1
|
Wang X, Lipiński P, Ogłuszka M, Mazgaj R, Woliński J, Szkopek D, Zaworski K, Kopeć Z, Żelazowska B, Tarantino G, Brilli E, Starzyński RR. Oral supplementation with Sucrosomial® Iron improves the iron status of preterm piglets delivered by cesarean section. Food Funct 2025; 16:3525-3541. [PMID: 40227702 DOI: 10.1039/d4fo04806g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Premature infants are more likely to develop iron deficiency caused by an inadequate iron storage due to shortened pregnancy. Sucrosomial® Iron (SI) is an oral iron formulation of ferric pyrophosphate with high bioavailability and tolerability. This research compared the iron status of preterm and full-term piglets and evaluated the effects of SI on iron homeostasis in the early postnatal period. Eighteen preterm piglets (born via cesarean section on gestation day 109) and twelve full-term piglets (natural birth) were divided into five groups (n = 6 piglets per group): full-term/preterm piglets without iron supplementation, full-term/preterm piglets supplemented with SI (2 mg Fe per piglet per day, days 4-10), and preterm piglets supplemented with ferrous sulfate (2 mg Fe per piglet per day, days 4-10). Samples were collected on day 11. Preterm piglets showed poor growth and low total body iron content, and they developed iron deficiency anemia, as indicated by decreased red blood cell indices and plasma iron parameters. The iron deficiency was partially improved by SI supplementation. Interestingly, higher hepatic and splenic non-heme iron content, accompanied by increased tissue and plasma ferritin, were found in preterm piglets compared to full-term piglets. SI also contributed to tissue iron accumulation in preterm piglets. Functional iron deficiency and iron accumulation in tissues make the regulation of iron metabolism in preterm piglets different from that in full-term ones. SI can alleviate the negative effects of iron imbalances caused by premature birth by regulating the hepcidin-ferroportin axis. In addition, SI did not induce inflammatory or oxidative responses, and its effects are comparable to those of the classic iron supplement, ferrous sulfate. These results indicate that SI is a promising iron supplement for improving the iron status of premature infants.
Collapse
Affiliation(s)
- Xiuying Wang
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05552 Jastrzębiec, Poland.
| | - Paweł Lipiński
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05552 Jastrzębiec, Poland.
| | - Magdalena Ogłuszka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05552 Jastrzębiec, Poland
| | - Rafał Mazgaj
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05552 Jastrzębiec, Poland.
| | - Jarosław Woliński
- Laboratory of Large Animal Models, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05110 Jabłonna, Poland
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05110 Jabłonna, Poland
| | - Dominika Szkopek
- Laboratory of Large Animal Models, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05110 Jabłonna, Poland
| | - Kamil Zaworski
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05110 Jabłonna, Poland
| | - Zuzanna Kopeć
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05552 Jastrzębiec, Poland.
| | - Beata Żelazowska
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05552 Jastrzębiec, Poland.
| | | | - Elisa Brilli
- Scientific Department, Pharmanutra S.p.A., 56122 Pisa, Italy
| | - Rafał Radosław Starzyński
- Laboratory of Iron Molecular Biology, Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05552 Jastrzębiec, Poland.
| |
Collapse
|
2
|
Afifah A, Zuhairini Y, Ariyanto EF, Ghozali M, Fatimah SN, Pramatirta AY. The Potential Impact of Dietary Fiber Supplementation on Hemoglobin and Reticulocyte Hemoglobin Equivalent (RET-He) Levels in Pregnant Women with Anemia Receiving Oral Iron Therapy in Indonesia. J Multidiscip Healthc 2025; 18:183-193. [PMID: 39844923 PMCID: PMC11750942 DOI: 10.2147/jmdh.s497795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/15/2024] [Indexed: 01/24/2025] Open
Abstract
Purpose Anemia during pregnancy can lead to physical and cognitive impairments, fatigue, and postpartum depression. Dietary fiber, as a prebiotic, supports gut health by producing short-chain fatty acids, which enhance immunity and aid iron absorption. This study investigates the impact of fiber supplementation on hemoglobin and reticulocyte hemoglobin equivalent (RET-He) levels in anemic pregnant women receiving oral iron therapy. Patients and Methods This study used a quasi-experimental design with a control group. The subjects were anemic pregnant women between 14 and 32 weeks of gestation. Fifteen control subjects received iron tablets and skim milk (placebo), while 25 intervention subjects received iron tablets and a fiber supplement containing 7.2 grams of dietary fiber. Hemoglobin and RET-He levels were measured before and after the intervention with a Sysmex hematology analyzer. The differences in hemoglobin and RET-He changes were analyzed using the independent sample T-test. Results After 14 days of intervention, the average hemoglobin increase in the intervention group was 0.772±0.815, compared to 0.167±0.564 in the control group, with a p-value of 0.016. There was a significant decrease in the intervention group (p=0.018) and the control group (p=0.008) with normal RET-He values. The average change in RET-He values for the normal group with intervention was -1.44 ± 0.99 and control was -1.63 ± 1.19 (p=0.715), while for the low group with intervention it was 1.65 ± 3.024 and control was 0.55 ± 2.654 (p=0.402). Conclusion This study concludes that fiber supplementation for 14 days in pregnant women with anemia can significantly increase hemoglobin levels compared to the control group There was a decrease in RET-He values after the intervention in the normal group and an increase in the low group, although it was not statistically significant.
Collapse
Affiliation(s)
- Adilah Afifah
- Master Program of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, 40161, Indonesia
| | - Yenni Zuhairini
- Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Eko Fuji Ariyanto
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Mohammad Ghozali
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Siti Nur Fatimah
- Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Akhmad Yogi Pramatirta
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Padjadjaran, Dr. Hasan Sadikin General Hospital, Bandung, West Java, 45363, Indonesia
| |
Collapse
|
3
|
Mousavian AH, Zare Garizi F, Ghoreshi B, Ketabi S, Eslami S, Ejtahed HS, Qorbani M. The association of infant and mother gut microbiomes with development of allergic diseases in children: a systematic review. J Asthma 2024; 61:1121-1135. [PMID: 38506489 DOI: 10.1080/02770903.2024.2332921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE It is believed that gut microbiota alteration leads to both intestinal and non-intestinal diseases in children. Since infants inherit maternal microbiota during pregnancy and lactation, recent studies suggest that changes in maternal microbiota can cause immune disorders as well. This systematic review was designed to assess the association between the child and mother's gut microbiome and allergy development in childhood. DATA SOURCES In this systematic review, international databases including PubMed, Scopus, and ISI/WOS were searched until January 2023 to identify relevant studies. STUDY SELECTIONS Observational studies that analyzed infant or maternal stool microbiome and their association with allergy development in children were included in this study. Data extraction and quality assessment of the included studies were independently conducted by two researchers. RESULTS Of the 1694 papers evaluated, 21 studies examined neonate gut microbiome by analyzing stool samples and six studies examined maternal gut microbiota. A total of 5319 participants were included in this study. Asthma followed by eczema and dermatitis were the most common allergy disorders among children. Urbanization caused a lack of diversity in the bacterial microbiota as well as lower levels of Bifidobacterium and Lachnospira associated with a higher risk of allergy. In contrast, higher levels of Roseburia and Flavonifractor were associated with lower allergy risk. CONCLUSIONS This systematic review shows that gut microbiota may be associated with allergy development. Further studies are required to provide a definitive answer.
Collapse
Affiliation(s)
- Amir-Hossein Mousavian
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Zare Garizi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Behnaz Ghoreshi
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Siavash Ketabi
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
4
|
Carolin A, Frazer D, Yan K, Bishop CR, Tang B, Nguyen W, Helman SL, Horvat J, Larcher T, Rawle DJ, Suhrbier A. The effects of iron deficient and high iron diets on SARS-CoV-2 lung infection and disease. Front Microbiol 2024; 15:1441495. [PMID: 39296289 PMCID: PMC11408339 DOI: 10.3389/fmicb.2024.1441495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction The severity of Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is often dictated by a range of comorbidities. A considerable literature suggests iron deficiency and iron overload may contribute to increased infection, inflammation and disease severity, although direct causal relationships have been difficult to establish. Methods Here we generate iron deficient and iron loaded C57BL/6 J mice by feeding standard low and high iron diets, with mice on a normal iron diet representing controls. All mice were infected with a primary SARS-CoV-2 omicron XBB isolate and lung inflammatory responses were analyzed by histology, immunohistochemistry and RNA-Seq. Results Compared with controls, iron deficient mice showed no significant changes in lung viral loads or histopathology, whereas, iron loaded mice showed slightly, but significantly, reduced lung viral loads and histopathology. Transcriptional changes were modest, but illustrated widespread dysregulation of inflammation signatures for both iron deficient vs. controls, and iron loaded vs. controls. Some of these changes could be associated with detrimental outcomes, whereas others would be viewed as beneficial. Discussion Diet-associated iron deficiency or overload thus induced modest modulations of inflammatory signatures, but no significant histopathologically detectable disease exacerbations.
Collapse
Affiliation(s)
- Agnes Carolin
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David Frazer
- Molecular Nutrition, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kexin Yan
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Cameron R Bishop
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bing Tang
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Wilson Nguyen
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sheridan L Helman
- Molecular Nutrition, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jay Horvat
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | | | - Daniel J Rawle
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Pantopoulos K. Oral iron supplementation: new formulations, old questions. Haematologica 2024; 109:2790-2801. [PMID: 38618666 PMCID: PMC11367235 DOI: 10.3324/haematol.2024.284967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Indexed: 04/16/2024] Open
Abstract
Iron-deficiency anemia and pre-anemic iron deficiency are the most frequent pathologies. The first line of treatment involves oral iron supplementation. The simplest, least expensive, and most commonly prescribed drug is ferrous sulfate, while other ferrous salts and ferric complexes with polysaccharides or succinylated milk proteins are also widely used. In recent years, novel iron formulations have been developed, such as the lipophilic iron donor ferric maltol, or nanoparticle encapsulated sucrosomial® iron. Oral iron supplementation is usually efficacious in correcting iron-deficiency anemia and replenishing iron stores but causes gastrointestinal side effects that reduce compliance. When oral iron supplementation is contraindicated, intravenous iron therapy can rapidly achieve therapeutic targets without gastrointestinal complications. Herein, we critically review literature on relative efficacy and tolerability of currently available oral iron supplements, and summarize recent data on optimal dosage and frequency.
Collapse
Affiliation(s)
- Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital, and Department of Medicine, McGill University, Montreal, Quebec.
| |
Collapse
|
6
|
Cesarano D, Borrelli S, Campilongo G, D’Ambra A, Papadia F, Garofalo C, De Marco A, Marzano F, Ruotolo C, Gesualdo L, Cirillo P, Minutolo R. Efficacy and Safety of Oral Supplementation with Liposomal Iron in Non-Dialysis Chronic Kidney Disease Patients with Iron Deficiency. Nutrients 2024; 16:1255. [PMID: 38732502 PMCID: PMC11085822 DOI: 10.3390/nu16091255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
INTRODUCTION Iron deficiency is common in patients with non-dialysis-dependent chronic kidney disease (NDD-CKD). Oral iron supplementation is recommended in these patients, but it is associated with a higher incidence of gastrointestinal adverse reactions. Liposomal iron therapy has been proposed as a new iron formulation, improving iron bioavailability with less side effects; however, few data are available in patients with NDD-CKD. METHODS We designed a single-arm pilot study to evaluate the efficacy of liposomal iron administered for six months in correcting iron deficiency (defined as serum ferritin < 100 ng/mL and/or transferrin saturation < 20%) in patients with NDD-CKD stages 1-5. The primary endpoints were the achievement of serum ferritin ≥ 100 ng/mL and transferrin saturation ≥ 20%. Secondary outcomes were hemoglobin (Hb) changes and the safety of liposomal iron. RESULTS The efficacy population included 34/38 patients, who completed at least one visit after baseline. Liposomal iron increased the achievement of transferrin saturation targets from 11.8% at baseline to 50.0% at month 6 (p = 0.002), while no significant correction of serum ferritin (p = 0.214) and Hb was found (p = 0.465). When patients were stratified by anemia (Hb < 12 g/dL in women and Hb < 13 g/dL in men), a significant improvement of transferrin saturation was observed only in anemic patients (from 13.3 ± 5.8% to 20.2 ± 8.1%, p = 0.012). Hb values slightly increased at month 6 only in anemic patients (+0.60 g/dL, 95%CI -0.27 to +1.48), but not in those without anemia (+0.08 g/dL, 95%CI -0.73 to +0.88). In patients taking at least one dose of liposomal iron (safety population, n = 38), the study drug was discontinued in eight patients due to death (n = 2), a switch to intravenous iron (n = 2), and the occurrence of side effects (n = 4). CONCLUSIONS The use of liposomal iron in patients with NDD-CKD is associated with a partial correction of transferrin saturation, with no significant effect on iron storage and Hb levels.
Collapse
Affiliation(s)
- Davide Cesarano
- Unit of Nephrology, Department of Advanced Medical and Surgery Sciences of University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (D.C.); (A.D.); (C.G.); (F.M.); (C.R.); (R.M.)
| | - Silvio Borrelli
- Unit of Nephrology, Department of Advanced Medical and Surgery Sciences of University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (D.C.); (A.D.); (C.G.); (F.M.); (C.R.); (R.M.)
| | - Giorgia Campilongo
- Nephrology, Dialysis and Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.C.); (F.P.); (A.D.M.); (L.G.); (P.C.)
| | - Annarita D’Ambra
- Unit of Nephrology, Department of Advanced Medical and Surgery Sciences of University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (D.C.); (A.D.); (C.G.); (F.M.); (C.R.); (R.M.)
| | - Federica Papadia
- Nephrology, Dialysis and Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.C.); (F.P.); (A.D.M.); (L.G.); (P.C.)
| | - Carlo Garofalo
- Unit of Nephrology, Department of Advanced Medical and Surgery Sciences of University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (D.C.); (A.D.); (C.G.); (F.M.); (C.R.); (R.M.)
| | - Antonia De Marco
- Nephrology, Dialysis and Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.C.); (F.P.); (A.D.M.); (L.G.); (P.C.)
| | - Federica Marzano
- Unit of Nephrology, Department of Advanced Medical and Surgery Sciences of University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (D.C.); (A.D.); (C.G.); (F.M.); (C.R.); (R.M.)
| | - Chiara Ruotolo
- Unit of Nephrology, Department of Advanced Medical and Surgery Sciences of University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (D.C.); (A.D.); (C.G.); (F.M.); (C.R.); (R.M.)
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.C.); (F.P.); (A.D.M.); (L.G.); (P.C.)
| | - Pietro Cirillo
- Nephrology, Dialysis and Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.C.); (F.P.); (A.D.M.); (L.G.); (P.C.)
| | - Roberto Minutolo
- Unit of Nephrology, Department of Advanced Medical and Surgery Sciences of University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (D.C.); (A.D.); (C.G.); (F.M.); (C.R.); (R.M.)
| |
Collapse
|
7
|
Roth-Walter F, Berni Canani R, O'Mahony L, Peroni D, Sokolowska M, Vassilopoulou E, Venter C. Nutrition in chronic inflammatory conditions: Bypassing the mucosal block for micronutrients. Allergy 2024; 79:353-383. [PMID: 38084827 DOI: 10.1111/all.15972] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
Nutritional Immunity is one of the most ancient innate immune responses, during which the body can restrict nutrients availability to pathogens and restricts their uptake by the gut mucosa (mucosal block). Though this can be a beneficial strategy during infection, it also is associated with non-communicable diseases-where the pathogen is missing; leading to increased morbidity and mortality as micronutritional uptake and distribution in the body is hindered. Here, we discuss the acute immune response in respect to nutrients, the opposing nutritional demands of regulatory and inflammatory cells and particularly focus on some nutrients linked with inflammation such as iron, vitamins A, Bs, C, and other antioxidants. We propose that while the absorption of certain micronutrients is hindered during inflammation, the dietary lymph path remains available. As such, several clinical trials investigated the role of the lymphatic system during protein absorption, following a ketogenic diet and an increased intake of antioxidants, vitamins, and minerals, in reducing inflammation and ameliorating disease.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Roberto Berni Canani
- Department of Translational Medical Science and ImmunoNutritionLab at CEINGE-Advanced Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Liam O'Mahony
- Department of Medicine, School of Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Diego Peroni
- Section of Paediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Emilia Vassilopoulou
- Pediatric Area, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Carina Venter
- Children's Hospital Colorado, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
8
|
Dong Z, Liu H, Wan D, Wu X, Yin Y. Ferrous-sucrose complex supplementation regulates maternal plasma metabolism and the fecal microbiota composition and improves neonatal immunity and placental glucose transportation by activating the EGF/PI3K/AKT signaling pathways in sows. Food Funct 2024; 15:906-916. [PMID: 38168829 DOI: 10.1039/d3fo03733a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Pregnancy is a dynamic state involving rapid physiological changes in metabolism, affecting the health and development of the offspring. During pregnancy, the placenta constitutes a physical and immunological barrier to provide fetal nutrition through the maternal blood and prevent the exposure of the fetus to dangerous signals. Metabolic changes in the plasma, the fecal microbiota profile, and functional regulation in the placenta were studied in sows supplied with a ferrous-sucrose complex (FeSuc) from late gestation to parturition. The results revealed that maternal FeSuc supplementation enhanced arginine and proline metabolism, glutathione metabolism, with increased glutamic acid, beta-D-glucosamine, L-proline, 1-butylamine, and succinic acid and reduced sphingosine and chenodeoxycholic acid sulfate levels in the plasma. Moreover, significantly increased abundances of Christensenellaceae_R-7_group, Prevotellaceae_NK3B31_group, and Lachnospiraceae_NK4B4_group were detected in the feces of sows from the FeSuc group (P < 0.05). Spearman's correlation analysis indicated that Prevotellaceae_NK3B31_group abundances were positively correlated with glutamic acid, indoxyl sulfate, acetyl-DL-leucine, and beta-D-glucosamine, while Christensenellaceae_R-7_group was positively correlated with beta-D-glucosamine. Furthermore, maternal FeSuc supplementation significantly increased neonatal glucose (P < 0.01) and iron (P < 0.01) in the neonatal serum, significantly increased IL-10 and TGF-β1 levels in the neonatal liver (P < 0.01) and jejunum (P < 0.05), promoted the transcription of immune molecules in the placenta, and significantly increased the protein expressions of EGF (P < 0.05), PI3K (P < 0.01), p-PI3K (P < 0.001), p-AKT (P < 0.01), and glucose transporter 1 (GLUT1) (P < 0.001) in the placenta. The current study demonstrated that FeSuc supplementation regulated maternal metabolism processes by altering the fecal microbial composition and improved neonatal immunity and placental glucose transportation by activating the EGF/PI3K/AKT signaling pathways in sows.
Collapse
Affiliation(s)
- Zhenglin Dong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| | - Hongwei Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| | - Dan Wan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| | - Xin Wu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, China.
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| |
Collapse
|
9
|
Loveikyte R, Bourgonje AR, van Goor H, Dijkstra G, van der Meulen-de Jong AE. The effect of iron therapy on oxidative stress and intestinal microbiota in inflammatory bowel diseases: A review on the conundrum. Redox Biol 2023; 68:102950. [PMID: 37918126 PMCID: PMC10643537 DOI: 10.1016/j.redox.2023.102950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023] Open
Abstract
One in five patients with Inflammatory Bowel Disease (IBD) suffers from anemia, most frequently caused by iron deficiency. Anemia and iron deficiency are associated with worse disease outcomes, reduced quality of life, decreased economic participation, and increased healthcare costs. International guidelines and consensus-based recommendations have emphasized the importance of treating anemia and iron deficiency. In this review, we draw attention to the rarely discussed effects of iron deficiency and iron therapy on the redox status, the intestinal microbiota, and the potential interplay between them, focusing on the clinical implications for patients with IBD. Current data are scarce, inconsistent, and do not provide definitive answers. Nevertheless, it is imperative to rule out infections and discern iron deficiency anemia from other types of anemia to prevent untargeted oral or intravenous iron supplementation and potential side effects, including oxidative stress. Further research is necessary to establish the clinical significance of changes in the redox status and the intestinal microbiota following iron supplementation.
Collapse
Affiliation(s)
- R Loveikyte
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands; Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - A R Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - H van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - G Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - A E van der Meulen-de Jong
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
10
|
Charlebois E, Pantopoulos K. Nutritional Aspects of Iron in Health and Disease. Nutrients 2023; 15:2441. [PMID: 37299408 PMCID: PMC10254751 DOI: 10.3390/nu15112441] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Dietary iron assimilation is critical for health and essential to prevent iron-deficient states and related comorbidities, such as anemia. The bioavailability of iron is generally low, while its absorption and metabolism are tightly controlled to satisfy metabolic needs and prevent toxicity of excessive iron accumulation. Iron entry into the bloodstream is limited by hepcidin, the iron regulatory hormone. Hepcidin deficiency due to loss-of-function mutations in upstream gene regulators causes hereditary hemochromatosis, an endocrine disorder of iron overload characterized by chronic hyperabsorption of dietary iron, with deleterious clinical complications if untreated. The impact of high dietary iron intake and elevated body iron stores in the general population is not well understood. Herein, we summarize epidemiological data suggesting that a high intake of heme iron, which is abundant in meat products, poses a risk factor for metabolic syndrome pathologies, cardiovascular diseases, and some cancers. We discuss the clinical relevance and potential limitations of data from cohort studies, as well as the need to establish causality and elucidate molecular mechanisms.
Collapse
Affiliation(s)
- Edouard Charlebois
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada;
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada;
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
11
|
Seo H, Yoon SY, ul-Haq A, Jo S, Kim S, Rahim MA, Park HA, Ghorbanian F, Kim MJ, Lee MY, Kim KH, Lee N, Won JH, Song HY. The Effects of Iron Deficiency on the Gut Microbiota in Women of Childbearing Age. Nutrients 2023; 15:nu15030691. [PMID: 36771397 PMCID: PMC9919165 DOI: 10.3390/nu15030691] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Iron deficiency anemia (IDA) is the most prevalent and common nutritional deficiency worldwide and is a global health problem with significant risk, particularly among women of reproductive age. Oral iron supplementation is the most widely used and cost-effective treatment for iron deficiency and IDA. However, there are limitations regarding side effects such as enteritis, treatment compliance, and bioavailability. Intestinal microbiome characteristic research has been recently conducted to overcome these issues, but more is needed. Against this background, a metagenomics study on the 16S gene in the feces of young women vulnerable to IDA was conducted. As a result of analyzing 16 normal subjects and 15 IDA patients, significant differences in bacterial community distribution were identified. In particular, a significant decrease in Faecalibacterium was characteristic in IDA patients compared with normal subjects. Furthermore, in the case of patients who recovered from IDA following iron supplementation treatment, it was confirmed that Faecalibacterium significantly recovered to normal levels. However, no significance in beta diversity was seen compared with before treatment. There were also no differences in the beta diversity results between the recovered and normal subjects. Therefore, intestinal dysbiosis during the disease state was considered to be restored as IDA improved. Although the results were derived from a limited number of subjects and additional research is needed, the results of this study are expected to be the basis for developing treatment and prevention strategies based on host-microbiome crosstalk in IDA.
Collapse
Affiliation(s)
- Hoonhee Seo
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan-si 31538, Republic of Korea
| | - Seug Yun Yoon
- Division of Hematology & Medical Oncology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Asad ul-Haq
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan-si 31538, Republic of Korea
| | - Sujin Jo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea
| | - Sukyung Kim
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan-si 31538, Republic of Korea
| | - Md Abdur Rahim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea
| | - Hyun-A Park
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea
| | - Fatemeh Ghorbanian
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea
| | - Min Jung Kim
- Division of Hematology & Medical Oncology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Min-Young Lee
- Division of Hematology & Medical Oncology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Kyoung Ha Kim
- Division of Hematology & Medical Oncology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Namsu Lee
- Division of Hematology & Medical Oncology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Jong-Ho Won
- Division of Hematology & Medical Oncology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
- Correspondence: (J.-H.W.); (H.-Y.S.)
| | - Ho-Yeon Song
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan-si 31538, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si 31151, Republic of Korea
- Correspondence: (J.-H.W.); (H.-Y.S.)
| |
Collapse
|
12
|
Ren S, Wang C, Chen A, Lv W, Gao R. The Probiotic Lactobacillus paracasei Ameliorates Diarrhea Cause by Escherichia coli O8via Gut Microbiota Modulation1. Front Nutr 2022; 9:878808. [PMID: 35662940 PMCID: PMC9159302 DOI: 10.3389/fnut.2022.878808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/30/2022] [Indexed: 12/26/2022] Open
Abstract
Introduction Koumiss is a fermented horse milk food containing abundant probiotics. Lactobacillus paracasei is a bacterial strain isolated from koumiss that helps regulate the intestinal microbiota. One of the major cause of diarrhea is an imbalance of the intestinal flora. The aim of this study was to investigate whether Lactobacillus paracasei can ameliorate E. coli-induced diarrhea and modulate the gut microbiota. Methods Mouse models of diarrhea were established via intragastric E. coli O8 administration. We then attempted to prevent or treat diarrhea in the mice via intragastric administration of a 3 × 108 CFU/mL L. paracasei cell suspension. The severity of diarrhea was evaluated based on the body weight, diarrhea rate, and index, fecal diameter, ileum injury, hematoxylin-eosin (H&E) staining, and diamine oxidase (DAO) and zonulin expression. Expression of the tight junction (TJ) proteins claudin-1, occludin, and zona occludens (ZO-)1 were detected by immunohistochemistry (IHC). Gastrointestinal mRNA expression levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α were detected by real-time polymerase chain reaction (RT-PCR). The microbial composition was analyzed by 16s rRNA sequencing. Results The L. paracasei demonstrated excellent therapeutic efficacy against diarrhea. It elevated the TJ protein levels and downregulated proinflammatory cytokines IL-6, IL-1β, TNF-α, and p65, myosin light chain 2 (MLC2), myosin light chain kinase (MLCK). Moreover L. paracasei increased those bacteria, which can product short-chain fatty acid (SCFA) such Alistipes, Odoribacter, Roseburia, and Oscillibacter. Conclusion L. paracasei ameliorated diarrhea by inhibiting activation of the nuclear factor kappa B (NF-κB)-MLCK pathway and increasing the abundance of gut microbiota that produce SCFA.
Collapse
Affiliation(s)
- Shunan Ren
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Chunjie Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- *Correspondence: Chunjie Wang,
| | - Aorigele Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenting Lv
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruijuan Gao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
13
|
Gut Microbiome Alterations following Postnatal Iron Supplementation Depend on Iron Form and Persist into Adulthood. Nutrients 2022; 14:nu14030412. [PMID: 35276770 PMCID: PMC8838803 DOI: 10.3390/nu14030412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota is implicated in the adverse developmental outcomes of postnatal iron supplementation. To generate hypotheses on how changes to the gut microbiota by iron adversely affect development, and to determine whether the form of iron influences microbiota outcomes, we characterized gut microbiome and metabolome changes in Sprague-Dawley rat pups given oral supplements of ferrous sulfate (FS), ferrous bis-glycinate chelate (FC), or vehicle control (CON) on postnatal day (PD) 2−14. Iron supplementation reduced microbiome alpha-diversity (p < 0.0001) and altered short-chain fatty acids (SCFAs) and trimethylamine (TMA) in a form-dependent manner. To investigate the long-term effects of iron provision in early life, an additional cohort was supplemented with FS, FC, or CON until PD 21 and then weaned onto standard chow. At ~8 weeks of age, young adult (YA) rats that received FS exhibited more diverse microbiomes compared to CON (p < 0.05), whereas FC microbiomes were less diverse (p < 0.05). Iron provision resulted in 10,000-fold reduced abundance of Lactobacilli in pre-weanling and YA animals provided iron in early life (p < 0.0001). Our results suggest that in pre-weanling rats, supplemental iron form can generate differential effects on the gut microbiota and microbial metabolism that persist into adulthood.
Collapse
|