1
|
Zacchi P, Longo F, Marconato A, Amadei M, Bonaccorsi di Patti MC, Avolio E, Li P, Fan H, Tetley TD, Zabucchi G, Borelli V. Functional Characterization of the Hephaestin Variant D568H Provides Novel Mechanistic Insights on Iron-Dependent Asbestos-Induced Carcinogenesis. Int J Mol Sci 2025; 26:2607. [PMID: 40141249 PMCID: PMC11941830 DOI: 10.3390/ijms26062607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/28/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
A local disruption of iron homeostasis leading to oxidative stress is considered one of the main mechanisms of asbestos-related genotoxicity. Another aspect contributing to the risk of developing pathological consequences upon asbestos exposure is individual genetic factors. In a previous study, we identified a coding SNP in the hephaestin gene (HEPH) that protects against developing asbestos-related thoracic cancer. Heph is a ferroxidase that promotes iron export in concert with the permease ferroportin (Fpn1). Here, we performed an in-depth functional characterization of the HephD568H variant to gain insights into the molecular basis of its protective activity. We showed that HephD568H forms a complex with Fpn1 and possesses full ferroxidase activity. Although HephD568H is more efficiently recruited to the plasma membrane, it is impaired in binding iron-deficient Tfn, whose interaction with wild-type (WT) ferroxidase emerged as a novel mechanism to perceive brain iron needs. Heph is expressed in the human lung by pericytes and fibroblasts, and lung pericytes were shown to respond to iron demand by upregulating the iron exporter pair. These results extend the paradigm of local iron regulation discovered at the blood-brain barrier to the pulmonary vasculature. Furthermore, they establish a mechanistic link between changes in iron sensing and the risk of developing asbestos-related malignancies.
Collapse
Affiliation(s)
- Paola Zacchi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.L.); (A.M.); (G.Z.)
| | - Francesco Longo
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.L.); (A.M.); (G.Z.)
| | - Alice Marconato
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.L.); (A.M.); (G.Z.)
| | - Matteo Amadei
- Department of Biochemical Sciences, Sapienza University of Roma, 00185 Rome, Italy; (M.A.); (M.C.B.d.P.)
| | | | - Elisa Avolio
- Bristol Medical School, Translational Health Sciences, University of Bristol, Level 7 Bristol Royal Infirmary, Bristol BS2 8HW, UK;
| | - Pengfei Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (P.L.); (H.F.)
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (P.L.); (H.F.)
| | - Teresa D. Tetley
- National Heart and Lung Institute, Imperial College London, Exhibition Road, London SW7 0HF, UK;
| | - Giuliano Zabucchi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.L.); (A.M.); (G.Z.)
| | - Violetta Borelli
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.L.); (A.M.); (G.Z.)
| |
Collapse
|
2
|
Sun R, Li M, Zhang T, Yang W, Yang L. Effects of Dietary Copper Sources and Levels on Liver Copper Metabolism and the Expression of Transporters in Growing Pigs. Animals (Basel) 2025; 15:526. [PMID: 40003008 PMCID: PMC11851888 DOI: 10.3390/ani15040526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/07/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Research on the effects of organic and inorganic Cu sources on metabolic processes and mechanisms in pigs is lacking. This study investigated the effects of different copper (Cu) sources and levels on hepatic Cu metabolism and transporter factors in growing pigs. Sixty healthy piglets (initial body weight 14.00 ± 0.30 kg) were randomly divided into four groups with five replicates of three pigs each. Four diets (AM, AH, BM, and BH) had different Cu sources [Cu sulphate (CuSO4): A and Cu amino acids (Cu-AA): B] and levels [supplemented (120 mg/kg DM): M, supplemented (240 mg/kg DM): H]. The pre-feeding period was 7 days, followed by a 45-day feeding period. Slaughter and sample collection were carried out on the 46th day of the formal feeding period. Significant differences were considered at p < 0.05. The final weight and average daily gain (ADG) of growing pigs in the Cu-AA groups were significantly higher than those in the CuSO4 groups. Serum Cu increased with increasing Cu supplementation on days 20 and 40. Cu concentrations in muscle, liver, and liver subcellular organelles were higher in Cu-AA groups. In the CuSO4 groups, Cu concentrations were higher in kidneys and faeces. In Cu-AA groups, both the Cu concentrations in lysosomes and cytosol were higher, and the activities of cathepsin D (CTSD), β-glucosidase (BGL), and acid phosphatase (ACP) in lysosomes and cytoplasm were higher. Comparisons between groups showed that liver mRNA of copper transporter protein 1 (CTR1), ATPase copper-transporting beta (ATP7B), ceruloplasmin (CP), antioxidant protein 1 (ATOX1), and metallothionein (MT) was lower in the CuSO4 group than in the Cu-AA group, with the best performance at 120 mg/kg Cu. mRNAs for ATPase copper-transporting alpha (ATP7A), cytochrome c oxidase copper chaperone 17 (COX17), and copper chaperone for superoxide dismutase (CCS) showed a decreasing trend in the Cu-AA groups. Cu-AA is better for Cu deposition, enhances the utilisation of Cu, reduces Cu excretion, and promotes the expression of relevant enzymes and transporters in the liver.
Collapse
Affiliation(s)
- Rui Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (R.S.); (M.L.); (T.Z.)
- Ministry of Education Laboratory of Animal Production and Security, Changchun 130118, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun 130118, China
| | - Meng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (R.S.); (M.L.); (T.Z.)
- Ministry of Education Laboratory of Animal Production and Security, Changchun 130118, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun 130118, China
| | - Tianrui Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (R.S.); (M.L.); (T.Z.)
- Ministry of Education Laboratory of Animal Production and Security, Changchun 130118, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun 130118, China
| | - Wenyan Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (R.S.); (M.L.); (T.Z.)
- Ministry of Education Laboratory of Animal Production and Security, Changchun 130118, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun 130118, China
| | - Lianyu Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (R.S.); (M.L.); (T.Z.)
- Ministry of Education Laboratory of Animal Production and Security, Changchun 130118, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Changchun 130118, China
| |
Collapse
|
3
|
Wang D, Guan H. Cuproptosis: A new mechanism for anti-tumour therapy. Pathol Res Pract 2025; 266:155790. [PMID: 39729956 DOI: 10.1016/j.prp.2024.155790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
As an indispensable trace metal element in the organism, copper acts as a key catalytic cofactor in a wide range of biological processes. Copper homeostasis disorders can be caused by either copper excess or deficiency, and copper homeostasis disorders will affect the normal physiological functions of cells and induce cell death through a variety of mechanisms, such as the emerging cuproptosis model. The imbalance of copper homeostasis will lead to the occurrence of cancer, and copper is a key factor in cell signalling, so copper is involved in the development of cancer by promoting cell proliferation, angiogenesis and metastasis, etc. The therapeutic role of Cuproptosis as a hotspot of research in cancer has also attracted much attention. Therefore, this paper comprehensively searches the literature to review the roles and mechanisms of Cuproptosis in the treatment of malignant tumours, aiming to provide new insights into the role and mechanism of Cuproptosis in anti-malignant tumour therapy and present novel ideas and methods.
Collapse
Affiliation(s)
- Dong Wang
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Haoran Guan
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
4
|
AmeliMojarad M, AmeliMojarad M, Shariati P. Cinobufagin treatments suppress tumor growth by enhancing the expression of cuproptosis-related genes in liver cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1575-1582. [PMID: 39120719 DOI: 10.1007/s00210-024-03349-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Cuproptosis is a recently discovered form of regulated cell death triggered by excess copper (Cu) strongly influenced by the import, export, and intracellular utilization of Cu known as Cu homeostasis. Cinobufagin (CB) is a well-known Chinese medicine for its apoptosis-inducing role; however, its function on cuproptosis is poorly understood. To evaluate the effect of CB on inducing cell death through cuproptosis, we used RNA-seq data of HepG2-treated cells with CB to understand Cuproptosis genes. By using CCK-8 assay, Ross assay, GSH assay, and qRT-PCR, we found that CB could enhance cuproptosis in primary liver cancer cell lines, especially by increasing copper transporters CTR1, CTR2, and LIAS and downregulation of copper efflux transporters ATP7A and ATP7B resulted in increased reactive oxygen species (ROS) production, copper ionophores while reduced intracellular copper chelator glutathione (GSH) synthesis. In conclusion, our findings indicated that CB by increasing cuproptosis-related genes can mediate higher cell cytotoxicity against HepG2 and HUH7 and could provide a new insight into mechanisms of CB as an anti-tumor agent for targeting liver cancer.
Collapse
Affiliation(s)
- Mandana AmeliMojarad
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Melika AmeliMojarad
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Parvin Shariati
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
5
|
Amadei M, Polticelli F, Musci G, Bonaccorsi di Patti MC. The Ferroxidase-Permease System for Transport of Iron Across Membranes: From Yeast to Humans. Int J Mol Sci 2025; 26:875. [PMID: 39940646 PMCID: PMC11817551 DOI: 10.3390/ijms26030875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/16/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Transport of iron across the cell membrane is a tightly controlled process carried out by specific proteins in all living cells. In yeast and in mammals, a system formed by an enzyme with ferroxidase activity coupled to a membrane transporter supports iron uptake or iron efflux, respectively. Ferroxidase belongs to the family of blue multicopper oxidases, enzymes able to couple the one-electron oxidation of substrate(s) to full reduction of molecular oxygen to water. On the other hand, the permeases are widely different and are specific to Fe3+ and Fe2+ in yeast and multicellular organisms, respectively. This review will describe the yeast and human ferroxidase-permease systems, highlighting similarities and differences in structure, function and regulation of the respective protein components.
Collapse
Affiliation(s)
- Matteo Amadei
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, Sapienza University of Rome, 00185 Rome, Italy;
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | | |
Collapse
|
6
|
Ling W, Li S, Zhu Y, Wang X, Jiang D, Kang B. Inducers of Autophagy and Cell Death: Focus on Copper Metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117725. [PMID: 39823670 DOI: 10.1016/j.ecoenv.2025.117725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/17/2024] [Accepted: 01/11/2025] [Indexed: 01/19/2025]
Abstract
Copper is an essential trace element in biological systems, playing a key role in various physiological functions, including redox reactions and energy metabolism. However, an imbalance in copper homeostasis can induce oxidative stress, mitochondrial dysfunction, and inhibition of the ubiquitin-proteasome system, ultimately leading to significant cytotoxicity and cell death. According to recent research, copper can bind to lipoylation sites on proteins involved in the tricarboxylic acid cycle, causing aggregation of lipoylated proteins, the loss of Fe-S cluster proteins, proteotoxic stress, and ultimately, cell death. This new type of programmed cell death is called "Cuproptosis". Furthermore, autophagy may be activated by a disruption in copper homeostasis, while it plays a dual role in regulating copper-induced cell death by acting both as an inhibitor of cell death and as a promoter of cytotoxicity. This review summarizes research progress on copper metabolic patterns, molecular mechanisms of copper-induced cell death, and mechanisms of copper-induced autophagy-cytotoxicity interactions. Meanwhile, the application of copper-induced cell death in cancer therapy is discussed, aiming to provide new insights and guiding future research toward advancing cancer therapy.
Collapse
Affiliation(s)
- Weikang Ling
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chendu 611130, PR China.
| | - Shuo Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chendu 611130, PR China.
| | - Yang Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chendu 611130, PR China.
| | - Xin Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chendu 611130, PR China.
| | - Dongmei Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chendu 611130, PR China.
| | - Bo Kang
- State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chendu 611130, PR China.
| |
Collapse
|
7
|
Zhang W, Song Z, Tian Y, Zhang R, Guo Z, Yang Y, Jiang X, Zhang R. Copper homeostasis and Cuprotosis: Exploring novel therapeutic strategies for connective tissue diseases. Int Immunopharmacol 2025; 145:113698. [PMID: 39642560 DOI: 10.1016/j.intimp.2024.113698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/09/2024] [Accepted: 11/20/2024] [Indexed: 12/09/2024]
Abstract
Copper is an indispensable element for human health, with its balance being critical to prevent the onset of diseases, particularly those affecting connective tissues. Imbalances in copper levels can lead to pathological alterations. Research indicates that copper supplements and chelators hold promise for the treatment of certain conditions, yet the precise mechanisms by which copper imbalances and the cell death mechanism known as cuprotosis contribute to connective tissue diseases remain elusive. This paper delves into the potential role of copper imbalance and cuprotosis in connective tissue diseases and evaluates the underlying cellular mechanisms. The goal is to offer practical insights into targeted therapies for dysregulated copper metabolism, with the aim of devising novel strategies for the treatment of connective tissue diseases.
Collapse
Affiliation(s)
- Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhijie Song
- Department of Rheumatology and Immunology, Chifeng Cancer Hospital, Chifeng 024000, Inner Mongolia Autonomous Region, China
| | - Yuanyuan Tian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhigang Guo
- Department of Rheumatology and Immunology, Chifeng Cancer Hospital, Chifeng 024000, Inner Mongolia Autonomous Region, China
| | - Yanmei Yang
- Department of Rheumatology and Immunology, Chifeng Cancer Hospital, Chifeng 024000, Inner Mongolia Autonomous Region, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Ruoyi Zhang
- Department of Rheumatology and Immunology, Chifeng Cancer Hospital, Chifeng 024000, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
8
|
Yang FK, Cao J, Zhang T, Jiang HX, Cui HB, Wang K. Dual-Activated Photoacoustic Probe for Reliably Detecting Hydroxyl Radical in Ischemic Cardiovascular Disease in Mouse and Human Samples. ACS Sens 2024; 9:5445-5453. [PMID: 39364916 DOI: 10.1021/acssensors.4c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Cardiovascular disease (CVD) is a chronic disease characterized by the accumulation of lipids and fibrous tissue within the arterial walls, potentially leading to vascular obstruction and an increased risk of heart disease and stroke. Hydroxyl radicals play a significant role in the formation and progression of CVD as they can instigate lipid peroxidation, resulting in cellular damage and inflammatory responses. However, precisely detecting hydroxyl radicals in CVD lesions presents significant challenges due to their high reactivity and short lifespan. Herein, we present the development and application of a novel activatable optical probe, Cy-OH-LP, designed to detect hydroxyl radicals in lipid-rich environments specifically. Built on the Cy7 molecular skeleton, Cy-OH-LP exhibits near-infrared absorption and fluorescence characteristics, and its specific response to hydroxyl radicals enables a turn-on signal in both photoacoustic and fluorescence spectra. The probe demonstrated excellent selectivity and stability in various tests. Furthermore, Cy-OH-LP was successfully applied in an in vivo model to detect hydroxyl radicals in mouse models, providing a potential tool for diagnosing and monitoring AS. The biosafety of Cy-OH-LP was also verified, showing low cytotoxicity and no significant organ damage in mice. The findings suggest that Cy-OH-LP is a promising tool for the specific detection of hydroxyl radicals in lipid-rich environments, providing new possibilities for research and clinical applications in the field of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Fang-Kun Yang
- Department of Cardiology, First Affiliated Hospital of Ningbo University (Ningbo First Hospital), School of Medicine, Ningbo University, Ningbo 315211, China
| | - Jie Cao
- The Fifth Dental Center, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Ting Zhang
- Wuxi Maternity and Chield Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi 214002, China
| | - Hao-Xiang Jiang
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
| | - Han-Bin Cui
- Department of Cardiology, First Affiliated Hospital of Ningbo University (Ningbo First Hospital), School of Medicine, Ningbo University, Ningbo 315211, China
| | - Kai Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
| |
Collapse
|
9
|
Hadwan MH, Rahi AK, Abass ER, Hadwan AM, Mohammed RM, Alta'ee AH, Alsalman AR, Hadwan MM, Al-Talebi ZA. A new spectrophotometric method for measuring ceruloplasmin ferroxidase activity: an innovative approach. Biometals 2024:10.1007/s10534-024-00635-9. [PMID: 39400640 DOI: 10.1007/s10534-024-00635-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/30/2024] [Indexed: 10/15/2024]
Abstract
Ferroxidases are enzymes that participate in the iron metabolism of different organisms. They catalyze the oxidation of ferrous iron, Fe2⁺, into ferric iron, Fe3⁺, which is essential in iron homeostasis and physiological functioning. The present study describes a novel spectrophotometric method of serum ceruloplasmin ferroxidase activity. This method is easy to perform; it is also sensitive, specific, and rapid. In this method, ferrous ions are used as a substrate for the enzyme, with either salicylic acid or sulfosalicylic acid being taken as a chromogenic compound. These chromogens easily form a colored complex with ferric ions but are not formed with ferrous ions. In the enzymatic reaction, the ceruloplasmin ferroxidase enzyme catalyzes the oxidation of ferrous to ferric ions. The resulting increase in ferric ion concentration is then measured spectrophotometrically, following the formation of the colored complex. The complex formed has maximum absorbance at 540 nm in the case of salicylic acid and 490 nm in the case of sulfosalicylic acid. Comparatively, it was tested against the standard method to ascertain the new method's effectuality and reliability for assaying ferroxidase activity. The determined correlation coefficient amounted to 0.99, showing a strong correlation between the results obtained by the two methods. This new spectrophotometric technique offers a simplified, sensitive, specific, and fast means of estimating ferroxidase activity. It avoids using concentrated strong acids in the procedure and correlates excellently with the standard technique. This sets up a potential alternative for accurately determining ferroxidase activity in biological samples.
Collapse
Affiliation(s)
- Mahmoud Hussein Hadwan
- Chemistry Department, College of Science, University of Babylon, Hillah, Babylon Governorate, 51002, Iraq.
| | - Ahed Kamil Rahi
- Pharmaceutical Chemistry Department, College of Pharmacy, University of Babylon, Hillah, Babylon Governorate, Iraq
| | - Esraa Rafied Abass
- Pharmaceutical Chemistry Department, College of Pharmacy, University of Babylon, Hillah, Babylon Governorate, Iraq
| | - Asad M Hadwan
- Al-Manara College for Medical Sciences, Al-Amarah, Iraq
| | - Rawa M Mohammed
- Department of Medical Physics, University of Al-Mustaqbal, Hillah, Babylon Governorate, 51001, Iraq
| | | | - Abdul Razzaq Alsalman
- College of Medicine, University of Babylon, Hillah, Babylon Governorate, 51002, Iraq
| | - Muntadher M Hadwan
- College of Medicine, University of Babylon, Hillah, Babylon Governorate, 51002, Iraq
| | - Zainab Abbas Al-Talebi
- Chemistry Department, College of Science, University of Babylon, Hillah, Babylon Governorate, 51002, Iraq
| |
Collapse
|
10
|
Alanazi ST, Salama SA, Althobaiti MM, Alotaibi RA, AlAbdullatif AA, Musa A, Harisa GI. Alleviation of Copper-Induced Hepatotoxicity by Bergenin: Diminution of Oxidative Stress, Inflammation, and Apoptosis via Targeting SIRT1/FOXO3a/NF-κB Axes and p38 MAPK Signaling. Biol Trace Elem Res 2024:10.1007/s12011-024-04401-3. [PMID: 39347884 DOI: 10.1007/s12011-024-04401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Despite its biological importance, excess copper induces organ damage, especially to the liver. Disruption of critical signaling cascades that control redox status, inflammatory responses, and cellular apoptosis significantly contributes to the copper-induced hepatotoxicity. The present work explored the hepatoprotective ability of bergenin against the copper-induced hepatotoxicity using male Wistar rats as a mammalian model. The results revealed that bergenin suppressed the copper-evoked histopathological changes and hepatocellular necrosis as indicated by decreased activity of the liver enzymes ALT and AST in the sera of the copper-intoxicated rats. It decreased hepatic copper content and the copper-induced oxidative stress as revealed by reduced lipid peroxidation and improved activity of the antioxidant enzymes thioredoxin reductase, glutathione peroxidase, catalase, and superoxide dismutase. Bergenin downregulated the inflammatory cytokines TNF-α and IL-6, and the inflammatory cell infiltration to the liver tissues. Additionally, it inhibited the copper-induced apoptosis as indicated by significant reduction in caspase-3 activity. At the molecular level, bergenin activated the antioxidant transcription factor FOXO3a, inhibited the nuclear translocation of the inflammatory transcription factor NF-κB, and suppressed the inflammatory signaling molecules p38 MAPK and c-Fos. Interestingly, bergenin improved the expression of the anti-apoptotic protein Bcl2 and reduced the pro-apoptotic protein BAX. Bergenin markedly enhanced the expression of the histone deacetylase protein SIRT1 that regulates activity of NF-κB and FOXO3a. Collectively, these findings highlight the alleviating activity of bergenin against the copper-induced hepatotoxicity via controlling oxidative stress, inflammation, and apoptosis potentially through upregulation of SIRT1, activation of FOXO3a along with suppression of NF-κB and p38 MAPK signaling.
Collapse
Affiliation(s)
- Samyah T Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, 11433, Riyadh, Saudi Arabia
| | - Samir A Salama
- Division of Biochemistry, Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia.
| | - Musaad M Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Rana A Alotaibi
- College of Pharmacy, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Ammar A AlAbdullatif
- Pharmaceutical Care Services, Ministry of the National Guard-Health Affairs, P.O. Box 4616, 31412, Dammam, Saudi Arabia
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Gamaleldin I Harisa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Wang K, Gu KF, Cao J, Yang YS, Zhu HL, Shang JH, Zhou JL. Activatable Photoacoustic/Near-Infrared Probes for the Detection of Copper Ions of Cardiovascular Disease In Vivo and in Urine. ACS Sens 2024; 9:4898-4905. [PMID: 39236153 DOI: 10.1021/acssensors.4c01490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Copper ions, implicated in processes such as oxidative stress and inflammation, are believed to play a crucial role in cardiovascular disease, a prevalent and deadly disease. Despite this, current diagnostic methods fail to detect early stage cardiovascular disease or track copper ion accumulation, limiting our understanding of the disease's progression. Therefore, the development of noninvasive techniques to image copper ions in cardiovascular disease is urgently needed to enhance diagnostic precision and therapeutic strategies. In this study, we report the successful synthesis and application of a copper ion-activated photoacoustic probe, CS-Cu, which exhibits high sensitivity and selectivity toward copper ions both in vitro and in vivo. CS-Cu was able to noninvasively monitor the changes in copper ion levels and differentiate between different mice based on copper ions in urine. Furthermore, the probe demonstrated good photoacoustic stability and exhibited no significant toxicity in the mice. These findings suggest that CS-Cu could be a promising tool for early detection and monitoring of Cu2+ levels in vivo and urine, providing a new perspective on the role of copper ions in cardiovascular disease.
Collapse
Affiliation(s)
- Kai Wang
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ke-Feng Gu
- Affiliated Children's Hospital of Jiangnan University, Wuxi 214023, China
| | - Jie Cao
- The Fifth Dental Center, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, PR China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jin-Hui Shang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie-Li Zhou
- UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Kopeć Z, Starzyński RR, Lenartowicz M, Grzesiak M, Opiela J, Smorąg Z, Gajda B, Nicpoń J, Ogłuszka M, Wang X, Mazgaj R, Stankiewicz A, Płonka W, Pirga-Niemiec N, Herman S, Lipiński P. Comparison of Molecular Potential for Iron Transfer across the Placenta in Domestic Pigs with Varied Litter Sizes and Wild Boars. Int J Mol Sci 2024; 25:9638. [PMID: 39273585 PMCID: PMC11395084 DOI: 10.3390/ijms25179638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Neonatal iron deficiency anemia is prevalent among domestic pigs but does not occur in the offspring of wild boar. The main causes of this disorder in piglets of modern pig breeds are paucity of hepatic iron stores, high birth weight, and rapid growth. Replenishment of fetal iron stores is a direct result of iron transfer efficiency across the placenta. In this study, we attempted to investigate the molecular potential of iron transfer across the placenta as a possible cause of differences between wild boar and Polish Large White (PLW) offspring. Furthermore, by analyzing placentas from PLW gilts that had litters of different sizes, we aimed to elucidate the impact of the number of fetuses on placental ability to transport iron. Using RNA sequencing, we examined the expression of iron-related genes in the placentas from wild boar and PLW gilts. We did not reveal significant differences in the expression of major iron transporters among all analyzed placentas. However, in wild boar placentas, we found higher expression of copper-dependent ferroxidases such as ceruloplasmin, zyklopen, and hephaestin, which facilitate iron export to the fetal circulation. We also determined a close co-localization of ceruloplasmin and zyklopen with ferroportin, the only iron exporter.
Collapse
Affiliation(s)
- Zuzanna Kopeć
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Rafał Radosław Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Małgorzata Lenartowicz
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Kraków, Poland
| | - Małgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Krakow, Poland
| | - Jolanta Opiela
- National Research Institute of Animal Production, 32-083 Balice, Poland
| | - Zdzisław Smorąg
- National Research Institute of Animal Production, 32-083 Balice, Poland
| | - Barbara Gajda
- National Research Institute of Animal Production, 32-083 Balice, Poland
| | - Jakub Nicpoń
- Department of Surgery, Faculty of Veterinary Sciences, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Xiuying Wang
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Rafał Mazgaj
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Adrian Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Wiktoria Płonka
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Kraków, Poland
| | - Natalia Pirga-Niemiec
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Kraków, Poland
| | - Sylwia Herman
- Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Kraków, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| |
Collapse
|
13
|
Li Y, Ma J, Wang R, Luo Y, Zheng S, Wang X. Zinc transporter 1 functions in copper uptake and cuproptosis. Cell Metab 2024; 36:2118-2129.e6. [PMID: 39111308 DOI: 10.1016/j.cmet.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/05/2024] [Accepted: 07/09/2024] [Indexed: 09/06/2024]
Abstract
Copper (Cu) is a co-factor for several essential metabolic enzymes. Disruption of Cu homeostasis results in genetic diseases such as Wilson's disease. Here, we show that the zinc transporter 1 (ZnT1), known to export zinc (Zn) out of the cell, also mediates Cu2+ entry into cells and is required for Cu2+-induced cell death, cuproptosis. Structural analysis and functional characterization indicate that Cu2+ and Zn2+ share the same primary binding site, allowing Zn2+ to compete for Cu2+ uptake. Among ZnT members, ZnT1 harbors a unique inter-subunit disulfide bond that stabilizes the outward-open conformations of both protomers to facilitate efficient Cu2+ transport. Specific knockout of the ZnT1 gene in the intestinal epithelium caused the loss of Lgr5+ stem cells due to Cu deficiency. ZnT1, therefore, functions as a dual Zn2+ and Cu2+ transporter and potentially serves as a target for using Zn2+ in the treatment of Wilson's disease caused by Cu overload.
Collapse
Affiliation(s)
- Yehua Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jiahao Ma
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Rui Wang
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Yuanhanyu Luo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Sanduo Zheng
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China; National Institute of Biological Sciences, Beijing 102206, China.
| | - Xiaodong Wang
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China; National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
14
|
Pan X, Köberle M, Ghashghaeinia M. Vitamin C-Dependent Uptake of Non-Heme Iron by Enterocytes, Its Impact on Erythropoiesis and Redox Capacity of Human Erythrocytes. Antioxidants (Basel) 2024; 13:968. [PMID: 39199214 PMCID: PMC11352176 DOI: 10.3390/antiox13080968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
In the small intestine, nutrients from ingested food are absorbed and broken down by enterocytes, which constitute over 95% of the intestinal epithelium. Enterocytes demonstrate diet- and segment-dependent metabolic flexibility, enabling them to take up large amounts of glutamine and glucose to meet their energy needs and transfer these nutrients into the bloodstream. During glycolysis, ATP, lactate, and H+ ions are produced within the enterocytes. Based on extensive but incomplete glutamine oxidation large amounts of alanine or lactate are produced. Lactate, in turn, promotes hypoxia-inducible factor-1α (Hif-1α) activation and Hif-1α-dependent transcription of various proton channels and exchangers, which extrude cytoplasmic H+-ions into the intestinal lumen. In parallel, the vitamin C-dependent and duodenal cytochrome b-mediated conversion of ferric iron into ferrous iron progresses. Finally, the generated electrochemical gradient is utilized by the divalent metal transporter 1 for H+-coupled uptake of non-heme Fe2+-ions. Iron efflux from enterocytes, subsequent binding to the plasma protein transferrin, and systemic distribution supply a wide range of cells with iron, including erythroid precursors essential for erythropoiesis. In this review, we discuss the impact of vitamin C on the redox capacity of human erythrocytes and connect enterocyte function with iron metabolism, highlighting its effects on erythropoiesis.
Collapse
Affiliation(s)
- Xia Pan
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Martin Köberle
- Department of Dermatology and Allergology, School of Medicine and Health, Technical University of Munich, Biedersteinerstr. 29, 80802 München, Germany
| | - Mehrdad Ghashghaeinia
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
15
|
Min JH, Sarlus H, Harris RA. Copper toxicity and deficiency: the vicious cycle at the core of protein aggregation in ALS. Front Mol Neurosci 2024; 17:1408159. [PMID: 39050823 PMCID: PMC11267976 DOI: 10.3389/fnmol.2024.1408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The pathophysiology of ALS involves many signs of a disruption in copper homeostasis, with both excess free levels and functional deficiency likely occurring simultaneously. This is crucial, as many important physiological functions are performed by cuproenzymes. While it is unsurprising that many ALS symptoms are related to signs of copper deficiency, resulting in vascular, antioxidant system and mitochondrial oxidative respiration deficiencies, there are also signs of copper toxicity such as ROS generation and enhanced protein aggregation. We discuss how copper also plays a key role in proteostasis and interacts either directly or indirectly with many of the key aggregate-prone proteins implicated in ALS, such as TDP-43, C9ORF72, SOD1 and FUS as well as the effect of their aggregation on copper homeostasis. We suggest that loss of cuproprotein function is at the core of ALS pathology, a condition that is driven by a combination of unbound copper and ROS that can either initiate and/or accelerate protein aggregation. This could trigger a positive feedback cycle whereby protein aggregates trigger the aggregation of other proteins in a chain reaction that eventually captures elements of the proteostatic mechanisms in place to counteract them. The end result is an abundance of aggregated non-functional cuproproteins and chaperones alongside depleted intracellular copper stores, resulting in a general lack of cuproenzyme function. We then discuss the possible aetiology of ALS and illustrate how strong risk factors including environmental toxins such as BMAA and heavy metals can functionally behave to promote protein aggregation and disturb copper metabolism that likely drives this vicious cycle in sporadic ALS. From this synthesis, we propose restoration of copper balance using copper delivery agents in combination with chaperones/chaperone mimetics, perhaps in conjunction with the neuroprotective amino acid serine, as a promising strategy in the treatment of this incurable disease.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
16
|
Ma Y, Cong L, Shen W, Yang C, Ye K. Ferroptosis defense mechanisms: The future and hope for treating osteosarcoma. Cell Biochem Funct 2024; 42:e4080. [PMID: 38924104 DOI: 10.1002/cbf.4080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Currently, challenges such as chemotherapy resistance, resulting from preoperative and postoperative chemotherapy, postoperative recurrence, and poor bone regeneration quality, are becoming increasingly prominent in osteosarcoma (OS) treatment. There is an urgent need to find more effective ways to address these issues. Ferroptosis is a novel form of iron-dependent programmed cell death, distinct from other forms of cell death. In this paper, we summarize how, through the three major defense systems of ferroptosis, not only can substances from traditional Chinese medicine, antitumor drugs, and nano-drug carriers induce ferroptosis in OS cells, but they can also be combined with immunotherapy, differentiation therapy, and other treatment modalities to significantly enhance chemotherapy sensitivity and inhibit tumor growth. Thus, ferroptosis holds great potential in treating OS, offering more choices and possibilities for future clinical interventions.
Collapse
Affiliation(s)
- Yulong Ma
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Bone and Joint Diseases of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Liming Cong
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Bone and Joint Diseases of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Wenxiang Shen
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Bone and Joint Diseases of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Chunwang Yang
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Bone and Joint Diseases of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Kaishan Ye
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
17
|
Fu S, Zhang Q, Zhang C. Research update for ferroptosis and cholangiocarcinoma. Crit Rev Oncol Hematol 2024; 198:104356. [PMID: 38641134 DOI: 10.1016/j.critrevonc.2024.104356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 01/17/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common hepatobiliary malignancy after hepatocellular carcinoma. Due to the poor treatment effect and high mortality rate of CCA, it is of great significance to explore new therapeutic targets. Ferroptosis is a type of cell death caused by iron-dependent cell oxidative injury, which is closely related to the occurrence and development of numerous diseases. Novel ideas for the prevention and treatment of related diseases have been provided by ferroptosis, which has become a focus of research in recent years. This review introduces the underlying mechanisms related to ferroptosis, as well as a research update for ferroptosis in the occurrence and development of CCA. The clinical value of ferroptosis-related regulatory mechanisms in CCA will be elucidated.
Collapse
Affiliation(s)
- Shengfeng Fu
- Department of General Surgery, Taizhou people's Hospital, Nanjing Medical University, Taizhou, China; Postgraduate School, Dalian Medical University, Dalian, China
| | - Qinyang Zhang
- Department of Orthopedics, Taizhou people's Hospital, Nanjing Medical University, Taizhou, Taizhou, China; Postgraduate School, Dalian Medical University, Dalian, China.
| | - Changhe Zhang
- Department of General Surgery, Taizhou people's Hospital, Nanjing Medical University, Taizhou, China.
| |
Collapse
|
18
|
Feng Y, Yang Z, Wang J, Zhao H. Cuproptosis: unveiling a new frontier in cancer biology and therapeutics. Cell Commun Signal 2024; 22:249. [PMID: 38693584 PMCID: PMC11064406 DOI: 10.1186/s12964-024-01625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024] Open
Abstract
Copper plays vital roles in numerous cellular processes and its imbalance can lead to oxidative stress and dysfunction. Recent research has unveiled a unique form of copper-induced cell death, termed cuproptosis, which differs from known cell death mechanisms. This process involves the interaction of copper with lipoylated tricarboxylic acid cycle enzymes, causing protein aggregation and cell death. Recently, a growing number of studies have explored the link between cuproptosis and cancer development. This review comprehensively examines the systemic and cellular metabolism of copper, including tumor-related signaling pathways influenced by copper. It delves into the discovery and mechanisms of cuproptosis and its connection to various cancers. Additionally, the review suggests potential cancer treatments using copper ionophores that induce cuproptosis, in combination with small molecule drugs, for precision therapy in specific cancer types.
Collapse
Affiliation(s)
- Ying Feng
- Department of Emergency, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China
| | - Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, 723000, Shaanxi, China
| | - Jianpeng Wang
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China.
| |
Collapse
|
19
|
Qiao G, Shen Z, Duan S, Wang R, He P, Zhang Z, Dai Y, Li M, Chen Y, Li X, Zhao Y, Liu Z, Yang H, Zhang R, Guan S, Sun J. Associations of urinary metal concentrations with anemia: A cross-sectional study of Chinese community-dwelling elderly. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115828. [PMID: 38118331 DOI: 10.1016/j.ecoenv.2023.115828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
BACKGROUND Anemia seriously affects the health and quality of life of the older adult population and may be influenced by various types of environmental metal exposure. Current studies on metals and anemia are mainly limited to single metals, and the association between polymetals and their mixtures and anemia remains unclear. METHODS We determined 11 urinary metal concentrations and hemoglobin levels in 3781 participants. Binary logistic regression and restricted cubic spline (RCS) model were used to estimate the association of individual metals with anemia. We used Bayesian kernel machine regression (BKMR) and Quantile g-computation (Q-g) regression to assess the overall association between metal mixtures and anemia and identify the major contributing elements. Stratified analyses were used to explore the association of different metals with anemia in different populations. RESULTS In a single-metal model, nine urinary metals significantly associated with anemia. RCS analysis further showed that the association of arsenic (As) and copper (Cu) with anemia was linear, while cobalt, molybdenum, thallium, and zinc were non-linear. The BKMR model revealed a significant positive association between the concentration of metal mixtures and anemia. Combined Q-g regression analysis suggested that metals such as Cu, As, and tellurium (Te) were positively associated with anemia, with Te as the most significant contributor. Stratified analyses showed that the association of different metals with anemia varied among people of different sexes, obesity levels, lifestyle habits, and blood pressure levels. CONCLUSIONS Multiple metals are associated with anemia in the older adult population. A significant positive association was observed between metal mixture concentrations and anemia, with Te being the most important factor. The association between urinary metal concentrations and anemia is more sensitive in the non-hypertensive populations.
Collapse
Affiliation(s)
- Guojie Qiao
- Radioimmunity Center, Shaanxi Provincial People's Hospital, Xi'an, 710069, Shaanxi, P.R. China.
| | - Zhuoheng Shen
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, Ningxia, P.R. China
| | - Siyu Duan
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, Ningxia, P.R. China
| | - Rui Wang
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, Ningxia, P.R. China
| | - Pei He
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, Ningxia, P.R. China
| | - Zhongyuan Zhang
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, Ningxia, P.R. China
| | - Yuqing Dai
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, Ningxia, P.R. China
| | - Meiyan Li
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, Ningxia, P.R. China
| | - Yue Chen
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, Ningxia, P.R. China
| | - Xiaoyu Li
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, Ningxia, P.R. China
| | - Yi Zhao
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, Ningxia, P.R. China
| | - Zhihong Liu
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, Ningxia, P.R. China
| | - Huifang Yang
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, Ningxia, P.R. China
| | - Rui Zhang
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, Ningxia, P.R. China; Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China
| | - Suzhen Guan
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, Ningxia, P.R. China.
| | - Jian Sun
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, P.R. China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, 750004, Ningxia, P.R. China.
| |
Collapse
|
20
|
安 可, 周 学. [Latest Findings on Ferroptosis and Osteoarthropathy]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1294-1299. [PMID: 38162082 PMCID: PMC10752773 DOI: 10.12182/20231160209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 01/03/2024]
Abstract
Ferroptosis, a newly-discovered mode of programmed cell death, is closely associated with the development of various diseases throughout the human body, such as tumors of the digestive system, ischemia-reperfusion injury, osteoarthropathy, etc. Therefore, ferroptosis has become a hot research topic in many fields of study in recent years, providing new ideas for the prevention and treatment of relevant diseases. Among them, structural lesions in osteoarthropathies involving articular cartilage, subchondral bone, and synovial tissue have been found to be associated with iron overload, as well as oxidative stress, which suggests that inhibition of ferroptosis in relevant joint tissue cells may have a positive effect in halting the development of osteoarthropathy. Herein, focusing on ferroptosis and osteoarthropathy, we summarized the research developments in mechanisms related to iron metabolism and ferroptosis, analyzed the impact of ferroptosis on the pathogenesis and development of osteoarthropathy, and proposed new ideas for medication therapies of osteoarthropathy, taking into account the latest research findings.
Collapse
Affiliation(s)
- 可 安
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 学东 周
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Zierfuss B, Wang Z, Jackson AN, Moezzi D, Yong VW. Iron in multiple sclerosis - Neuropathology, immunology, and real-world considerations. Mult Scler Relat Disord 2023; 78:104934. [PMID: 37579645 DOI: 10.1016/j.msard.2023.104934] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Iron is an essential element involved in a multitude of bodily processes. It is tightly regulated, as elevated deposition in tissues is associated with diseases such as multiple sclerosis (MS). Iron accumulation in the central nervous system (CNS) of MS patients is linked to neurotoxicity through mechanisms including oxidative stress, glutamate excitotoxicity, misfolding of proteins, and ferroptosis. In the past decade, the combination of MRI and histopathology has enhanced our understanding of iron deposition in MS pathophysiology, including in the pro-inflammatory and neurotoxicity of iron-laden rims of chronic active lesions. In this regard, iron accumulation may not only have an impact on different CNS-resident cells but may also promote the innate and adaptive immune dysfunctions in MS. Although there are discordant results, most studies indicate lower levels of iron but higher amounts of the iron storage molecule ferritin in the circulation of people with MS. Considering the importance of iron, there is a need for evidence-guided recommendation for dietary intake in people living with MS. Potential novel therapeutic approaches include the regulation of iron levels using next generation iron chelators, as well as therapies to interfere with toxic consequences of iron overload including antioxidants in MS.
Collapse
Affiliation(s)
- Bettina Zierfuss
- The Research Center of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal H2X 0A9, Québec, Canada
| | - Zitong Wang
- Department of Psychiatry, College of Health Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| | - Alexandra N Jackson
- School of Rehabilitation Therapy, Faculty of Health Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Dorsa Moezzi
- The Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - V Wee Yong
- The Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
22
|
Chillon TS, Demircan K, Hackler J, Heller RA, Kaghazian P, Moghaddam A, Schomburg L. Combined copper and zinc deficiency is associated with reduced SARS-CoV-2 immunization response to BNT162b2 vaccination. Heliyon 2023; 9:e20919. [PMID: 37886755 PMCID: PMC10597833 DOI: 10.1016/j.heliyon.2023.e20919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
The essential trace elements copper, selenium and zinc are of relevance for immunity and immune response to vaccination. In this longitudinal study, adult healthcare workers (n = 126) received two doses of an mRNA vaccine (BNT162b2), and longitudinal serum samples were prepared. Vaccine-induced antibodies and their neutralizing activity were analyzed, and the trace elements copper, zinc, and selenium along with the copper transporter ceruloplasmin were measured. Subjects with combined deficiency of copper and zinc, i.e. both in the lowest tertiles at baseline, displayed particularly low antibody titers at three (Double Q1: 13 AU/mL vs. not double Q1: 29 AU/mL) and six (Double Q1: 200 AU/mL vs. not double Q1: 425 AU/mL) weeks after vaccination (p < 0.05). The results indicate the potential importance of an adequate trace element status of copper and zinc for raising a strong vaccine-induced SARS-CoV-2 antibody response, and highlights the importance of considering combined micronutrient insufficiencies, as single deficiencies may synergize.
Collapse
Affiliation(s)
- Thilo Samson Chillon
- Max Rubner Center for Cardiovascular Metabolic Renal Research (CMR), Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straße 3-4, D-10115 Berlin, Germany
| | - Kamil Demircan
- Max Rubner Center for Cardiovascular Metabolic Renal Research (CMR), Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straße 3-4, D-10115 Berlin, Germany
| | - Julian Hackler
- Max Rubner Center for Cardiovascular Metabolic Renal Research (CMR), Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straße 3-4, D-10115 Berlin, Germany
| | - Raban A. Heller
- Max Rubner Center for Cardiovascular Metabolic Renal Research (CMR), Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straße 3-4, D-10115 Berlin, Germany
- Bundeswehr Hospital Berlin, Clinic of Traumatology and Orthopaedics, D-10115 Berlin, Germany
| | - Peyman Kaghazian
- Orthopedic and Trauma Surgery, Frohsinnstraße 12, D-63739 Aschaffenburg, Germany
| | - Arash Moghaddam
- Orthopedic and Trauma Surgery, Frohsinnstraße 12, D-63739 Aschaffenburg, Germany
| | - Lutz Schomburg
- Max Rubner Center for Cardiovascular Metabolic Renal Research (CMR), Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Hessische Straße 3-4, D-10115 Berlin, Germany
| |
Collapse
|
23
|
Henne SK, Aldisi R, Sivalingam S, Hochfeld LM, Borisov O, Krawitz PM, Maj C, Nöthen MM, Heilmann-Heimbach S. Analysis of 72,469 UK Biobank exomes links rare variants to male-pattern hair loss. Nat Commun 2023; 14:5492. [PMID: 37737258 PMCID: PMC10517150 DOI: 10.1038/s41467-023-41186-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 08/24/2023] [Indexed: 09/23/2023] Open
Abstract
Male-pattern hair loss (MPHL) is common and highly heritable. While genome-wide association studies (GWAS) have generated insights into the contribution of common variants to MPHL etiology, the relevance of rare variants remains unclear. To determine the contribution of rare variants to MPHL etiology, we perform gene-based and single-variant analyses in exome-sequencing data from 72,469 male UK Biobank participants. While our population-level risk prediction suggests that rare variants make only a minor contribution to general MPHL risk, our rare variant collapsing tests identified a total of five significant gene associations. These findings provide additional evidence for previously implicated genes (EDA2R, WNT10A) and highlight novel risk genes at and beyond GWAS loci (HEPH, CEPT1, EIF3F). Furthermore, MPHL-associated genes are enriched for genes considered causal for monogenic trichoses. Together, our findings broaden the MPHL-associated allelic spectrum and provide insights into MPHL pathobiology and a shared basis with monogenic hair loss disorders.
Collapse
Affiliation(s)
- Sabrina Katrin Henne
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Rana Aldisi
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Sugirthan Sivalingam
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
- Department of Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Lara Maleen Hochfeld
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Oleg Borisov
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Peter Michael Krawitz
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
- Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - Markus Maria Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
24
|
Karpenko MN, Muruzheva ZM, Ilyechova EY, Babich PS, Puchkova LV. Abnormalities in Copper Status Associated with an Elevated Risk of Parkinson's Phenotype Development. Antioxidants (Basel) 2023; 12:1654. [PMID: 37759957 PMCID: PMC10525645 DOI: 10.3390/antiox12091654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
In the last 15 years, among the many reasons given for the development of idiopathic forms of Parkinson's disease (PD), copper imbalance has been identified as a factor, and PD is often referred to as a copper-mediated disorder. More than 640 papers have been devoted to the relationship between PD and copper status in the blood, which include the following markers: total copper concentration, enzymatic ceruloplasmin (Cp) concentration, Cp protein level, and non-ceruloplasmin copper level. Most studies measure only one of these markers. Therefore, the existence of a correlation between copper status and the development of PD is still debated. Based on data from the published literature, meta-analysis, and our own research, it is clear that there is a connection between the development of PD symptoms and the number of copper atoms, which are weakly associated with the ceruloplasmin molecule. In this work, the link between the risk of developing PD and various inborn errors related to copper metabolism, leading to decreased levels of oxidase ceruloplasmin in the circulation and cerebrospinal fluid, is discussed.
Collapse
Affiliation(s)
- Marina N. Karpenko
- I.P. Pavlov Department of Physiology, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia; (M.N.K.); (Z.M.M.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
| | - Zamira M. Muruzheva
- I.P. Pavlov Department of Physiology, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia; (M.N.K.); (Z.M.M.)
- State Budgetary Institution of Health Care “Leningrad Regional Clinical Hospital”, 194291 St. Petersburg, Russia
| | - Ekaterina Yu. Ilyechova
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Research Center of Advanced Functional Materials and Laser Communication Systems, ADTS Institute, ITMO University, 197101 St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Polina S. Babich
- Department of Zoology and Genetics, Faculty of Biology, Herzen State Pedagogical University of Russia, 191186 St. Petersburg, Russia;
| | - Ludmila V. Puchkova
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Research Center of Advanced Functional Materials and Laser Communication Systems, ADTS Institute, ITMO University, 197101 St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| |
Collapse
|
25
|
Jia M, Dong T, Cheng Y, Rong F, Zhang J, Lv W, Zhen S, Jia X, Cong B, Wu Y, Cui H, Hao P. Ceruloplasmin is associated with the infiltration of immune cells and acts as a prognostic biomarker in patients suffering from glioma. Front Pharmacol 2023; 14:1249650. [PMID: 37637428 PMCID: PMC10450624 DOI: 10.3389/fphar.2023.1249650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Glioma is regarded as a prevalent form of cancer that affects the Central Nervous System (CNS), with an aggressive growth pattern and a low clinical cure rate. Despite the advancement of the treatment strategy of surgical resection, chemoradiotherapy and immunotherapy in the last decade, the clinical outcome is still grim, which is ascribed to the low immunogenicity and tumor microenvironment (TME) of glioma. The multifunctional molecule, called ceruloplasmin (CP) is involved in iron metabolism. Its expression pattern, prognostic significance, and association with the immune cells in gliomas have not been thoroughly investigated. Studies using a variety of databases, including Chinese Glioma Genome Atlas (CGGA), The Cancer Genome Atlas (TCGA), and Gliovis, showed that the mRNA and protein expression levels of CP in patients suffering from glioma increased significantly with an increasing glioma grade. Kaplan-Meier (KM) curves and statistical tests highlighted a significant reduction in survival time of patients with elevated CP expression levels. According to Cox regression analysis, CP can be utilized as a stand-alone predictive biomarker in patients suffering from glioma. A significant association between CP expression and numerous immune-related pathways was found after analyzing the data using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). Tumor Immune Estimation Resource (TIMER) and CIBERSORT analyses indicated a substantial correlation between the CP expression and infiltration of immunocytes in the TME. Additionally, immune checkpoints and CP expression in gliomas showed a favorable correlation. According to these results, patients with glioma have better prognoses and levels of tumor immune cell infiltration when their CP expression is low. As a result, CP could be used as a probable therapeutic target for gliomas and potentially anticipate the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Miaomiao Jia
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, China
- Postdoctoral Mobile Station of Biology, Hebei Medical University, Shijiazhuang, Hebei, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tianyu Dong
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, China
| | - Yangyang Cheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fanghao Rong
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, China
| | - Jiamin Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, China
| | - Wei Lv
- Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shuman Zhen
- Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xianxian Jia
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bin Cong
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuming Wu
- Hebei Collaborative Innovation Center for Cardio Cerebrovascular Disease, Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Peipei Hao
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| |
Collapse
|
26
|
Xue Q, Kang R, Klionsky DJ, Tang D, Liu J, Chen X. Copper metabolism in cell death and autophagy. Autophagy 2023; 19:2175-2195. [PMID: 37055935 PMCID: PMC10351475 DOI: 10.1080/15548627.2023.2200554] [Citation(s) in RCA: 264] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023] Open
Abstract
Copper is an essential trace element in biological systems, maintaining the activity of enzymes and the function of transcription factors. However, at high concentrations, copper ions show increased toxicity by inducing regulated cell death, such as apoptosis, paraptosis, pyroptosis, ferroptosis, and cuproptosis. Furthermore, copper ions can trigger macroautophagy/autophagy, a lysosome-dependent degradation pathway that plays a dual role in regulating the survival or death fate of cells under various stress conditions. Pathologically, impaired copper metabolism due to environmental or genetic causes is implicated in a variety of human diseases, such as rare Wilson disease and common cancers. Therapeutically, copper-based compounds are potential chemotherapeutic agents that can be used alone or in combination with other drugs or approaches to treat cancer. Here, we review the progress made in understanding copper metabolic processes and their impact on the regulation of cell death and autophagy. This knowledge may help in the design of future clinical tools to improve cancer diagnosis and treatment.Abbreviations: ACSL4, acyl-CoA synthetase long chain family member 4; AIFM1/AIF, apoptosis inducing factor mitochondria associated 1; AIFM2, apoptosis inducing factor mitochondria associated 2; ALDH, aldehyde dehydrogenase; ALOX, arachidonate lipoxygenase; AMPK, AMP-activated protein kinase; APAF1, apoptotic peptidase activating factor 1; ATF4, activating transcription factor 4; ATG, autophagy related; ATG13, autophagy related 13; ATG5, autophagy related 5; ATOX1, antioxidant 1 copper chaperone; ATP, adenosine triphosphate; ATP7A, ATPase copper transporting alpha; ATP7B, ATPase copper transporting beta; BAK1, BCL2 antagonist/killer 1; BAX, BCL2 associated X apoptosis regulator; BBC3/PUMA, BCL2 binding component 3; BCS, bathocuproinedisulfonic acid; BECN1, beclin 1; BID, BH3 interacting domain death agonist; BRCA1, BRCA1 DNA repair associated; BSO, buthionine sulphoximine; CASP1, caspase 1; CASP3, caspase 3; CASP4/CASP11, caspase 4; CASP5, caspase 5; CASP8, caspase 8; CASP9, caspase 9; CCS, copper chaperone for superoxide dismutase; CD274/PD-L1, CD274 molecule; CDH2, cadherin 2; CDKN1A/p21, cyclin dependent kinase inhibitor 1A; CDKN1B/p27, cyclin-dependent kinase inhibitor 1B; COMMD10, COMM domain containing 10; CoQ10, coenzyme Q 10; CoQ10H2, reduced coenzyme Q 10; COX11, cytochrome c oxidase copper chaperone COX11; COX17, cytochrome c oxidase copper chaperone COX17; CP, ceruloplasmin; CYCS, cytochrome c, somatic; DBH, dopamine beta-hydroxylase; DDIT3/CHOP, DNA damage inducible transcript 3; DLAT, dihydrolipoamide S-acetyltransferase; DTC, diethyldithiocarbamate; EIF2A, eukaryotic translation initiation factor 2A; EIF2AK3/PERK, eukaryotic translation initiation factor 2 alpha kinase 3; ER, endoplasmic reticulum; ESCRT-III, endosomal sorting complex required for transport-III; ETC, electron transport chain; FABP3, fatty acid binding protein 3; FABP7, fatty acid binding protein 7; FADD, Fas associated via death domain; FAS, Fas cell surface death receptor; FASL, Fas ligand; FDX1, ferredoxin 1; GNAQ/11, G protein subunit alpha q/11; GPX4, glutathione peroxidase 4; GSDMD, gasdermin D; GSH, glutathione; HDAC, histone deacetylase; HIF1, hypoxia inducible factor 1; HIF1A, hypoxia inducible factor 1 subunit alpha; HMGB1, high mobility group box 1; IL1B, interleukin 1 beta; IL17, interleukin 17; KRAS, KRAS proto-oncogene, GTPase; LOX, lysyl oxidase; LPCAT3, lysophosphatidylcholine acyltransferase 3; MAP1LC3, microtubule associated protein 1 light chain 3; MAP2K1, mitogen-activated protein kinase kinase 1; MAP2K2, mitogen-activated protein kinase kinase 2; MAPK, mitogen-activated protein kinases; MAPK14/p38, mitogen-activated protein kinase 14; MEMO1, mediator of cell motility 1; MT-CO1/COX1, mitochondrially encoded cytochrome c oxidase I; MT-CO2/COX2, mitochondrially encoded cytochrome c oxidase II; MTOR, mechanistic target of rapamycin kinase; MTs, metallothioneins; NAC, N-acetylcysteine; NFKB/NF-Κb, nuclear factor kappa B; NLRP3, NLR family pyrin domain containing 3; NPLOC4/NPL4, NPL4 homolog ubiquitin recognition factor; PDE3B, phosphodiesterase 3B; PDK1, phosphoinositide dependent protein kinase 1; PHD, prolyl-4-hydroxylase domain; PIK3C3/VPS34, phosphatidylinositol 3-kinase catalytic subunit type 3; PMAIP1/NOXA, phorbol-12-myristate-13-acetate-induced protein 1; POR, cytochrome P450 oxidoreductase; PUFA-PL, PUFA of phospholipids; PUFAs, polyunsaturated fatty acids; ROS, reactive oxygen species; SCO1, synthesis of cytochrome C oxidase 1; SCO2, synthesis of cytochrome C oxidase 2; SLC7A11, solute carrier family 7 member 11; SLC11A2/DMT1, solute carrier family 11 member 2; SLC31A1/CTR1, solute carrier family 31 member 1; SLC47A1, solute carrier family 47 member 1; SOD1, superoxide dismutase; SP1, Sp1 transcription factor; SQSTM1/p62, sequestosome 1; STEAP4, STEAP4 metalloreductase; TAX1BP1, Tax1 binding protein 1; TEPA, tetraethylenepentamine; TFEB, transcription factor EB; TM, tetrathiomolybdate; TP53/p53, tumor protein p53; TXNRD1, thioredoxin reductase 1; UCHL5, ubiquitin C-terminal hydrolase L5; ULK1, Unc-51 like autophagy activating kinase 1; ULK1, unc-51 like autophagy activating kinase 1; ULK2, unc-51 like autophagy activating kinase 2; USP14, ubiquitin specific peptidase 14; VEGF, vascular endothelial gro wth factor; XIAP, X-linked inhibitor of apoptosis.
Collapse
Affiliation(s)
- Qian Xue
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Affliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
27
|
Tokumoto M, Lee JY, Fujiwara Y, Satoh M. Long-Term Exposure to Cadmium Causes Hepatic Iron Deficiency through the Suppression of Iron-Transport-Related Gene Expression in the Proximal Duodenum. TOXICS 2023; 11:641. [PMID: 37505606 PMCID: PMC10386400 DOI: 10.3390/toxics11070641] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Cadmium (Cd) is an environmental pollutant that damages various tissues. Cd may cause a depletion of iron stores and subsequently an iron deficiency state in the liver. However, the molecular mechanism of decreased iron accumulation in the liver induced by long-term exposure to Cd is unknown. In this study, we investigated the hepatic accumulation of iron and the proximal duodenal expression of the genes involved in iron transport using mice chronically exposed to Cd. Five-week-old female C57BL/6J mice were fed a diet containing 300 ppm Cd for 12, 15, 19 and 21 months. The iron concentration in the liver was markedly decreased by Cd. Among iron-transport-related genes in the proximal duodenum, the gene expression of HCP1 and Cybrd1 was significantly decreased by Cd. HCP1 is an influx transporter of heme iron. Cybrd1 is a reductase that allows non-heme iron to enter cells. The expression of iron-transport-related genes on the duodenal basolateral membrane side was hardly altered by Cd. These results suggest that long-term exposure to Cd suppresses the expression of HCP1 and Cybrd1 in the proximal duodenum, resulting in reduced iron absorption and iron accumulation in the liver.
Collapse
Affiliation(s)
- Maki Tokumoto
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Jin-Yong Lee
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Yasuyuki Fujiwara
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan
| | - Masahiko Satoh
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| |
Collapse
|
28
|
Kawahara M, Kato-Negishi M, Tanaka KI. Dietary Trace Elements and the Pathogenesis of Neurodegenerative Diseases. Nutrients 2023; 15:2067. [PMID: 37432185 PMCID: PMC10180548 DOI: 10.3390/nu15092067] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 07/12/2023] Open
Abstract
Trace elements such as iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn) are absorbed from food via the gastrointestinal tract, transported into the brain, and play central roles in normal brain functions. An excess of these trace elements often produces reactive oxygen species and damages the brain. Moreover, increasing evidence suggests that the dyshomeostasis of these metals is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, prion diseases, and Lewy body diseases. The disease-related amyloidogenic proteins can regulate metal homeostasis at the synapses, and thus loss of the protective functions of these amyloidogenic proteins causes neurodegeneration. Meanwhile, metal-induced conformational changes of the amyloidogenic proteins contribute to enhancing their neurotoxicity. Moreover, excess Zn and Cu play central roles in the pathogenesis of vascular-type senile dementia. Here, we present an overview of the intake, absorption, and transport of four essential elements (Fe, Zn, Cu, Mn) and one non-essential element (aluminum: Al) in food and their connections with the pathogenesis of neurodegenerative diseases based on metal-protein, and metal-metal cross-talk.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Midori Kato-Negishi
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| |
Collapse
|
29
|
Orlov IA, Sankova TP, Skvortsov AN, Klotchenko SA, Sakhenberg EI, Mekhova AA, Kiseleva IV, Ilyechova EY, Puchkova LV. Properties of recombinant extracellular N-terminal domain of human high-affinity copper transporter 1 (hNdCTR1) and its interactions with Cu(II) and Ag(I) ions. Dalton Trans 2023; 52:3403-3419. [PMID: 36815348 DOI: 10.1039/d2dt04060c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
High-affinity copper transporter 1 (CTR1) is a key link in the transfer of copper (Cu) from the extracellular environment to the cell. Violation in the control system of its expression, or mutations in this gene, cause a global copper imbalance. However, the mechanism of copper transfer via CTR1 remains unclear. It has been shown that transformed bacteria synthesizing the fused GB1-NdCTR become resistant to toxic silver ions. According to UV-Vis spectrophotometry and isothermal titration calorimetry, electrophoretically pure GB1-NdCTR specifically and reversibly binds copper and silver ions, and binding is associated with aggregation. Purified NdCTR1 forms SDS-resistant oligomers. The link between nontrivial properties of NdCTR1 and copper import mechanism from extracellular space, as well as potential chelating properties of NdCTR1, are discussed.
Collapse
Affiliation(s)
- Iurii A Orlov
- Research centre of advanced functional materials and laser communication systems, ADTS Institute, ITMO, University, 197101 St. Petersburg, Russia.
| | - Tatiana P Sankova
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Alexey N Skvortsov
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia.,Laboratory of The Molecular Biology of Stem Cells, Institute of Cytology, RAS, 194064 St. Petersburg, Russia
| | - Sergey A Klotchenko
- Laboratory for the Development of Molecular Diagnostic Systems, Smorodintsev Research Institute of Influenza, 197376 St. Petersburg, Russia
| | - Elena I Sakhenberg
- Laboratory of cell protection mechanisms, Institute of Cytology, RAS, 194064 St. Petersburg, Russia
| | - Aleksandra A Mekhova
- Research centre of advanced functional materials and laser communication systems, ADTS Institute, ITMO, University, 197101 St. Petersburg, Russia. .,Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Irina V Kiseleva
- Department of Virology, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Ekaterina Yu Ilyechova
- Research centre of advanced functional materials and laser communication systems, ADTS Institute, ITMO, University, 197101 St. Petersburg, Russia. .,Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia.,Department of Molecular Genetics, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Ludmila V Puchkova
- Research centre of advanced functional materials and laser communication systems, ADTS Institute, ITMO, University, 197101 St. Petersburg, Russia. .,Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia.,Department of Molecular Genetics, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| |
Collapse
|
30
|
Silvestri L, Pettinato M, Furiosi V, Bavuso Volpe L, Nai A, Pagani A. Managing the Dual Nature of Iron to Preserve Health. Int J Mol Sci 2023; 24:ijms24043995. [PMID: 36835406 PMCID: PMC9961779 DOI: 10.3390/ijms24043995] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Because of its peculiar redox properties, iron is an essential element in living organisms, being involved in crucial biochemical processes such as oxygen transport, energy production, DNA metabolism, and many others. However, its propensity to accept or donate electrons makes it potentially highly toxic when present in excess and inadequately buffered, as it can generate reactive oxygen species. For this reason, several mechanisms evolved to prevent both iron overload and iron deficiency. At the cellular level, iron regulatory proteins, sensors of intracellular iron levels, and post-transcriptional modifications regulate the expression and translation of genes encoding proteins that modulate the uptake, storage, utilization, and export of iron. At the systemic level, the liver controls body iron levels by producing hepcidin, a peptide hormone that reduces the amount of iron entering the bloodstream by blocking the function of ferroportin, the sole iron exporter in mammals. The regulation of hepcidin occurs through the integration of multiple signals, primarily iron, inflammation and infection, and erythropoiesis. These signals modulate hepcidin levels by accessory proteins such as the hemochromatosis proteins hemojuvelin, HFE, and transferrin receptor 2, the serine protease TMPRSS6, the proinflammatory cytokine IL6, and the erythroid regulator Erythroferrone. The deregulation of the hepcidin/ferroportin axis is the central pathogenic mechanism of diseases characterized by iron overload, such as hemochromatosis and iron-loading anemias, or by iron deficiency, such as IRIDA and anemia of inflammation. Understanding the basic mechanisms involved in the regulation of hepcidin will help in identifying new therapeutic targets to treat these disorders.
Collapse
Affiliation(s)
- Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Correspondence: ; Tel.: +39-0226436889; Fax: +39-0226434723
| | - Mariateresa Pettinato
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valeria Furiosi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Letizia Bavuso Volpe
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Antonella Nai
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
31
|
Dame C, Horn D, Schomburg L, Grünhagen J, Chillon TS, Tietze A, Vogt A, Bührer C. Fatal congenital copper transport defect caused by a homozygous likely pathogenic variant of SLC31A1. Clin Genet 2022; 103:585-589. [PMID: 36562171 DOI: 10.1111/cge.14289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Known hereditary human diseases featuring impaired copper trafficking across cellular membranes involve ATP7A (Menkes disease, occipital horn disease, X-linked spinal muscular atrophy type 3) and ATP7B (Wilson disease). Herein, we report a newborn infant of consanguineous parents with a homozygous pathogenic variant in a highly conserved sequence of SLC31A1, coding for the copper influx transporter 1, CTR1. This missense variant, c.236T > C, was detected by whole exome sequencing. The infant was born with pulmonary hypoplasia and suffered from severe respiratory distress immediately after birth, necessitating aggressive mechanical ventilation. At 2 weeks of age, multifocal brain hemorrhages were diagnosed by cerebral ultrasound and magnetic resonance imaging, together with increased tortuosity of cerebral arteries. Ensuing seizures were only partly controlled by antiepileptic drugs, and the infant became progressively comatose. Laboratory investigations revealed very low serum concentrations of copper and ceruloplasmin. No hair shaft abnormalities were detected by dermatoscopy or light microscopic analyses of embedded hair shafts obtained at 4 weeks of life. The infant died after redirection of care and elective cessation of invasive mechanical ventilation at 1 month of age. This case adds SLC31A1 to the genes implicated in severe hereditary disorders of copper transport in humans.
Collapse
Affiliation(s)
- Christof Dame
- Department of Neonatology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Denise Horn
- Department of Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lutz Schomburg
- Department of Experimental Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Grünhagen
- Department of Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Human Genetics, Labor Berlin Charité Vivantes, Berlin, Germany
| | - Thilo Samson Chillon
- Department of Experimental Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Tietze
- Department of Neuroradiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Annika Vogt
- Department of Dermatology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
32
|
Jeng SS, Chen YH. Association of Zinc with Anemia. Nutrients 2022; 14:nu14224918. [PMID: 36432604 PMCID: PMC9696717 DOI: 10.3390/nu14224918] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Zinc is an essential trace element, and anemia is the most common blood disorder. The association of zinc with anemia may be divided into three major forms: (1) zinc deficiency contributing to anemia, (2) excess intake of zinc leading to anemia, and (3) anemia leading to abnormal blood-zinc levels in the body. In most cases, zinc deficiency coexists with iron deficiency, especially in pregnant women and preschool-age children. To a lesser extent, zinc deficiency may cooperate with other factors to lead to anemia. It seems that zinc deficiency alone does not result in anemia and that it may need to cooperate with other factors to lead to anemia. Excess intake of zinc is rare. However, excess intake of zinc interferes with the uptake of copper and results in copper deficiency that leads to anemia. Animal model studies indicate that in anemia, zinc is redistributed from plasma and bones to the bone marrow to produce new red blood cells. Inadequate zinc status (zinc deficiency or excess) could have effects on anemia; at the same time, anemia could render abnormal zinc status in the body. In handling anemia, zinc status needs to be observed carefully, and supplementation with zinc may have preventive and curative effects.
Collapse
Affiliation(s)
- Sen-Shyong Jeng
- Department of Food Science, College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
- Correspondence: ; Tel.: +886-2-26326986
| | - Yen-Hua Chen
- Institute of Food Safety and Risk Management, College of Life Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
33
|
Roy C, Avril S, Legendre C, Lelièvre B, Vellenriter H, Boni S, Cayon J, Guillet C, Guilloux Y, Chérel M, Hindré F, Garcion E. A role for ceruloplasmin in the control of human glioblastoma cell responses to radiation. BMC Cancer 2022; 22:843. [PMID: 35918659 PMCID: PMC9347084 DOI: 10.1186/s12885-022-09808-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/16/2022] [Indexed: 11/08/2022] Open
Abstract
Background Glioblastoma (GB) is the most common and most aggressive malignant brain tumor. In understanding its resistance to conventional treatments, iron metabolism and related pathways may represent a novel avenue. As for many cancer cells, GB cell growth is dependent on iron, which is tightly involved in red-ox reactions related to radiotherapy effectiveness. From new observations indicating an impact of RX radiations on the expression of ceruloplasmin (CP), an important regulator of iron metabolism, the aim of the present work was to study the functional effects of constitutive expression of CP within GB lines in response to beam radiation depending on the oxygen status (21% O2 versus 3% O2). Methods and results After analysis of radiation responses (Hoechst staining, LDH release, Caspase 3 activation) in U251-MG and U87-MG human GB cell lines, described as radiosensitive and radioresistant respectively, the expression of 9 iron partners (TFR1, DMT1, FTH1, FTL, MFRN1, MFRN2, FXN, FPN1, CP) were tested by RTqPCR and western blots at 3 and 8 days following 4 Gy irradiation. Among those, only CP was significantly downregulated, both at transcript and protein levels in the two lines, with however, a weaker effect in the U87-MG, observable at 3% O2. To investigate specific role of CP in GB radioresistance, U251-MG and U87-MG cells were modified genetically to obtain CP depleted and overexpressing cells, respectively. Manipulation of CP expression in GB lines demonstrated impact both on cell survival and on activation of DNA repair/damage machinery (γH2AX); specifically high levels of CP led to increased production of reactive oxygen species, as shown by elevated levels of superoxide anion, SOD1 synthesis and cellular Fe2 + . Conclusions Taken together, these in vitro results indicate for the first time that CP plays a positive role in the efficiency of radiotherapy on GB cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09808-6.
Collapse
Affiliation(s)
- Charlotte Roy
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France
| | - Sylvie Avril
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France
| | - Claire Legendre
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France
| | - Bénédicte Lelièvre
- Centre Régional de Pharmacovigilance, Laboratoire de Pharmacologie-Toxicologie, CHU Angers, 4 rue Larrey, F-49100, Angers, France
| | - Honorine Vellenriter
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France
| | - Sébastien Boni
- Université d'Angers, SFR ICAT, Lentivec, F-49000, Angers, France
| | - Jérôme Cayon
- Université d'Angers, SFR ICAT, PACeM, F-49000, Angers, France
| | | | - Yannick Guilloux
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
| | - Michel Chérel
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
| | - François Hindré
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France.,Université d'Angers, SFR ICAT, PRIMEX, F-49000, Angers, France
| | - Emmanuel Garcion
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France. .,Université d'Angers, SFR ICAT, PACeM, F-49000, Angers, France. .,Université d'Angers, SFR ICAT, PRIMEX, F-49000, Angers, France. .,GLIAD - Design and Application of Innovative Local Treatments in Glioblastoma, CRCI2NA, Team 5, Inserm UMR 1307, CNRS UMR 6075, Institut de Biologie en Santé (IBS) - CHU, 4 rue Larrey, Angers, France.
| |
Collapse
|