1
|
Tao Q, Cai T, Xiao Y, Han T, Shen L, Cheng C, Xu S, Li A, Zhang P, Chen J, Zhang Y, Tong Q, Cai X. Genome-guided discovery of coublibactins from Nocardia coubleae and their gallium complexes with potent antileukemic activity. Bioorg Chem 2025; 160:108508. [PMID: 40280014 DOI: 10.1016/j.bioorg.2025.108508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
The pursuit of highly effective and selective anticancer drugs remains a critical challenge. Metal-based complexes, particularly gallium-containing compounds, offer promising therapeutic avenues due to their unique mechanisms of action. To identify novel scaffolds for such complexes, we performed a comprehensive genomic analysis of Nocardia species, revealing the prevalence of siderophore biosynthetic gene clusters, including the highly conserved nocobactin NA-like clusters. From N. coubleae DSM 44960, we isolated three new siderophores, coublibactins A-C (1-3), along with eight congeners (4-11) with known planar structures, all characterized by exceptional iron-binding affinity. Subsequent gallium substitution yielded gallium complexes (Ga-1-11). Among these, Ga-6 exhibited significant anticancer activity against human acute promyelocytic leukemia NB4 cells with IC50 value of 1.35 μM. Pharmacological studies showed that Ga-6 induces cell cycle arrest and apoptosis in NB4 cells. Our findings revealed microbial siderophores as promising scaffolds for the design of next-generation metal-based anticancer therapeutics, particularly gallium-based agents.
Collapse
Affiliation(s)
- Qiaoqiao Tao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Key Laboratory of Neurological Diseases of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Teng Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Key Laboratory of Neurological Diseases of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yang Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Key Laboratory of Neurological Diseases of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Tao Han
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Key Laboratory of Neurological Diseases of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Ling Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Key Laboratory of Neurological Diseases of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Chang Cheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Key Laboratory of Neurological Diseases of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Shouying Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Aiying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Peng Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Key Laboratory of Neurological Diseases of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jiachun Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Key Laboratory of Neurological Diseases of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Key Laboratory of Neurological Diseases of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Key Laboratory of Neurological Diseases of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Xiaofeng Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Key Laboratory of Neurological Diseases of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
2
|
Maglangit F, Fang Q, Tabudravu JN, Kyeremeh K, Jaspars M, Deng H. Isolation and Bioactivity of Natural Products from Streptomyces sp. MA37. Molecules 2025; 30:306. [PMID: 39860176 PMCID: PMC11767966 DOI: 10.3390/molecules30020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
The isolation and characterization of bioactive metabolites from Streptomyces species continue to represent a vital area of research, given their potential in natural product drug discovery. In this study, we characterize a new siderophore called legonoxamine I, together with a known compound, streptimidone, from the talented soil bacterium Streptomyces sp. MA37, using chromatographic techniques and spectroscopic analysis. Legonoxamine I is a new holo-siderophore, which is likely to be a derailed product from the biosynthetic pathway of legonoxamine A. We also demonstrate that legonoxamine A possesses potent anticancer activity (IC50 = 2.2 µM), exhibiting a remarkable ~30-fold increase in potency against MCF-7 ATCC HTB-22 breast cancer cells compared to desferrioxamine B, a structural analogue of legonoxamine A (IC50 = 61.1 µM). Comparing the structural difference between legonoxamine A and desferrioxamine B, it is deduced that the phenylacetyl moiety in legonoxamine A may have contributed significantly to its enhanced potency. Our findings contribute to the growing library of Streptomyces-derived metabolites and underscore the genus' potential as a promising source of lead compounds.
Collapse
Affiliation(s)
- Fleurdeliz Maglangit
- Department of Biology and Environmental Science, College of Science, University of the Philippines Cebu, Lahug, Cebu City 6000, Philippines
| | - Qing Fang
- Marine Biodiscovery Centre, Department of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, Old Aberdeen AB24 3UE, UK; (Q.F.); (M.J.)
| | - Jioji N. Tabudravu
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Kwaku Kyeremeh
- Marine and Plant Research Laboratory of Ghana, Department of Chemistry, University of Ghana, Legon-Accra P.O. Box LG56, Ghana;
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, Old Aberdeen AB24 3UE, UK; (Q.F.); (M.J.)
| | - Hai Deng
- Marine Biodiscovery Centre, Department of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, Old Aberdeen AB24 3UE, UK; (Q.F.); (M.J.)
| |
Collapse
|
3
|
Jalal-Ud-Din S, Elahi NN, Mubeen F. Significance of zinc-solubilizing plant growth-promoting rhizobacterial strains in nutrient acquisition, enhancement of growth, yield, and oil content of canola ( Brassica napus L.). Front Microbiol 2024; 15:1446064. [PMID: 39397794 PMCID: PMC11466859 DOI: 10.3389/fmicb.2024.1446064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
The present study was conducted with the aim to isolate, characterize, and identify the promising zinc-solubilizing rhizobacteria found naturally in the rhizosphere of canola (Brassica napus L.) plants. The study investigated the roles of these strains in nutrient acquisition and assimilation of extracellular molecules such as hormones and secondary metabolites. Ten isolated promising zinc-solubilizing strains (CLS1, CLS2, CLS3, CLS6, CLS8, CLS9, CLS11, CLS12, CLS13, and CLS15) were selected and characterized biochemically. Almost all the tested strains were Gram-positive, could fix nitrogen, and were positive for indole acetic acid, HCN, exopolysaccharides, and siderophore production. These effective zinc-solubilizing strains were identified through 16S rRNA gene sequencing. Based on the amount of solubilized zinc and halo zone diameter, four potent strains (CLS1, CLS2, CLS3, and CLS9) were selected for pot and field evaluation. Among all the identified bacterial genera isolated from the rhizosphere of the same host plant at different sampling sites, Priestia aryabhattai was found most abundant and found at all three sampling sites. The strains Priestia megaterium, Staphylococcus succinus, and Bacillus cereus were found at two different sites. Bacillus subtilis was found at only one site. These strains have a number of plant growth-stimulating characteristics as well as the ability to colonize plant roots successfully. The results indicated that inoculation of all these four zinc-solubilizing tested strains enhanced the plant growth, oil contents, and yield attributes of canola as compared to non-inoculated control with fertilizer levels. Staphylococcus succinus (CLS1) was first reported as a zinc solubilizer and associated with canola. Priestia aryabhattai (CLS2) and Priestia megaterium (CLS9) were found to be the best strains, with the most pronounced beneficial effect on canola growth and yield traits in both pot and field conditions. The site-specific dominance of these strains observed in this study may contribute toward decision-making for the development of specific inocula for canola. Therefore, identification of these strains could help in providing adequate amount of soluble zinc along with enhanced plant growth, yield, and oil content of canola.
Collapse
Affiliation(s)
| | | | - Fathia Mubeen
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE-C, PIEAS), Faisalabad, Pakistan
| |
Collapse
|
4
|
Liu S, Bu Z, Zhang X, Chen Y, Sun Q, Wu F, Guo S, Zhu Y, Tan X. The new CFEM protein CgCsa required for Fe 3+ homeostasis regulates the growth, development, and pathogenicity of Colletotrichum gloeosporioides. Int J Biol Macromol 2024; 274:133216. [PMID: 38901513 DOI: 10.1016/j.ijbiomac.2024.133216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Secreted common fungal extracellular membrane (CFEM) domain proteins have been implicated in multiple biological functions in fungi. However, it is still largely unknown whether the ferric iron (Fe3+), as an important trace element, was involved with the biological function of CFEM proteins. In this study, a new CFEM protein CgCsa, with high expression levels at the early inoculation stage on peppers by Colletotrichum gloeosporioides was investigated. Deletion of the targeted gene CgCsa revealed multiple biological roles in hyphal growth restriction, highly reduced conidial yield, delayed conidial germination, abnormal appressorium with elongated bud tubes, and significantly reduced virulence of C. gloeosporioides. Moreover, in CgCsa mutants, the expression levels of four cell wall synthesis-related genes were downregulated, and cell membrane permeability and electrical conductivity were increased. Compared to the wild-type, the CgCsa mutants downregulated expressions of iron transport-related genes, in addition, its three-dimensional structure was capable binding with iron. Increase in the Fe3+ concentration in the culture medium partially recovered the functions of ΔCgCsa mutant. This is probably the first report to show the association between CgCsa and iron homeostasis in C. gloeosporioides. The results suggest an alternative pathway for controlling plant fungal diseases by deplete their trace elements.
Collapse
Affiliation(s)
- Sizhen Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China; Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Yuelushan Laboratory, Changsha 410128, China
| | - Zhigang Bu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Xin Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Yuelushan Laboratory, Changsha 410128, China
| | - Yue Chen
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Yuelushan Laboratory, Changsha 410128, China
| | - Qianlong Sun
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Yuelushan Laboratory, Changsha 410128, China
| | - Fei Wu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Yuelushan Laboratory, Changsha 410128, China
| | - Sheng Guo
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Yuelushan Laboratory, Changsha 410128, China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China.
| | - Xinqiu Tan
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Yuelushan Laboratory, Changsha 410128, China; LongPing Branch, College of Biology, Hunan University, Changsha 410125, China.
| |
Collapse
|
5
|
Xie B, Wei X, Wan C, Zhao W, Song R, Xin S, Song K. Exploring the Biological Pathways of Siderophores and Their Multidisciplinary Applications: A Comprehensive Review. Molecules 2024; 29:2318. [PMID: 38792179 PMCID: PMC11123847 DOI: 10.3390/molecules29102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Siderophores are a class of small molecules renowned for their high iron binding capacity, essential for all life forms requiring iron. This article provides a detailed review of the diverse classifications, and biosynthetic pathways of siderophores, with a particular emphasis on siderophores synthesized via nonribosomal peptide synthetase (NRPS) and non-NRPS pathways. We further explore the secretion mechanisms of siderophores in microbes and plants, and their role in regulating bioavailable iron levels. Beyond biological functions, the applications of siderophores in medicine, agriculture, and environmental sciences are extensively discussed. These applications include biological pest control, disease treatment, ecological pollution remediation, and heavy metal ion removal. Through a comprehensive analysis of the chemical properties and biological activities of siderophores, this paper demonstrates their wide prospects in scientific research and practical applications, while also highlighting current research gaps and potential future directions.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuquan Xin
- School of Life Science, Changchun Normal University, Changchun 130032, China; (B.X.); (X.W.); (C.W.); (W.Z.); (R.S.)
| | - Kai Song
- School of Life Science, Changchun Normal University, Changchun 130032, China; (B.X.); (X.W.); (C.W.); (W.Z.); (R.S.)
| |
Collapse
|
6
|
Wu J, Jiao Y, Ran M, Li J. The role of an Sb-oxidizing bacterium in modulating antimony speciation and iron plaque formation to reduce the accumulation and toxicity of Sb in rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133897. [PMID: 38442599 DOI: 10.1016/j.jhazmat.2024.133897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/04/2024] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
Microbial antimony (Sb) oxidation in the root rhizosphere and the formation of iron plaque (IP) on the root surface are considered as two separate strategies to mitigate Sb(III) phytotoxicity. Here, the effect of an Sb-oxidizing bacterium Bacillus sp. S3 on IP characteristics of rice exposed to Sb(III) and its alleviating effects on plant growth were investigated. The results revealed that Fe(II) supply promoted IP formation under Sb(III) stress. However, the formed IP facilitated rather than hindered the uptake of Sb by rice roots. In contrast, the combined application of Fe(II) and Bacillus sp. S3 effectively alleviated Sb(III) toxicity in rice, resulting in improved rice growth and photosynthesis, reduced oxidative stress levels, enhanced antioxidant systems, and restricted Sb uptake and translocation. Despite the ability of Bacillus sp. S3 to oxidize Fe(II), bacterial inoculation inhibited the formation of IP, resulting in a reduction in Sb absorption on IP and uptake into the roots. Additionally, the bacterial inoculum enhanced the transformation of Sb(III) to less toxic Sb(V) in the culture solution, further influencing the adsorption of Sb onto IP. These findings highlight the potential of combining microbial Sb oxidation and IP as an effective strategy for minimizing Sb toxicity in sustainable rice production systems.
Collapse
Affiliation(s)
- Jiaxing Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Ying Jiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Maodi Ran
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
7
|
Yan Y, Zhang W, Wang Y, Yi C, Yu B, Pang X, Li K, Li H, Dai Y. Crosstalk between intestinal flora and human iron metabolism: the role in metabolic syndrome-related comorbidities and its potential clinical application. Microbiol Res 2024; 282:127667. [PMID: 38442456 DOI: 10.1016/j.micres.2024.127667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
The interaction of iron and intestinal flora, both of which play crucial roles in many physiologic processes, is involved in the development of Metabolic syndrome (MetS). MetS is a pathologic condition represented by insulin resistance, obesity, dyslipidemia, and hypertension. MetS-related comorbidities including type 2 diabetes mellitus (T2DM), obesity, metabolism-related fatty liver (MAFLD), hypertension polycystic ovary syndrome (PCOS), and so forth. In this review, we examine the interplay between intestinal flora and human iron metabolism and its underlying mechanism in the pathogenesis of MetS-related comorbidities. The composition and metabolites of intestinal flora regulate the level of human iron by modulating intestinal iron absorption, the factors associated with iron metabolism. On the other hand, the iron level also affects the abundance, composition, and metabolism of intestinal flora. The crosstalk between these factors is of significant importance in human metabolism and exerts varying degrees of influence on the manifestation and progression of MetS-related comorbidities. The findings derived from these studies can enhance our comprehension of the interplay between intestinal flora and iron metabolism, and open up novel potential therapeutic approaches toward MetS-related comorbidities.
Collapse
Affiliation(s)
- Yijing Yan
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yulin Wang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunmei Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoli Pang
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kunyang Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - HuHu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
8
|
Gladysh NS, Bogdanova AS, Kovalev MA, Krasnov GS, Volodin VV, Shuvalova AI, Ivanov NV, Popchenko MI, Samoilova AD, Polyakova AN, Dmitriev AA, Melnikova NV, Karpov DS, Bolsheva NL, Fedorova MS, Kudryavtseva AV. Culturable Bacterial Endophytes of Wild White Poplar ( Populus alba L.) Roots: A First Insight into Their Plant Growth-Stimulating and Bioaugmentation Potential. BIOLOGY 2023; 12:1519. [PMID: 38132345 PMCID: PMC10740426 DOI: 10.3390/biology12121519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
The white poplar (Populus alba L.) has good potential for a green economy and phytoremediation. Bioaugmentation using endophytic bacteria can be considered as a safe strategy to increase poplar productivity and its resistance to toxic urban conditions. The aim of our work was to find the most promising strains of bacterial endophytes to enhance the growth of white poplar in unfavorable environmental conditions. To this end, for the first time, we performed whole-genome sequencing of 14 bacterial strains isolated from the tissues of the roots of white poplar in different geographical locations. We then performed a bioinformatics search to identify genes that may be useful for poplar growth and resistance to environmental pollutants and pathogens. Almost all endophytic bacteria obtained from white poplar roots are new strains of known species belonging to the genera Bacillus, Corynebacterium, Kocuria, Micrococcus, Peribacillus, Pseudomonas, and Staphylococcus. The genomes of the strains contain genes involved in the enhanced metabolism of nitrogen, phosphorus, and metals, the synthesis of valuable secondary metabolites, and the detoxification of heavy metals and organic pollutants. All the strains are able to grow on media without nitrogen sources, which indicates their ability to fix atmospheric nitrogen. It is concluded that the strains belonging to the genus Pseudomonas and bacteria of the species Kocuria rosea have the best poplar growth-stimulating and bioaugmentation potential, and the roots of white poplar are a valuable source for isolation of endophytic bacteria for possible application in ecobiotechnology.
Collapse
Affiliation(s)
- Natalya S. Gladysh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - Alina S. Bogdanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia
| | - Maxim A. Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Vsevolod V. Volodin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Anastasia I. Shuvalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - Nikita V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia
| | - Mikhail I. Popchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Institute of Geography, Russian Academy of Sciences, Staromonetny Pereulok, 29/4, 119017 Moscow, Russia
| | - Aleksandra D. Samoilova
- Faculty of Soil Science, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119234 Moscow, Russia; (A.D.S.); (A.N.P.)
| | - Aleksandra N. Polyakova
- Faculty of Soil Science, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119234 Moscow, Russia; (A.D.S.); (A.N.P.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Dmitry S. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - Maria S. Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| |
Collapse
|
9
|
Timofeeva AM, Galyamova MR, Sedykh SE. Plant Growth-Promoting Soil Bacteria: Nitrogen Fixation, Phosphate Solubilization, Siderophore Production, and Other Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:4074. [PMID: 38140401 PMCID: PMC10748132 DOI: 10.3390/plants12244074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
This review covers the literature data on plant growth-promoting bacteria in soil, which can fix atmospheric nitrogen, solubilize phosphates, produce and secrete siderophores, and may exhibit several different behaviors simultaneously. We discuss perspectives for creating bacterial consortia and introducing them into the soil to increase crop productivity in agrosystems. The application of rhizosphere bacteria-which are capable of fixing nitrogen, solubilizing organic and inorganic phosphates, and secreting siderophores, as well as their consortia-has been demonstrated to meet the objectives of sustainable agriculture, such as increasing soil fertility and crop yields. The combining of plant growth-promoting bacteria with mineral fertilizers is a crucial trend that allows for a reduction in fertilizer use and is beneficial for crop production.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Maria R. Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Sergey E. Sedykh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
10
|
Kumar G, Adhikrao PA. Targeting Mycobacterium tuberculosis iron-scavenging tools: a recent update on siderophores inhibitors. RSC Med Chem 2023; 14:1885-1913. [PMID: 37859726 PMCID: PMC10583813 DOI: 10.1039/d3md00201b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 10/21/2023] Open
Abstract
Among the various bacterial infections, tuberculosis (TB) remains a life-threatening infectious disease responsible as the most significant cause of mortality and morbidity worldwide. The co-infection of human immunodeficiency virus (HIV) in association with TB burdens the healthcare system substantially. Notably, M.tb possesses defence against most antitubercular antibiotic drugs, and the efficacy of existing frontline anti-TB drugs is waning. Also, new and recurring cases of TB from resistant bacteria such as multidrug-resistant TB (MDR), extensively drug-resistant TB (XDR), and totally drug-resistant TB (TDR) strains are increasing. Hence, TB begs the scientific community to explore the new therapeutic class of compounds with their novel mechanism. M.tb requires iron from host cells to sustain, grow, and carry out several biological processes. M.tb has developed strategic methods of acquiring iron from the surrounding environment. In this communication, we discuss an overview of M.tb iron-scavenging tools. Also, we have summarized recently identified MbtA and MbtI inhibitors, which prevent M.tb from scavenging iron. These iron-scavenging tool inhibitors have the potential to be developed as anti-TB agents/drugs.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| | - Patil Amruta Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| |
Collapse
|
11
|
Rodríguez D, González-Bello C. Siderophores: Chemical Tools for Precise Antibiotic Delivery. Bioorg Med Chem Lett 2023; 87:129282. [PMID: 37031730 DOI: 10.1016/j.bmcl.2023.129282] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
The success of precision medicine coupled with the disappointing impact of broad-spectrum antibiotic use on microbiome stability and bacterial resistance, has triggered a shift in antibiotic design strategies toward precision antibiotics. This also includes the implementation of novel vectorization approaches directed to improve the internalization of antibacterial agents into deadly gram-negative pathogens through precise and well-defined mechanisms. The conjugation of antibiotics to siderophores (iron scavengers), which are compounds that are able to afford stable iron-complexes that facilitate the internalization into the cell by using bacterial iron uptake pathways as gateways, is a strategy that has begun to show excellent results with the commercialization of the first antibiotic based on this principle, cefiderocol. This digests review provides an overview of the molecular basis for this antibiotic-siderophore conjugation approach, along with recent successful examples and highlights future challenges facing this booming research area.
Collapse
Affiliation(s)
- Diana Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
12
|
Lan P, Lu Y, Yan R, Fang L, Zhao D, Jiang Y, Yu Y, Du X, Zhou J. Development of a Novel Typing Scheme Based on the Genetic Diversity of Heme/Hemin Uptake System Hmu in Klebsiella pneumoniae Species Complex. Microbiol Spectr 2023; 11:e0106222. [PMID: 36786624 PMCID: PMC10101058 DOI: 10.1128/spectrum.01062-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Iron is essential for the survival and reproduction of Klebsiella pneumoniae. Although K. pneumoniae employs multiple types of siderophores to scavenge iron during infections, the majority of host iron is retained within erythrocytes and carried by hemoglobin that is inaccessible to siderophores. HmuRSTUV is a bacterial hemin/hemoprotein uptake system. However, the genetic background and function of HmuRSTUV in K. pneumoniae remain unknown. We collected 2,242 K. pneumoniae genomes, of which 2,218 (98.9%) had complete hmuRSTUV loci. Based on the 2,218 complete hmuRSTUV sequences, we established a novel typing scheme of K. pneumoniae named hmST, and 446 nonrepetitive hmSTs were identified. In hypervirulent lineages, hmST was diversely distributed and hmST1 mainly existed in ST23 strains. In contrast, hmST was less diversely distributed among multidrug-resistant strains. hmST demonstrated greater genetic diversity in hypervirulent lineages and community-acquired and bloodstream-sourced strains. In vitro and in vivo experiments revealed that an intact hmuRSTUV was essential for hemin uptake, playing an important role in bloodstream infections. This study established a novel typing scheme of hmST based on hmuRSTUV providing new insights into identifying and monitoring the emergence of novel virulence evolution in K. pneumoniae. IMPORTANCE Siderophore is a group of low molecular weight compounds with high affinity for ferric iron, which could facilitate bacterial iron consumption. Similarly, hemin/heme scavenged by the hemin uptake system HmuRSTUV usually act as another critical iron source for K. pneumoniae. This study proved that Hmu system significantly promoted the growth of K. pneumoniae in the presence of hemin and played an important role in bloodstream infections. A novel typing scheme named hmST was established, and the genetic diversity of hmuRSTUV loci was analyzed based on a large number of genomes. This study provides new insights into identifying and monitoring the emergence of novel virulence evolution in K. pneumoniae.
Collapse
Affiliation(s)
- Peng Lan
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Ye Lu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Rushuang Yan
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Lei Fang
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Dongdong Zhao
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxing Du
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| |
Collapse
|
13
|
Jeong GJ, Khan F, Khan S, Tabassum N, Mehta S, Kim YM. Pseudomonas aeruginosa virulence attenuation by inhibiting siderophore functions. Appl Microbiol Biotechnol 2023; 107:1019-1038. [PMID: 36633626 DOI: 10.1007/s00253-022-12347-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Pseudmonas aeruginosa is a Gram-negative bacterium known to be ubiquitous and recognized as one of the leading causes of infections such as respiratory, urinary tract, burns, cystic fibrosis, and in immunocompromised individuals. Failure of antimicrobial therapy has been documented to be attributable due to the development of various resistance mechanisms, with a proclivity to develop additional resistance mechanisms rapidly. P. aeruginosa virulence attenuation is an alternate technique for disrupting pathogenesis without impacting growth. The iron-scavenging siderophores (pyoverdine and pyochelin) generated by P. aeruginosa have various properties like scavenging iron, biofilm formation, quorum sensing, increasing virulence, and toxicity to the host. As a result, developing an antivirulence strategy, specifically inhibiting the P. aeruginosa siderophore, has been a promising therapeutic option to limit their infection. Several natural, synthetic compounds and nanoparticles have been identified as potent inhibitors of siderophore production/biosynthesis, function, and transport system. The current review discussed pyoverdine and pyochelin's synthesis and transport system in P. aeruginosa. Furthermore, it is also focused on the role of several natural and synthetic compounds in reducing P. aeruginosa virulence by inhibiting siderophore synthesis, function, and transport. The underlying mechanism involved in inhibiting the siderophore by natural and synthetic compounds has also been explained. KEY POINTS: • Pseudomonas aeruginosa is an opportunistic pathogen linked to chronic respiratory, urinary tract, and burns infections, as well as cystic fibrosis and immunocompromised patients. • P. aeruginosa produces two virulent siderophores forms: pyoverdine and pyochelin, which help it to survive in iron-deficient environments. • The inhibition of siderophore production, transport, and activity using natural and synthesized drugs has been described as a potential strategy for controlling P. aeruginosa infection.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Sohail Khan
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, Uttar Pradesh, 201309, India
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Sonu Mehta
- Anthem Biosciences Private Limited, Bommasandra, Bangalore, Karnataka, 56009, India
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea. .,Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
14
|
Timofeeva AM, Galyamova MR, Sedykh SE. Bacterial Siderophores: Classification, Biosynthesis, Perspectives of Use in Agriculture. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223065. [PMID: 36432794 PMCID: PMC9694258 DOI: 10.3390/plants11223065] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 06/07/2023]
Abstract
Siderophores are synthesized and secreted by many bacteria, yeasts, fungi, and plants for Fe (III) chelation. A variety of plant-growth-promoting bacteria (PGPB) colonize the rhizosphere and contribute to iron assimilation by plants. These microorganisms possess mechanisms to produce Fe ions under iron-deficient conditions. Under appropriate conditions, they synthesize and release siderophores, thereby increasing and regulating iron bioavailability. This review focuses on various bacterial strains that positively affect plant growth and development through synthesizing siderophores. Here we discuss the diverse chemical nature of siderophores produced by plant root bacteria; the life cycle of siderophores, from their biosynthesis to the Fe-siderophore complex degradation; three mechanisms of siderophore biosynthesis in bacteria; the methods for analyzing siderophores and the siderophore-producing activity of bacteria and the methods for screening the siderophore-producing activity of bacterial colonies. Further analysis of biochemical, molecular-biological, and physiological features of siderophore synthesis by bacteria and their use by plants will allow one to create effective microbiological preparations for improving soil fertility and increasing plant biomass, which is highly relevant for sustainable agriculture.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
| | - Maria R. Galyamova
- Center for Entrepreneurial Initiatives, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey E. Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
15
|
Cavas L, Kirkiz I. Characterization of siderophores from Escherichia coli strains through genome mining tools: an antiSMASH study. AMB Express 2022; 12:74. [PMID: 35704153 PMCID: PMC9200922 DOI: 10.1186/s13568-022-01421-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Although urinary tract infections (UTIs) affect many people, they are usually a disease observed in women. UTIs happen when exogenous and endogenous bacteria enter the urinary tract and colonize there. Cystitis and pyelonephritis occur when bacteria infect the bladder and the kidneys, respectively. UTIs become much serious if the bacteria causing the infection are antibiotic resistant. Since the pathogenic microorganisms have been adopted to current antibiotics via genetic variations, UTIs have become an even more severe health problem. Therefore, there is a great need for the discovery of novel antibiotics. Genome mining of nonpathogenic and pathogenic Escherichia coli strains for investigating secondary metabolites were conducted by the antiSMASH analysis. When the resulting secondary metabolites were examined, it was found that some of the siderophores are effective in UTIs. In conclusion, since the siderophore production in E. coli is directly related to UTIs, these molecules can be a good target for development of future pharmaceutical approaches and compounds. Siderophores can also be used in industrial studies due to their higher chelating affinity for iron. ![]()
Genome mining on nonpathogenic and pathogenic E. coli was studied. Comprehensive and comparative analysis of siderophores were investigated. The results may open a new gate on the development of new drugs on pathogenic E. coli-based diseases.
Collapse
Affiliation(s)
- Levent Cavas
- The Graduate School of Natural and Applied Sciences, Department of Biotechnology, Dokuz Eylül University, Kaynaklar Campus, 35390, İzmir, Türkiye. .,Dokuz Eylül University, Faculty of Science, Department of Chemistry, 35390, Kaynaklar Campus, İzmir, Türkiye.
| | - Ibrahim Kirkiz
- The Graduate School of Natural and Applied Sciences, Department of Biotechnology, Dokuz Eylül University, Kaynaklar Campus, 35390, İzmir, Türkiye
| |
Collapse
|
16
|
Liu L, Wang W, Wu S, Gao H. Recent Advances in the Siderophore Biology of Shewanella. Front Microbiol 2022; 13:823758. [PMID: 35250939 PMCID: PMC8891985 DOI: 10.3389/fmicb.2022.823758] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the abundance of iron in nature, iron acquisition is a challenge for life in general because the element mostly exists in the extremely insoluble ferric (Fe3+) form in oxic environments. To overcome this, microbes have evolved multiple iron uptake strategies, a common one of which is through the secretion of siderophores, which are iron-chelating metabolites generated endogenously. Siderophore-mediated iron transport, a standby when default iron transport routes are abolished under iron rich conditions, is essential under iron starvation conditions. While there has been a wealth of knowledge about the molecular basis of siderophore synthesis, uptake and regulation in model bacteria, we still know surprisingly little about siderophore biology in diverse environmental microbes. Shewanella represent a group of γ-proteobacteria capable of respiring a variety of organic and inorganic substrates, including iron ores. This respiratory process relies on a large number of iron proteins, c-type cytochromes in particular. Thus, iron plays an essential and special role in physiology of Shewanella. In addition, these bacteria use a single siderophore biosynthetic system to produce an array of macrocyclic dihydroxamate siderophores, some of which show particular biological activities. In this review, we first outline current understanding of siderophore synthesis, uptake and regulation in model bacteria, and subsequently discuss the siderophore biology in Shewanella.
Collapse
Affiliation(s)
- Lulu Liu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wei Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shihua Wu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Klahn P, Zscherp R, Jimidar CC. Advances in the Synthesis of Enterobactin, Artificial Analogues, and Enterobactin-Derived Antimicrobial Drug Conjugates and Imaging Tools for Infection Diagnosis. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1783-0751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractIron is an essential growth factor for bacteria, but although highly abundant in nature, its bioavailability during infection in the human host or the environment is limited. Therefore, bacteria produce and secrete siderophores to ensure their supply of iron. The triscatecholate siderophore enterobactin and its glycosylated derivatives, the salmochelins, play a crucial role for iron acquisition in several bacteria. As these compounds can serve as carrier molecules for the design of antimicrobial siderophore drug conjugates as well as siderophore-derived tool compounds for the detection of infections with bacteria, their synthesis and the design of artificial analogues is of interest. In this review, we give an overview on the synthesis of enterobactin, biomimetic as well as totally artificial analogues, and related drug-conjugates covering up to 12/2021.1 Introduction2 Antibiotic Crisis and Sideromycins as Natural Templates for New Antimicrobial Drugs3 Biosynthesis of Enterobactin, Salmochelins, and Microcins4 Total Synthesis of Enterobactin and Salmochelins5 Chemoenzymatic Semi-synthesis of Salmochelins and Microcin E492m Derivatives6 Synthesis of Biomimetic Enterobactin Derivatives with Natural Tris-lactone Backbone7 Synthesis of Artificial Enterobactin Derivatives without Tris-lactone Backbone8 Conclusions
Collapse
Affiliation(s)
- Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig
- Department for Chemistry and Molecular Biology, University of Gothenburg
| | - Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig
| | | |
Collapse
|
18
|
Zscherp R, Coetzee J, Vornweg J, Grunenberg J, Herrmann J, Müller R, Klahn P. Biomimetic enterobactin analogue mediates iron-uptake and cargo transport into E. coli and P. aeruginosa. Chem Sci 2021; 12:10179-10190. [PMID: 34377407 PMCID: PMC8336463 DOI: 10.1039/d1sc02084f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
The design, synthesis and biological evaluation of the artificial enterobactin analogue EntKL and several fluorophore-conjugates thereof are described. EntKL provides an attachment point for cargos such as fluorophores or antimicrobial payloads. Corresponding conjugates are recognized by outer membrane siderophore receptors of Gram-negative pathogens and retain the natural hydrolyzability of the tris-lactone backbone. Initial density-functional theory (DFT) calculations of the free energies of solvation (ΔG(sol)) and relaxed Fe-O force constants of the corresponding [Fe-EntKL]3- complexes indicated a similar iron binding constant compared to natural enterobactin (Ent). The synthesis of EntKL was achieved via an iterative assembly based on a 3-hydroxylysine building block over 14 steps with an overall yield of 3%. A series of growth recovery assays under iron-limiting conditions with Escherichia coli and Pseudomonas aeruginosa mutant strains that are defective in natural siderophore synthesis revealed a potent concentration-dependent growth promoting effect of EntKL similar to natural Ent. Additionally, four cargo-conjugates differing in molecular size were able to restore growth of E. coli indicating an uptake into the cytosol. P. aeruginosa displayed a stronger uptake promiscuity as six different cargo-conjugates were found to restore growth under iron-limiting conditions. Imaging studies utilizing BODIPYFL-conjugates, demonstrated the ability of EntKL to overcome the Gram-negative outer membrane permeability barrier and thus deliver molecular cargos via the bacterial iron transport machinery of E. coli and P. aeruginosa.
Collapse
Affiliation(s)
- Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Janetta Coetzee
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Johannes Vornweg
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Jörg Grunenberg
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| | - Jennifer Herrmann
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Rolf Müller
- Department for Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research and Department of Pharmacy at Universität des Saarlandes Campus Building E 8.1 D-66123 Saarbrücken Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig Germany
| | - Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig Hagenring 30 D-38106 Braunschweig Germany
| |
Collapse
|
19
|
Zhang XG, Wang N, Ma GD, Liu ZY, Wei GX, Liu WJ. Preparation of S-iron-enriched yeast using siderophores and its effect on iron deficiency anemia in rats. Food Chem 2021; 365:130508. [PMID: 34247046 DOI: 10.1016/j.foodchem.2021.130508] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/18/2021] [Accepted: 06/26/2021] [Indexed: 10/21/2022]
Abstract
Efforts to obtain organic trace elements have been made, including yeast enrichment and transformation, but the application of yeast for this purpose is restricted by poor tolerance and low enrichment. Siderophores play an important role in iron transport. Thus, the role of siderophores in iron transport under high-iron conditions and the application of siderophores in the enrichment of elements was explored. The results showed that some siderophores from iron-tolerant strains promoted yeast growth and increased its intracellular iron content. Among them, siderophore TZT-12 (from LK1110) was the best for promoting yeast growth and iron conversion. The siderophore-iron-enriched yeast (S-iron-enriched yeast) effectively restored the iron concentration, and an iron concentration of 59.40 mg/g was obtained by adding TZT-12. Iron deficiency anemia in rats was significantly mitigated with S-iron-enriched yeast compared with ferrous sulfate. These findings provide a new perspective on the preparation of organic trace elements for supplementation or food fortification.
Collapse
Affiliation(s)
- Xin-Guo Zhang
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Nan Wang
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Guo-Di Ma
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zi-Yu Liu
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Guo-Xing Wei
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Wen-Jie Liu
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
20
|
Huang ZH, Liang X, Qi SH. A new iron(III) chelator of coprogen-type siderophore from the deep-sea-derived fungus Mycosphaerella sp. SCSIO z059. Chin J Nat Med 2021; 18:243-249. [PMID: 32402399 DOI: 10.1016/s1875-5364(20)30029-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 11/12/2022]
Abstract
Mycosphazine A (1), a new iron(III) chelator of coprogen-type siderophore, and mycosphamide A (2), a new cyclic amide benzoate, together with six known aryl amides (3-8), were isolated from the fermentation broth of the deep-sea-derived fungus Mycosphaerella sp. SCSIO z059. Alkaline hydrolysis of 1 afforded a new epimer of dimerum acid, mycosphazine B (1a), and a new bi-fusarinine-type siderophore, mycosphazine C (1b). The planar structures of the new compounds were elucidated by extensive spectroscopic data analysis. The absolute configurations of amino acid residues in 1a and 1b were determined by acid hydrolysis. And the absolute configuration of 2 was established by quantum chemical calculations of the electronic circular dichroism (ECD) spectra. Compound 1 is the first siderophore-Fe(III) chelator incorporating both L-ornithine and D-ornithine unites. Compounds 3-8 were reported as natural products for the first time, and the 1H and 13C NMR data of 6 and 8 were assigned for the first time. Compounds 1 and 1a could greatly promote the biofilm formation of bacterium Bacillus amyloliquefaciens with the rate of about 249% and 524% at concentration of 100 μg·mL-1, respectively.
Collapse
Affiliation(s)
- Zhong-Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiao Liang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shu-Hua Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| |
Collapse
|
21
|
Nonoyama S, Kishida K, Sakai K, Nagata Y, Ohtsubo Y, Tsuda M. A transcriptional regulator, IscR, of Burkholderia multivorans acts as both repressor and activator for transcription of iron-sulfur cluster-biosynthetic isc operon. Res Microbiol 2020; 171:319-330. [PMID: 32628999 DOI: 10.1016/j.resmic.2020.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/26/2020] [Indexed: 11/18/2022]
Abstract
Bacterial iron-sulfur (Fe-S) clusters are essential cofactors for many metabolic pathways, and Fe-S cluster-containing proteins (Fe-S proteins) regulate the expression of various important genes. However, biosynthesis of such clusters has remained unknown in genus Burkholderia. Here, we clarified that Burkholderia multivorans ATCC 17616 relies on the ISC system for the biosynthesis of Fe-S clusters, and that the biosynthetic genes are organized as an isc operon, whose first gene encodes IscR, a transcriptional regulatory Fe-S protein. Transcription of the isc operon was repressed and activated under iron-rich and -limiting conditions, respectively, and Fur, an iron-responsive global transcriptional regulator, was indicated to indirectly regulate the expression of isc operon. Further analysis using a ΔiscR mutant in combination with a constitutive expression system of IscR and its derivatives indicated transcriptional repression and activation of isc operon by holo- and apo-forms of IscR, respectively, through their binding to the sequences within an isc promoter-containing (Pisc) fragment. Biochemical analysis using the Pisc fragment suggested that the apo-IscR binding sequence differs from the holo-IscR binding sequence. The results obtained in this study revealed a unique regulatory system for the expression of the ATCC 17616 isc operon that has not been observed in other genera.
Collapse
Affiliation(s)
- Shouta Nonoyama
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| | - Kouhei Kishida
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| | - Keiichiro Sakai
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| | - Yuji Nagata
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| | - Yoshiyuki Ohtsubo
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| | - Masataka Tsuda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
| |
Collapse
|
22
|
Thomas CS, Braun DR, Olmos JL, Rajski SR, Phillips GN, Andes D, Bugni TS. Pyridine-2,6-Dithiocarboxylic Acid and Its Metal Complexes: New Inhibitors of New Delhi Metallo -Lactamase-1. Mar Drugs 2020; 18:md18060295. [PMID: 32498259 PMCID: PMC7374359 DOI: 10.3390/md18060295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae continue to threaten human health worldwide with few effective treatment options. New Delhi metallo-β-lactamase (NDM) enzymes are a contributing element that drive resistance to many β-lactam- and carbapenem-based antimicrobials. Many NDM inhibitors are known, yet none are clinically viable. In this study, we present and characterize a new class of NDM-1 inhibitors based on a pyridine-2,6-dithiocarboxylic acid metal complex scaffold. These complexes display varied and unique activity profiles against NDM-1 in kinetic assays and serve to increase the effectiveness of meropenem, an established antibacterial, in assays using clinical Enterobacteriaceae isolates.
Collapse
Affiliation(s)
- Chris S. Thomas
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI 53705, USA; (C.S.T.); (D.R.B.); (S.R.R.)
| | - Doug R. Braun
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI 53705, USA; (C.S.T.); (D.R.B.); (S.R.R.)
| | - Jose Luis Olmos
- Department of Biosciences, Rice University, Houston, TX 77005, USA; (J.L.O.J.); (G.N.P.J.)
| | - Scott R. Rajski
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI 53705, USA; (C.S.T.); (D.R.B.); (S.R.R.)
| | - George N. Phillips
- Department of Biosciences, Rice University, Houston, TX 77005, USA; (J.L.O.J.); (G.N.P.J.)
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - David Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI 53705, USA; (C.S.T.); (D.R.B.); (S.R.R.)
- Correspondence: ; Tel.: +1-608-263-2519
| |
Collapse
|
23
|
Umezawa S, Konishi S, Kino K. Development of a synthesis method for odor sesquiterpenoid, (−)-rotundone, using non-heme Fe2+-chelate catalyst and ferric-chelate reductase. Biosci Biotechnol Biochem 2019; 83:1875-1883. [DOI: 10.1080/09168451.2019.1625264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
ABSTRACT
(−)-Rotundone, a sesquiterpenoid that has a characteristic woody and peppery odor, is a key aroma component of spicy foodstuffs, such as black pepper and Australian Shiraz wine. (−)-Rotundone shows the lowest level of odor threshold in natural compounds and remarkably improves the quality of various fruit flavors. To develop a method for the synthesis of (−)-rotundone, we focused on non-heme Fe2+-chelates, which are biomimetic catalysts of the active center of oxygenases and enzymatic supply and regeneration of those catalysts. That is, we constructed a unique combination system composed of the oxidative synthesis of (−)-rotundone using the non-heme Fe2+-chelate catalyst, Fe(II)-EDTA, and the enzymatic supply and regeneration of Fe2+-chelate by ferric-chelate reductase, YqjH, from Escherichia coli. In addition, we improved the yield of (−)-rotundone by the application of cyclodextrin and glucose dehydrogenase to this system, and thus established a platform for efficient (−)-rotundone production.
Collapse
Affiliation(s)
- Satoru Umezawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
- Technical Research Institute R&D Center, T. Hasegawa Co., Ltd., Kanagawa, Japan
| | - Shunsuke Konishi
- Technical Research Institute R&D Center, T. Hasegawa Co., Ltd., Kanagawa, Japan
| | - Kuniki Kino
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
24
|
Selective pressures during chronic infection drive microbial competition and cooperation. NPJ Biofilms Microbiomes 2019; 5:16. [PMID: 31263568 PMCID: PMC6555799 DOI: 10.1038/s41522-019-0089-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic infections often contain complex mixtures of pathogenic and commensal microorganisms ranging from aerobic and anaerobic bacteria to fungi and viruses. The microbial communities present in infected tissues are not passively co-existing but rather actively interacting with each other via a spectrum of competitive and/or cooperative mechanisms. Competition versus cooperation in these microbial interactions can be driven by both the composition of the microbial community as well as the presence of host defense strategies. These interactions are typically mediated via the production of secreted molecules. In this review, we will explore the possibility that microorganisms competing for nutrients at the host–pathogen interface can evolve seemingly cooperative mechanisms by controlling the production of subsets of secreted virulence factors. We will also address interspecies versus intraspecies utilization of community resources and discuss the impact that this phenomenon might have on co-evolution at the host–pathogen interface.
Collapse
|
25
|
Polsinelli I, Borruso L, Caliandro R, Triboli L, Esposito A, Benini S. A genome-wide analysis of desferrioxamine mediated iron uptake in Erwinia spp. reveals genes exclusive of the Rosaceae infecting strains. Sci Rep 2019; 9:2818. [PMID: 30808981 PMCID: PMC6391442 DOI: 10.1038/s41598-019-39787-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/29/2019] [Indexed: 11/17/2022] Open
Abstract
Erwinia amylovora is the etiological agent of fire blight, a devastating disease which is a global threat to commercial apple and pear production. The Erwinia genus includes a wide range of different species belonging to plant pathogens, epiphytes and even opportunistic human pathogens. The aim of the present study is to understand, within the Erwinia genus, the genetic differences between phytopathogenic strains and those strains not reported to be phytopathogenic. The genes related to the hydroxamate siderophores iron uptake have been considered due to their potential druggability. In E. amylovora siderophore-mediated iron acquisition plays a relevant role in the progression of Fire blight. Here we analyzed the taxonomic relations within Erwinia genus and the relevance of the genes related to the siderophore-mediated iron uptake pathway. The results of this study highlight the presence of a well-defined sub-group of Rosaceae infecting species taxonomically and genetically related with a high number of conserved core genes. The analysis of the complete ferrioxamine transport system has led to the identification of two genes exclusively present in the Rosaceae infecting strains.
Collapse
Affiliation(s)
- Ivan Polsinelli
- Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Luigimaria Borruso
- Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Rosanna Caliandro
- Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Luca Triboli
- Centre for Integrative Biology, University of Trento, via Sommarive n. 9, 38123, Povo, Trento, Italy
| | - Alfonso Esposito
- Centre for Integrative Biology, University of Trento, via Sommarive n. 9, 38123, Povo, Trento, Italy.
| | - Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100, Bolzano, Italy.
| |
Collapse
|
26
|
A complete structural characterization of the desferrioxamine E biosynthetic pathway from the fire blight pathogen Erwinia amylovora. J Struct Biol 2018; 202:236-249. [DOI: 10.1016/j.jsb.2018.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 01/01/2023]
|
27
|
Dissociation between Iron and Heme Biosyntheses Is Largely Accountable for Respiration Defects of Shewanella oneidensis fur Mutants. Appl Environ Microbiol 2018; 84:AEM.00039-18. [PMID: 29427425 DOI: 10.1128/aem.00039-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/30/2018] [Indexed: 11/20/2022] Open
Abstract
Iron, a major protein cofactor, is essential for most organisms but can simultaneously be toxic. Iron homeostasis thus has to be effectively maintained under a range of iron regimes. This may be particularly true with Shewanella oneidensis, a representative of dissimilatory metal-reducing bacteria (DMRB), which are capable of respiring a variety of chemicals as electron acceptors (EAs), including iron ores. Although iron respiration and its regulation have been extensively studied in this bacterium, how iron homeostasis is maintained remains largely unknown. Here, we report that the loss of the iron homeostasis master regulator Fur negatively affects the respiration of all EAs tested. This defect appears mainly to be a result of reduced cytochrome c (cyt c) production, despite a decrease in the expression of reductases that are under the direct control of Fur. We also show that S. oneidensis Fur interacts with canonical Fur box motifs in F-F-x-R configuration rather than the palindromic motif proposed before. The fur mutant has lowered total iron and increased free iron contents. Under iron-rich conditions, overproduction of the major iron storage protein Bfr elevates the total iron levels of the fur mutant over those of the wild-type but does not affect free iron levels. Intriguingly, such an operation only marginally improves cyt c production by affecting heme b biosynthesis. It is established that iron dictates heme b/cyt c biosynthesis in S. oneidensis fur + strains, but the fur mutation annuls the dependence of heme b/cyt c biosynthesis on iron. Overall, our results suggest that Fur has a profound impact on the iron homeostasis of S. oneidensis, through which many physiological processes, especially respiration, are transformed.IMPORTANCE Iron reduction is a signature of S. oneidensis, and this process relies on a large number of type c cytochromes, which per se are iron-containing proteins. Thus, iron plays an essential and special role in iron respiration, but to date, the nature of iron metabolism and regulation of the bacterium remains largely unknown. In this study, we investigated impacts of Fur, the master regulator of iron homeostasis, on respiration. The loss of Fur causes a general defect in respiration, a result of impaired cyt c production rather than specific regulation. Additionally, the fur mutant is unresponsive to iron, resulting in imbalanced iron homeostasis and dissociation between iron and cyt c production. These findings provide important insights into the iron biology of DMRB.
Collapse
|
28
|
Dhusia K, Bajpai A, Ramteke PW. Overcoming antibiotic resistance: Is siderophore Trojan horse conjugation an answer to evolving resistance in microbial pathogens? J Control Release 2017; 269:63-87. [PMID: 29129658 DOI: 10.1016/j.jconrel.2017.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/11/2023]
Abstract
Comparative study of siderophore biosynthesis pathway in pathogens provides potential targets for antibiotics and host drug delivery as a part of computationally feasible microbial therapy. Iron acquisition using siderophore models is an essential and well established model in all microorganisms and microbial infections a known to cause great havoc to both plant and animal. Rapid development of antibiotic resistance in bacterial as well as fungal pathogens has drawn us at a verge where one has to get rid of the traditional way of obstructing pathogen using single or multiple antibiotic/chemical inhibitors or drugs. 'Trojan horse' strategy is an answer to this imperative call where antibiotic are by far sneaked into the pathogenic cell via the siderophore receptors at cell and outer membrane. This antibiotic once gets inside, generates a 'black hole' scenario within the opportunistic pathogens via iron scarcity. For pathogens whose siderophore are not compatible to smuggle drug due to their complex conformation and stiff valence bonds, there is another approach. By means of the siderophore biosynthesis pathways, potential targets for inhibition of these siderophores in pathogenic bacteria could be achieved and thus control pathogenic virulence. Method to design artificial exogenous siderophores for pathogens that would compete and succeed the battle of intake is also covered with this review. These manipulated siderophore would enter pathogenic cell like any other siderophore but will not disperse iron due to which iron inadequacy and hence pathogens control be accomplished. The aim of this review is to offer strategies to overcome the microbial infections/pathogens using siderophore.
Collapse
Affiliation(s)
- Kalyani Dhusia
- Deptartment of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad-211007 (U.P.), India
| | - Archana Bajpai
- Laboratory for Disease Systems Modeling, Center for Integrative Medical Sciences, RIKEN, Yokohama City, Kanagawa, 230-0045, Japan
| | - P W Ramteke
- Deptartment of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad-211007 (U.P.), India
| |
Collapse
|
29
|
Carosso S, Liu R, Miller PA, Hecker SJ, Glinka T, Miller MJ. Methodology for Monobactam Diversification: Syntheses and Studies of 4-Thiomethyl Substituted β-Lactams with Activity against Gram-Negative Bacteria, Including Carbapenemase Producing Acinetobacter baumannii. J Med Chem 2017; 60:8933-8944. [PMID: 28994597 DOI: 10.1021/acs.jmedchem.7b01164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bromine induced lactamization of vinyl acetohydroxamates facilitated syntheses of monocyclic β-lactams suitable for incorporation of a thiomethyl and extended functionality at the C(4) position. Elaboration of the resulting substituted N-hydroxy-2-azetidinones allowed incorporation of functionalized α-amino substituents appropriate for enhancement of antibiotic activity. Evaluation of antibacterial activity against a panel of Gram-positive and Gram-negative bacteria revealed structure-activity relationships (SAR) and identification of potent new monobactam antibiotics. The corresponding bis-catechol conjugate, 42, has excellent activity against Gram-negative bacteria including carbapenemase and carbacephalosporinase producing strains of Acinetobacter baumannii, which have been listed by the WHO as being of critical concern worldwide.
Collapse
Affiliation(s)
- Serena Carosso
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Rui Liu
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Patricia A Miller
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Scott J Hecker
- Rempex Pharmaceuticals, The Medicines Company , 3013 Science Park Road, First Floor, San Diego, California 92121, United States
| | - Tomasz Glinka
- Rempex Pharmaceuticals, The Medicines Company , 3013 Science Park Road, First Floor, San Diego, California 92121, United States
| | - Marvin J Miller
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
30
|
Nas MY, Cianciotto NP. Stenotrophomonas maltophilia produces an EntC-dependent catecholate siderophore that is distinct from enterobactin. MICROBIOLOGY-SGM 2017; 163:1590-1603. [PMID: 28984234 DOI: 10.1099/mic.0.000545] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stenotrophomonas maltophilia, a Gram-negative, multi-drug-resistant bacterium, is increasingly recognized as a key opportunistic pathogen. Thus, we embarked upon an investigation of S. maltophilia iron acquisition. To begin, we determined that the genome of strain K279a is predicted to encode a complete siderophore system, including a biosynthesis pathway, an outer-membrane receptor for ferrisiderophore, and other import and export machinery. Compatible with these data, K279a and other clinical isolates of S. maltophilia secreted a siderophore-like activity when grown at 25-37 °C in low-iron media, as demonstrated by a chrome azurol S assay, which detects iron chelation, and Arnow and Rioux assays, which detect catecholate structures. Importantly, these supernatants rescued the growth of iron-starved S. maltophilia, documenting the presence of a biologically active siderophore. A mutation in one of the predicted biosynthesis genes (entC) abolished production of the siderophore and impaired bacterial growth in low-iron conditions. Inactivation of the putative receptor gene (fepA) prevented the utilization of siderophore-containing supernatants for growth in low-iron conditions. Although the biosynthesis and import loci showed some similarity to those of enterobactin, a well-known catecholate made by enteric bacteria, the siderophore of K279a was unable to rescue the growth of an enterobactin-utilizing indicator strain, and conversely iron-starved S. maltophilia could not use purified enterobactin. Furthermore, the S. maltophilia siderophore displayed patterns of solubility in organic compounds and mobility upon thin-layer chromatography that were distinct from those of enterobactin and its derivative, salmochelin. Together, these data demonstrate that S. maltophilia secretes a novel catecholate siderophore.
Collapse
Affiliation(s)
- Megan Y Nas
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
31
|
Carroll CS, Grieve CL, Murugathasan I, Bennet AJ, Czekster CM, Liu H, Naismith J, Moore MM. The rhizoferrin biosynthetic gene in the fungal pathogen Rhizopus delemar is a novel member of the NIS gene family. Int J Biochem Cell Biol 2017; 89:136-146. [DOI: 10.1016/j.biocel.2017.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/30/2017] [Accepted: 06/03/2017] [Indexed: 11/29/2022]
|
32
|
The Small Protein HemP Is a Transcriptional Activator for the Hemin Uptake Operon in Burkholderia multivorans ATCC 17616. Appl Environ Microbiol 2017. [PMID: 28625994 DOI: 10.1128/aem.00479-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Iron and heme play very important roles in various metabolic functions in bacteria, and their intracellular homeostasis is maintained because high concentrations of free forms of these molecules greatly facilitate the Fenton reaction-mediated production of large amounts of reactive oxygen species that severely damage various biomolecules. The ferric uptake regulator (Fur) from Burkholderiamultivorans ATCC 17616 is an iron-responsive global transcriptional regulator, and its fur deletant exhibits pleiotropic phenotypes. In this study, we found that the phenotypes of the fur deletant were suppressed by an additional mutation in hemP The transcription of hemP was negatively regulated by Fur under iron-replete conditions and was constitutive in the fur deletant. Growth of a hemP deletant was severely impaired in a medium containing hemin as the sole iron source, demonstrating the important role of HemP in hemin utilization. HemP was required as a transcriptional activator that specifically binds the promoter-containing region upstream of a Fur-repressive hmuRSTUV operon, which encodes the proteins for hemin uptake. A hmuR deletant was still able to grow using hemin as the sole iron source, albeit at a rate clearly lower than that of the wild-type strain. These results strongly suggested (i) the involvement of HmuR in hemin uptake and (ii) the presence in ATCC 17616 of at least part of other unknown hemin uptake systems whose expression depends on the HemP function. Our in vitro analysis also indicated high-affinity binding of HemP to hemin, and such a property might modulate transcriptional activation of the hmu operon.IMPORTANCE Although the hmuRSTUV genes for the utilization of hemin as a sole iron source have been identified in a few Burkholderia strains, the regulatory expression of these genes has remained unknown. Our analysis in this study using B. multivorans ATCC 17616 showed that its HemP protein is required for expression of the hmuRSTUV operon, and the role of HemP in betaproteobacterial species was elucidated for the first time, to our knowledge, in this study. The HemP protein was also found to have two additional properties that have not been reported for functional homologues in other species; one is that HemP is able to bind to the promoter-containing region of the hmu operon to directly activate its transcription, and the other is that HemP is also required for the expression of an unknown hemin uptake system.
Collapse
|
33
|
Li K, Fielding EN, Condurso HL, Bruner SD. Probing the structural basis of oxygen binding in a cofactor-independent dioxygenase. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:573-580. [DOI: 10.1107/s2059798317007045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/10/2017] [Indexed: 11/11/2022]
Abstract
The enzyme DpgC is included in the small family of cofactor-independent dioxygenases. The chemistry of DpgC is uncommon as the protein binds and utilizes dioxygen without the aid of a metal or organic cofactor. Previous structural and biochemical studies identified the substrate-binding mode and the components of the active site that are important in the catalytic mechanism. In addition, the results delineated a putative binding pocket and migration pathway for the co-substrate dioxygen. Here, structural biology is utilized, along with site-directed mutagenesis, to probe the assigned dioxygen-binding pocket. The key residues implicated in dioxygen trafficking were studied to probe the process of binding, activation and chemistry. The results support the proposed chemistry and provide insight into the general mechanism of dioxygen binding and activation.
Collapse
|
34
|
|