1
|
Zheng Y, Deng W, Liu D, Li Y, Peng K, Lorimer GH, Wang J. Redox and spectroscopic properties of mammalian nitrite reductase-like hemoproteins. J Inorg Biochem 2022; 237:111982. [PMID: 36116154 DOI: 10.1016/j.jinorgbio.2022.111982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/18/2023]
Abstract
Besides the canonical pathway of L-arginine oxidation to produce nitric oxide (NO) in vivo, the nitrate-nitrite-NO pathway has been widely accepted as another source for circulating NO in mammals, especially under hypoxia. To date, there have been at least ten heme-containing nitrite reductase-like proteins discovered in mammals with activities mainly identified in vitro, including four globins (hemoglobin, myoglobin, neuroglobin (Ngb), cytoglobin (Cygb)), three mitochondrial respiratory chain enzymes (cytochrome c oxidase, cytochrome bc1, cytochrome c), and three other heme proteins (endothelial nitric oxide synthase, cytochrome P450 and indoleamine 2,3-dioxygenase 1 (IDO1)). The pathophysiological functions of these proteins are closely related to their redox and spectroscopic properties, as well as their protein structure, although the physiological roles of Ngb, Cygb and IDO1 remain unclear. So far, comprehensive summaries of the redox and spectroscopic properties of these nitrite reductase-like hemoproteins are still lacking. In this review, we have mainly summarized the published data on the application of ultraviolet-visible, electron paramagnetic resonance, circular dichroism and resonance Raman spectroscopies, and X-ray crystallography in studying nitrite reductase-like activity of these 10 proteins, in order to sort out the relationships among enzymatic function, structure and spectroscopic characterization, which might help in understanding their roles in redox biology and medicine.
Collapse
Affiliation(s)
- Yunlong Zheng
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Wenwen Deng
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Di Liu
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Youheng Li
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Kang Peng
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | | | - Jun Wang
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Karmakar S, Sankhla A, Katiyar V. Supramolecular organization of Cytochrome-C into quantum-dot decorated macromolecular network under pH and thermal stress. Int J Biol Macromol 2021; 193:1623-1634. [PMID: 34742836 DOI: 10.1016/j.ijbiomac.2021.10.225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/30/2021] [Accepted: 10/30/2021] [Indexed: 12/12/2022]
Abstract
The holo form of Cytochrome-C which is involved in the electron transfer chain of aerobic and anaerobic respiration remains structurally intact by its complex with heme. However, when a prolonged thermal and pH stress was applied, heme was found to abruptly dissociate from the holo protein, resulting in complete collapse of the three-dimensional functional structure. Interestingly, two distinct structures were formed as the consequence of the dissociation event: (i) A macromolecular amyloid-network formed by the collapsed protein fragments, generated by self-oxidation, and (ii) Fe-containing Quantum-Dots (FeQDs) with 2-3 nm diameter formed by heme reorganization. Further adding to intrigue, the FeQDs were re-adsorbed on the surface of the amyloid network leading to FeQD-decorated macromolecular amyloid matrix. The heme-interactant Met80, constituting the amyloidogenic region, initiates the amylogenic cascade, and gradual exposure of Trp59 synergistically emit intrinsic fluorescence alongside FeQDs. The development of the aforementioned events were probed through a multitude of biophysical, chemical and computational analyses like ThT/ANS/intrinsic fluorescence assays, CD-spectroscopy, FETEM/STEM/elemental mapping, Foldamyloid/Foldunfold/Isunstruct/H-protection/LIGplot analyses, etc. The FeQD-decorated amyloid-network was found to exhibit gel-like property, which supported the growth of BHK-21 fibroblast without cytotoxicity. Further studies on FeQD-decorated Cytochrome C amyloid network might open possibilities to design advanced biomaterial for diverse biological applications.
Collapse
Affiliation(s)
- Srijeeb Karmakar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Arjun Sankhla
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Vimal Katiyar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
3
|
Qin W, Xie SX, Zhang J, Zhao D, He CX, Li HJ, Xing L, Li PQ, Jin X, Yin DC, Cao HL. An Analysis on Commercial Screening Kits and Chemical Components in Biomacromolecular Crystallization Screening. CRYSTAL RESEARCH AND TECHNOLOGY 2019. [DOI: 10.1002/crat.201900076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Qin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease; Shaanxi Key Laboratory of Brain Disorders; Institute of Basic and Translational Medicine; Xi'an Medical University; Xi'an 710021 P. R. China
| | - Si-Xiao Xie
- Key Laboratory for Space Bioscience & Biotechnology; School of Life Sciences, Northwestern Polytechnical University; Xi'an 710072 P. R. China
| | - Jie Zhang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease; Shaanxi Key Laboratory of Brain Disorders; Institute of Basic and Translational Medicine; Xi'an Medical University; Xi'an 710021 P. R. China
| | - Dong Zhao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease; Shaanxi Key Laboratory of Brain Disorders; Institute of Basic and Translational Medicine; Xi'an Medical University; Xi'an 710021 P. R. China
| | - Chun-Xia He
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease; Shaanxi Key Laboratory of Brain Disorders; Institute of Basic and Translational Medicine; Xi'an Medical University; Xi'an 710021 P. R. China
| | - Hui-Jin Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease; Shaanxi Key Laboratory of Brain Disorders; Institute of Basic and Translational Medicine; Xi'an Medical University; Xi'an 710021 P. R. China
| | - Lu Xing
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease; Shaanxi Key Laboratory of Brain Disorders; Institute of Basic and Translational Medicine; Xi'an Medical University; Xi'an 710021 P. R. China
| | - Peng-Quan Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease; Shaanxi Key Laboratory of Brain Disorders; Institute of Basic and Translational Medicine; Xi'an Medical University; Xi'an 710021 P. R. China
| | - Xi Jin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease; Shaanxi Key Laboratory of Brain Disorders; Institute of Basic and Translational Medicine; Xi'an Medical University; Xi'an 710021 P. R. China
| | - Da-Chuan Yin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease; Shaanxi Key Laboratory of Brain Disorders; Institute of Basic and Translational Medicine; Xi'an Medical University; Xi'an 710021 P. R. China
- Key Laboratory for Space Bioscience & Biotechnology; School of Life Sciences, Northwestern Polytechnical University; Xi'an 710072 P. R. China
| | - Hui-Ling Cao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease; Shaanxi Key Laboratory of Brain Disorders; Institute of Basic and Translational Medicine; Xi'an Medical University; Xi'an 710021 P. R. China
| |
Collapse
|