1
|
Choi J, Jang E, Jeong H, Hwang J, Cho HH, Kim BC, Jang G, Jeong HS, Jang S. Novel miRNAs, miR-937-3p, miR-4536-3p, and miR-4650-5p, can Modulate Neuronal Differentiation via the Wnt/MAPK Pathway in SH-SY5Y Cells. Mol Neurobiol 2025:10.1007/s12035-025-05002-4. [PMID: 40316877 DOI: 10.1007/s12035-025-05002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate various biological processes, including cell differentiation. Despite their potential, their role in promoting neuronal differentiation by targeting neuronal genes and modulating signaling pathways is poorly understood. In this study, we aimed to elucidate the functions of miR-937-3p-, miR-4536-3p-, and miR-4650-5p-inhibitors in the neuronal differentiation of SH-SY5Y cells. We also aimed to determine the underlying mechanisms via qPCR, luciferase assay, immunocytochemistry, and western blotting analysis. Our findings confirmed that miRNAs participated in neuronal differentiation and regulated the Wnt/MAPK signaling pathway. Specifically, we identified Netrin1 (NTN1), Drebrin1 (DBN1), and Netrin-G1 (NTNG1) as target genes of miR-937-3p, miR-4536-3p, and miR-4650-5p, respectively. The treatment with the miRNA inhibitors increased the expression levels of neuronal markers such as TUBB3, NEFH, NEFM, NEFL, and MAP2. It also enhanced the protein expression levels of Wnt and MAPK signaling. Therefore, the inhibitors of miR-937-3p, miR-4536-3p, and miR-4650-5p could promote neuronal differentiation by targeting neuronal genes and activating the Wnt/MAPK signaling pathway.
Collapse
Affiliation(s)
- Jiyun Choi
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea
| | - Eunjae Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea
- Jeonnam Bioindustry Foundation Biopharmaceutical Research Center, Hwasun-Gun, Jeollanamdo, 58141, Republic of Korea
| | - Haewon Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea.
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun-Gun, Jeollanamdo, 58128, Republic of Korea.
| |
Collapse
|
2
|
Wang Y, Tian F, Yue S, Li J, Li A, Liu Y, Liang J, Gao Y, Xue S. miR-17-5p-Mediated RNA Activation Upregulates KPNA2 Expression and Inhibits High-Glucose-Induced Apoptosis of Sheep Granulosa Cells. Int J Mol Sci 2025; 26:943. [PMID: 39940713 PMCID: PMC11817598 DOI: 10.3390/ijms26030943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
The glucose metabolism homeostasis in the follicular fluid microenvironment plays an important role in follicular maturation and ovulation, and excessively high or low glucose concentrations have adverse effects on the differentiation of follicular granulosa cells (GCs). However, a limited number of microRNAs (miRNA) have been reported to be involved in glucose-stimulated GCs differentiation. In this study, we characterized the miRNA expression profiles of sheep ovarian GCs cultured in high-glucose and optimal glucose concentrations and focused on a differentially expressed miRNA: miR-17-5p, which may be involved in regulating high-glucose-induced GC apoptosis by targeting KPNA2. We found that overexpression of miR-17-5p significantly promoted GCs proliferation and inhibited cell apoptosis, while downregulated the mRNA and protein expression of apoptosis-related makers (Bax, Caspase-3, Caspase-9, and Bcl-2). In contrast to the classical mechanism of miRNA silencing target gene expression, miR-17-5p overexpression significantly upregulated the expression of target gene KPNA2. A dual luciferase reporter gene assay verified the targeted binding relationship between miR-17-5p and KPNA2 promoter. Meanwhile, overexpression of KPNA2 further promoted the downregulation of apoptosis-related genes driven by miR-17-5p mimics. Knockdown of KPNA2 blocked the inhibitory effect of miR-17-5p mimics on the expression of apoptosis-related genes. Our results demonstrated that miR-17-5p activated the KPNA2 promoter region and upregulated KPNA2 expression, thereby inhibiting GCs apoptosis under high glucose.
Collapse
Affiliation(s)
- Yong Wang
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China; (Y.W.); (F.T.); (J.L.); (Y.L.); (J.L.); (Y.G.)
| | - Feng Tian
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China; (Y.W.); (F.T.); (J.L.); (Y.L.); (J.L.); (Y.G.)
| | - Sicong Yue
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (S.Y.); (A.L.)
| | - Jiuyue Li
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China; (Y.W.); (F.T.); (J.L.); (Y.L.); (J.L.); (Y.G.)
| | - Ao Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; (S.Y.); (A.L.)
| | - Yang Liu
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China; (Y.W.); (F.T.); (J.L.); (Y.L.); (J.L.); (Y.G.)
| | - Jianyong Liang
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China; (Y.W.); (F.T.); (J.L.); (Y.L.); (J.L.); (Y.G.)
| | - Yuan Gao
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China; (Y.W.); (F.T.); (J.L.); (Y.L.); (J.L.); (Y.G.)
| | - Shuyuan Xue
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China; (Y.W.); (F.T.); (J.L.); (Y.L.); (J.L.); (Y.G.)
| |
Collapse
|
3
|
Zheng Z, Wang X, Zheng Y, Wu H. Enhanced expression of miR-204 attenuates LPS stimulated inflammatory injury through inhibiting the Wnt/β-catenin pathway via targeting CCND2. Int Immunopharmacol 2024; 126:111334. [PMID: 38061119 DOI: 10.1016/j.intimp.2023.111334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
One of the most common bacterial diseases of the reproductive system in dairy cows is endometritis, which will cause huge economic loss. Here, we investigate the mechanisms of miR-204 on LPS-stimulated endometritis in vitro and in vivo. Experiments displayed that the expression of miR-204 was lower in bovine uterine tissue samples or bovine endometrial epithelial cell line (BEND) that stimulated by LPS. Compared with the negative group, miR-204 treatment significantly suppressed the production of proinflammatory factors and the Wnt/β-catenin pathway activation. Additionally, the result of the dual luciferase assay showed that miR-204 targeted cyclin D2. More importantly, up-regulation of miR-204 alleviated LPS induced uterine injury was confirmed in vivo studies. Molecular experiments indicated that the expression level of tight junctional proteins Claudin3 and cadherin1 were both enchanced by miR-204 treatment. Accordingly, miR-204 may serve as a new measure to prevent and treat endometritis caused by LPS.
Collapse
Affiliation(s)
- Zhijie Zheng
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Xiaoyan Wang
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, PR China
| | - Yonghui Zheng
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Haichong Wu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China.
| |
Collapse
|
4
|
Zhan J, Liu Z, Liu R, Zhu JJ, Zhang J. Near-Infrared-Light-Mediated DNA-Logic Nanomachine for Bioorthogonal Cascade Imaging of Endogenous Interconnected MicroRNAs and Metal Ions. Anal Chem 2022; 94:16622-16631. [DOI: 10.1021/acs.analchem.2c02577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jiayin Zhan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zheng Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ran Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Zhang P, Chen H, Shang Q, Chen G, He J, Shen G, Yu X, Zhang Z, Zhao W, Zhu G, Huang J, Liang D, Tang J, Cui J, Liu Z, Jiang X, Ren H. Zuogui Pill Ameliorates Glucocorticoid-Induced Osteoporosis through ZNF702P-Based ceRNA Network: Bioinformatics Analysis and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8020182. [PMID: 39280960 PMCID: PMC11401717 DOI: 10.1155/2022/8020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/08/2022] [Accepted: 08/07/2022] [Indexed: 09/18/2024]
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is a musculoskeletal disease with increased fracture risk caused by long-term application of glucocorticoid, but there exist few effective interventions. Zuogui Pill (ZGP) has achieved clinical improvement for GIOP as an ancient classical formula, but its molecular mechanisms remain unclear due to scanty relevant studies. This study aimed to excavate the effective compounds and underlying mechanism of ZGP in treating GIOP and construct relative ceRNA network by using integrated analysis of bioinformatics analysis and experimental validation. Results show that ZNF702P is significantly upregulated in GIOP than normal cases based on gene chip sequencing analysis. Totally, 102 ingredients and 535 targets of ZGP as well as 480 GIOP-related targets were selected, including 122 common targets and 8 intersection targets with the predicted mRNAs. The ceRNA network contains one lncRNA (ZNF702P), 6 miRNAs, and 8 mRNAs. Four hub targets including JUN, CCND1, MAPK1, and MAPK14 were identified in the PPI network. Six ceRNA interaction axes including ZNF702P-hsa-miR-429-JUN, ZNF702P-hsa-miR-17-5p/hsa-miR-20b-5p-CCND1, ZNF702P-hsa-miR-17-5p/hsa-miR-20b-5p-MAPK1, and ZNF702P-hsa-miR-24-3p-MAPK14 were obtained. By means of molecular docking, we found that all the hub targets could be effectively combined with related ingredients. GO enrichment analysis showed 649 biological processes, involving response to estrogen, response to steroid hormone, inflammatory response, macrophage activation, and osteoclast differentiation, and KEGG analysis revealed 102 entries with 36 relative signaling pathways, which mainly contained IL-17 signaling pathway, T cell receptor signaling pathway, FoxO signaling pathway, the PD-L1 expression and PD-1 checkpoint pathway, MAPK signaling pathway, TNF signaling pathway, Estrogen signaling pathway, and Wnt signaling pathway. Our experiments confirmed that ZNF702P exhibited gradually increasing expression levels during osteoclast differentiation of human peripheral blood monocytes (HPBMs) induced by RANKL, while ZGP could inhibit osteoclast differentiation of HPBMs induced by RANKL in a concentration-dependent manner. Therefore, by regulating inflammatory response, osteoclast differentiation, and hormone metabolism, ZGP may treat GIOP by regulating hub target genes, such as JUN, CCND1, MAPK1, and MAPK14, and acting on numerous key pathways, which involve the ZNF702P-based ceRNA network.
Collapse
Affiliation(s)
- Peng Zhang
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Honglin Chen
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Qi Shang
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Guifeng Chen
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Jiahui He
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Gengyang Shen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Xiang Yu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Zhida Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Wenhua Zhao
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Guangye Zhu
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jinglin Huang
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - De Liang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Jingjing Tang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Jianchao Cui
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Zhixiang Liu
- Affiliated Huadu Hospital, Southern Medical University, Guangzhou 510800, China
| | - Xiaobing Jiang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| | - Hui Ren
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou Univercity of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
6
|
Yu T, You X, Zhou H, He W, Li Z, Li B, Xia J, Zhu H, Zhao Y, Yu G, Xiong Y, Yang Y. MiR-16-5p regulates postmenopausal osteoporosis by directly targeting VEGFA. Aging (Albany NY) 2020; 12:9500-9514. [PMID: 32427128 PMCID: PMC7288956 DOI: 10.18632/aging.103223] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/31/2020] [Indexed: 05/13/2023]
Abstract
In this study, we used bioinformatics tools, and experiments with patient tissues and human mesenchymal stem cells (hMSCs) to identify differentially regulated genes (DEGs) and microRNAs (miRNAs) that promote postmenopausal osteoporosis. By analyzing the GSE56815 dataset from the NCBI GEO database, we identified 638 DEGs, including 371 upregulated and 267 downregulated genes, in postmenopausal women with low bone density. Enrichment and protein-protein interaction network analyses showed that TP53, RPS27A, and VEGFA were the top three hub genes with the highest degree of betweenness and closeness centrality. TargetScanHuman and DIANA software analyses and dual luciferase reporter assays confirmed that miR-16a-5p directly targets the 3'UTR of VEGFA. Postmenopausal patients with osteoporosis showed higher miR-16-5p and lower VEGFA levels than those without osteoporosis (n=10 each). VEGFA levels were higher in miR-16-5p knockdown hMSCs and were reduced in miR-16-5p-overexpressing hMSCs. mRNA expression of osteogenic markers, ALP, OCN, and RUNX2, as well as calcium deposition based on Alizarin red staining, correlated inversely with miR-16-5p levels and correlated positively with VEGFA levels. These findings suggest that miR-16-5p suppresses osteogenesis by inhibiting VEGFA expression and is a promising target for postmenopausal osteoporosis therapy.
Collapse
Affiliation(s)
- Tao Yu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Xiaomeng You
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Haichao Zhou
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Wenbao He
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Zihua Li
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Bing Li
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Jiang Xia
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Hui Zhu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Youguang Zhao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Guangrong Yu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunfeng Yang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|