliation(s)
| | - Emma K Moffat
- Department of Biology, University of York, York, UK.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Ellie Harrison
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
9
|
Hydroxamate siderophores: Natural occurrence, chemical synthesis, iron binding affinity and use as Trojan horses against pathogens. Eur J Med Chem 2020; 208:112791. [DOI: 10.1016/j.ejmech.2020.112791] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022]
|
10
|
Eng T, Herbert RA, Martinez U, Wang B, Chen JC, Brown JB, Deutschbauer AM, Bissell MJ, Mortimer JC, Mukhopadhyay A. Iron Supplementation Eliminates Antagonistic Interactions Between Root-Associated Bacteria. Front Microbiol 2020; 11:1742. [PMID: 32793173 PMCID: PMC7387576 DOI: 10.3389/fmicb.2020.01742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/03/2020] [Indexed: 01/12/2023] Open
Abstract
The rhizosphere microbiome (rhizobiome) plays a critical role in plant health and development. However, the processes by which the constituent microbes interact to form and maintain a community are not well understood. To investigate these molecular processes, we examined pairwise interactions between 11 different microbial isolates under select nutrient-rich and nutrient-limited conditions. We observed that when grown with media supplemented with 56 mM glucose, two microbial isolates were able to inhibit the growth of six other microbes. The interaction between microbes persisted even after the antagonistic microbe was removed, upon exposure to spent media. To probe the genetic basis for these antagonistic interactions, we used a barcoded transposon library in a proxy bacterium, Pseudomonas putida, to identify genes which showed enhanced sensitivity to the antagonistic factor(s) secreted by Acinetobacter sp. 02. Iron metabolism-related gene clusters in P. putida were implicated by this systems-level analysis. The supplementation of iron prevented the antagonistic interaction in the original microbial pair, supporting the hypothesis that iron limitation drives antagonistic microbial interactions between rhizobionts. We conclude that rhizobiome community composition is influenced by competition for limiting nutrients, with implications for growth and development of the plant.
Collapse
Affiliation(s)
- Thomas Eng
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Robin A. Herbert
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Uriel Martinez
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- College of Science and Engineering, San Francisco State University, San Francisco, CA, United States
| | - Brenda Wang
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Joseph C. Chen
- College of Science and Engineering, San Francisco State University, San Francisco, CA, United States
| | - James B. Brown
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Computational Biosciences Group, Computational Research Division, Computing Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Statistics, University of California, Berkeley, Berkeley, CA, United States
- Machine Learning and AI Group, Arva Intelligence Inc., Park City, UT, United States
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Mina J. Bissell
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jenny C. Mortimer
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
11
|
Ferreira CMH, Soares HMVM, Soares EV. Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:779-799. [PMID: 31146074 DOI: 10.1016/j.scitotenv.2019.04.225] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 05/20/2023]
Abstract
In order to address the ever-increasing problem of the world's population food needs, the optimization of farming crops yield, the combat of iron deficiency in plants (chlorosis) and the elimination/reduction of crop pathogens are of key challenges to solve. Traditional ways of solving these problems are either unpractical on a large scale (e.g. use of manure) or are not environmental friendly (e.g. application of iron-synthetic fertilizers or indiscriminate use of pesticides). Therefore, the search for greener substitutes, such as the application of siderophores of bacterial source or the use of plant-growth promoting bacteria (PGPB), is presented as a very promising alternative to enhance yield of crops and performance. However, the use of microorganisms is not a risk-free solution and the potential biohazards associated with the utilization of bacteria in agriculture should be considered. The present work gives a current overview of the main mechanisms associated with the use of bacteria in the promotion of plant growth. The potentiality of several bacterial genera (Azotobacter, Azospirillum, Bacillus, Pantoea, Pseudomonas and Rhizobium) regarding to siderophore production capacity and other plant growth-promoting properties are presented. In addition, the field performance of these bacteria genera as well as the biosafety aspects related with their use for agricultural proposes are reviewed and discussed.
Collapse
Affiliation(s)
- Carlos M H Ferreira
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Bioengineering Laboratory, Chemical Engineering Department, ISEP-School of Engineering of Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Helena M V M Soares
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Eduardo V Soares
- Bioengineering Laboratory, Chemical Engineering Department, ISEP-School of Engineering of Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
12
|
Osman Y, Gebreil A, Mowafy AM, Anan TI, Hamed SM. Characterization of Aspergillus niger siderophore that mediates bioleaching of rare earth elements from phosphorites. World J Microbiol Biotechnol 2019; 35:93. [DOI: 10.1007/s11274-019-2666-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/25/2019] [Indexed: 01/28/2023]
|
13
|
Pluháček T, Lemr K, Ghosh D, Milde D, Novák J, Havlíček V. Characterization of microbial siderophores by mass spectrometry. MASS SPECTROMETRY REVIEWS 2016; 35:35-47. [PMID: 25980644 DOI: 10.1002/mas.21461] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/19/2014] [Indexed: 05/28/2023]
Abstract
Siderophores play important roles in microbial iron piracy, and are applied as infectious disease biomarkers and novel pharmaceutical drugs. Inductively coupled plasma and molecular mass spectrometry (ICP-MS) combined with high resolution separations allow characterization of siderophores in complex samples taking advantages of mass defect data filtering, tandem mass spectrometry, and iron-containing compound quantitation. The enrichment approaches used in siderophore analysis and current ICP-MS technologies are reviewed. The recent tools for fast dereplication of secondary metabolites and their databases are reported. This review on siderophores is concluded with their recent medical, biochemical, geochemical, and agricultural applications in mass spectrometry context.
Collapse
Affiliation(s)
- Tomáš Pluháček
- Department of Analytical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Microbiology, AS CR v.v.i., Videnska 1083, CZ 142 20, Prague 4, Czech Republic
| | - Karel Lemr
- Department of Analytical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Microbiology, AS CR v.v.i., Videnska 1083, CZ 142 20, Prague 4, Czech Republic
| | - Dipankar Ghosh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - David Milde
- Department of Analytical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Jiří Novák
- Institute of Microbiology, AS CR v.v.i., Videnska 1083, CZ 142 20, Prague 4, Czech Republic
| | - Vladimír Havlíček
- Department of Analytical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Microbiology, AS CR v.v.i., Videnska 1083, CZ 142 20, Prague 4, Czech Republic
| |
Collapse
|