1
|
Arakawa T, Tokunaga M, Kita Y, Niikura T, Baker RW, Reimer JM, Leschziner AE. Structure Analysis of Proteins and Peptides by Difference Circular Dichroism Spectroscopy. Protein J 2021; 40:867-875. [PMID: 34709521 DOI: 10.1007/s10930-021-10024-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 11/25/2022]
Abstract
Difference circular dichroism (CD) spectroscopy was used here to characterize changes in structure of flexible peptides upon altering their environments. Environmental changes were introduced by binding to a large target structure, temperature shift (or concentration increase) or so-called membrane-mimicking solvents. The first case involved binding of a largely disordered peptide to its target structure associated with chromatin remodeling, leading to a transition into a highly helical structure. The second example was a short 8HD (His-Asp) repeat peptide that can bind metal ions. Both Zn and Ni at μM concentrations resulted in different type of changes in secondary structure, suggesting that these metal ions provide different environments for the peptide to assume unique secondary structures. The third case is related to a few short neuroprotective peptides that were largely disordered in aqueous solution. Increased temperature resulted in induction of significant, though small, β-sheet structures. Last example was the induction of non-helical structures for short neuroprotective peptides by membrane-mimicking solvents, including trifluoroethanol, dodecylphosphocholine and sodium dodecylsulfate. While these agents are known to induce α-helix, none of the neuropeptides underwent transition to a typical helical structure. However, trifluoroethanol did induce α-helix for the first peptide involved in chromatin remodeling described above in the first example.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Road, San Diego, CA, 92130, USA.
| | - Masao Tokunaga
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Yoshiko Kita
- Alliance Protein Laboratories, 13380 Pantera Road, San Diego, CA, 92130, USA
| | - Takako Niikura
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Richard W Baker
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Janice M Reimer
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
2
|
Pal S, Chattopadhyay A. Extramembranous Regions in G Protein-Coupled Receptors: Cinderella in Receptor Biology? J Membr Biol 2019; 252:483-497. [DOI: 10.1007/s00232-019-00092-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022]
|
3
|
Domin H, Piergies N, Święch D, Pięta E, Proniewicz E. SERS characterization of neuropeptide Y and its C-terminal fragments deposited onto colloidal gold nanoparticle surface. Colloids Surf B Biointerfaces 2017; 149:80-88. [PMID: 27736725 DOI: 10.1016/j.colsurfb.2016.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 12/22/2022]
Abstract
It has been suggested that the family of neuropeptide Y (NPY) peptides is a promising target for the neuroprotective therapy; therefore, knowledge of the structure of these biologically active compounds and their behavior at solid/liquid interface is important in order to design new analogues. Because there is still a lack of detailed information on the behavior of NPY and its mutated analogues at the solid/liquid interfaces, in this work surface-enhanced Raman spectroscopy (SERS) analysis was used to investigate NPY and its native NPY3-36, NPY13-36, and NPY22-36 and mutated acetyl-(Leu28,31)-NPY24-36C-terminal fragments, acting on Y2 receptors (Y2R), in order to determine their possible metal surface/molecule interactions. In these studies, colloidal gold nanoparticle surface served as a solid surface, whereas an aqueous solution was used as a liquid medium. The observed differences in the band intensities, wavenumbers, and widths allowed us to draw conclusions on an adsorption mode of NPY and on changes in this mode upon the shortening of the peptide chain and increase in solution pH (from pH 3 to pH 11). Briefly, three different species of Tyr were identified onto the colloidal gold surface depending upon the length of the peptide chain and solution pH. Tyrosine (TyrOH) is present in a basic medium. Tyrosinate (TyrO-) is present in an acidic solution, whereas phenoxyl radical (Tyr*) appears at neutral pH for peptides having relatively short peptide chain (acetyl-(Leu28,31)-NPY24-36). The elongation of the peptide chain partially (NPY13-36 and NPY22-36) or completely (NPY3-36 and NPY) protects the Tyr residue against conversion to the radical form.
Collapse
Affiliation(s)
- Helena Domin
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343 Krakow, Smetna Street 12, Poland
| | - Natalia Piergies
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Dominika Święch
- AGH University of Science and Technology, Faculty of Foundry Engineering, 30-059 Krakow, Reymonta Street 23, Poland
| | - Ewa Pięta
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Edyta Proniewicz
- AGH University of Science and Technology, Faculty of Foundry Engineering, 30-059 Krakow, Reymonta Street 23, Poland.
| |
Collapse
|
4
|
Lubecka EA, Sikorska E, Sobolewski D, Prahl A, Slaninová J, Ciarkowski J. Potent antidiuretic agonists, deamino-vasopressin and desmopressin, and their inverso analogs: NMR structure and interactions with micellar and liposomic models of cell membrane. Biopolymers 2016; 106:245-59. [PMID: 26916937 DOI: 10.1002/bip.22825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/11/2016] [Accepted: 02/13/2016] [Indexed: 11/08/2022]
Abstract
Deamination of vasopressin (AVP) enhances its antidiuretic activity. Moreover, introduction of D-Arg8 instead of its L enantiomer in deamino-vasopressin (dAVP) results in an extremely potent and selective antidiuretic agonist - desmopressin (dDAVP). In this study we describe the synthesis, pharmacological properties and structures of these two potent antidiuretic agonists, and their inverso analogs. The structures of the peptides are studied in micellar and liposomic models of cell membrane using CD spectroscopy. Additionally, three-dimensional structures in mixed anionic-zwitterionic micelles are obtained using NMR spectroscopy supported by molecular dynamics simulations. Our conformational studies have shown that desmopressin in a membrane mimicking environment adopts one of the characteristic for vasopressin-like peptides β-turn - in position 3,4. Furthermore, dDAVP shows the tendency to create a β-turn in the Cys6-Gly9 C-tail, considered to be important for the antidiuretic activity, and also some tendency to adopt a 5,6 β-turn. In desmopressin, in contrast to the native vasopressin, deamino-vasopressin and [D-Arg8]-vasopressin (DAVP), the Arg8 side chain, crucial for the pressor and antidiuretic activities, is very well exposed for interaction with the receptor, whereas Gly9, crucial for the pressor and uterotonic activities, is situated together with the C-terminal amide group very close to the tocin ring. The arrangements of the Gln4 and Asn5 side chains, being crucial for OT activity, also differ in desmopressin as compared to those of AVP, dAVP and DAVP. These differences in arrangement of the important for activities side chains are likely to explain extremely potent and selective antidiuretic activities of desmopressin. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 245-259, 2016.
Collapse
Affiliation(s)
- Emilia A Lubecka
- Faculty of Chemistry, University of Gdańsk, Gdańsk, 80-308, Poland
| | - Emilia Sikorska
- Faculty of Chemistry, University of Gdańsk, Gdańsk, 80-308, Poland
| | | | - Adam Prahl
- Faculty of Chemistry, University of Gdańsk, Gdańsk, 80-308, Poland
| | - Jiřina Slaninová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague, Czech Republic
| | - Jerzy Ciarkowski
- Faculty of Chemistry, University of Gdańsk, Gdańsk, 80-308, Poland
| |
Collapse
|
5
|
Lubecka EA, Sikorska E, Sobolewski D, Prahl A, Slaninová J, Ciarkowski J. Arginine-, D-arginine-vasopressin, and their inverso analogues in micellar and liposomic models of cell membrane: CD, NMR, and molecular dynamics studies. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:727-43. [PMID: 26290060 PMCID: PMC4628624 DOI: 10.1007/s00249-015-1071-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/22/2015] [Accepted: 08/03/2015] [Indexed: 01/21/2023]
Abstract
We describe the synthesis, pharmacological properties, and structures of antidiuretic agonists, arginine vasopressin (AVP) and [d-Arg8]-vasopressin (DAVP), and their inverso analogues. The structures of the peptides are studied based on micellar and liposomic models of cell membranes using CD spectroscopy. Additionally, three-dimensional structures in mixed anionic–zwitterionic micelles are obtained using NMR spectroscopy and molecular dynamics simulations. NMR data have shown that AVP and DAVP tend to adopt typical of vasopressin-like peptides β-turns: in the 2–5 and 3–6 fragments. The inverso-analogues also adopt β-turns in the 3–6 fragments. For this reason, their inactivity seems to be due to the difference in side chains orientations of Tyr2, Phe3, and Arg8, important for interactions with the receptors. Again, the potent antidiuretic activity of DAVP can be explained by CD data suggesting differences in mutual arrangement of the aromatic side chains of Tyr2 and Phe3 in this peptide in liposomes rather than of native AVP. In the presence of liposomes, the smallest conformational changes of the peptides are noticed with DPPC and the largest with DPPG liposomes. This suggests that electrostatic interactions are crucial for the peptide–membrane interactions. We obtained similar, probably active, conformations of the antidiuretic agonists in the mixed DPC/SDS micelles (5:1) and in the mixed DPPC/DPPG (7:3) liposomes. Thus it can be speculated that the anionic–zwitterionic liposomes as well as the anionic–zwitterionic micelles, mimicking the eukaryotic cell membrane environment, partially restrict conformational freedom of the peptides and probably induce conformations resembling those of biologically relevant ones.
Collapse
Affiliation(s)
- Emilia A Lubecka
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Emilia Sikorska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Dariusz Sobolewski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Adam Prahl
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Jiřina Slaninová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10, Prague, Czech Republic
| | - Jerzy Ciarkowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| |
Collapse
|
6
|
Lesniak WG, Sikorska E, Shallal H, Behnam Azad B, Lisok A, Pullambhatla M, Pomper MG, Nimmagadda S. Structural characterization and in vivo evaluation of β-Hairpin peptidomimetics as specific CXCR4 imaging agents. Mol Pharm 2015; 12:941-53. [PMID: 25590535 DOI: 10.1021/mp500799q] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The CXCR4 chemokine receptor is integral to several biological functions and plays a pivotal role in the pathophysiology of many diseases. As such, CXCR4 is an enticing target for the development of imaging and therapeutic agents. Here we report the evaluation of the POL3026 peptidomimetic template for the development of imaging agents that target CXCR4. Structural and conformational analyses of POL3026 and two of its conjugates, DOTA (POL-D) and PEG12-DOTA (POL-PD), by circular dichroism, two-dimensional NMR spectroscopy and molecular dynamics calculations are reported. In silico observations were experimentally verified with in vitro affinity assays and rationalized using crystal structure-based molecular modeling studies. [(111)In]-labeled DOTA conjugates were assessed in vivo for target specificity in CXCR4 expressing subcutaneous U87 tumors (U87-stb-CXCR4) through single photon emission computed tomography (SPECT/CT) imaging and biodistribution studies. In silico and in vitro studies show that POL3026 and its conjugates demonstrate similar interactions with different micelles that mimic cellular membrane and that the ε-NH2 of lysine(7) is critical to maintain high affinity to CXCR4. Modification of this group with DOTA or PEG12-DOTA led to the decrease of IC50 value from 0.087 nM for POL3026 to 0.47 nM and 1.42 nM for POL-D and POL-PD, respectively. In spite of the decreased affinity toward CXCR4, [(111)In]POL-D and [(111)In]POL-PD demonstrated high and significant uptake in U87-stb-CXCR4 tumors compared to the control U87 tumors at 90 min and 24 h post injection. Uptake in U87-stb-CXCR4 tumors could be blocked by unlabeled POL3026, indicating specificity of the agents in vivo. These results suggest POL3026 as a promising template to develop new imaging agents that target CXCR4.
Collapse
Affiliation(s)
- Wojciech G Lesniak
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University , Baltimore, Maryland 21287, United States
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Domin H, Pięta E, Piergies N, Święch D, Kim Y, Proniewicz LM, Proniewicz E. Neuropeptide Y and its C-terminal fragments acting on Y2 receptor: Raman and SERS spectroscopy studies. J Colloid Interface Sci 2015; 437:111-118. [PMID: 25313473 DOI: 10.1016/j.jcis.2014.09.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/17/2014] [Accepted: 09/19/2014] [Indexed: 12/12/2022]
Abstract
In this paper, we present spectroscopic studies of neuropeptide Y (NPY) and its native NPY(3-36), NPY(13-36), and NPY(22-36) and mutated acetyl-(Leu(28,31))-NPY(24-36)C-terminal fragments acting on Y2 receptor. Since there is some evidence for the correlation between the SERS patterns and the receptor binding ability, we performed a detailed analysis for these compounds at the metal/water interface using Raman spectroscopy (RS) and surface-enhanced Raman spectroscopy (SERS) methods. Many studies have suggested that interactions of this kind are crucial for a variety of biomedical and biochemical phenomena. The identification of amino acids in these peptide sequences by SERS allowed us to determine which molecular fragments were responsible for the interaction with the silver nanoparticle surface. Our findings demonstrated that in all of the investigated compounds, the NPY(32-36)C-terminal fragment (Thr(32)-Arg(33)-Gln(34)-Arg(35)-Tyr(36)NH2) was involved in the adsorption process onto metal substrate. The results of the present study suggest that the same molecular fragment interacts with the Y2 receptor, what proved the usefulness of the SERS method in the study of these biologically active compounds. The search for analogs acting on Y2 receptor may be important from the viewpoint of possible future clinical applications.
Collapse
Affiliation(s)
- Helena Domin
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Ewa Pięta
- Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Kraków, Poland
| | - Natalia Piergies
- Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Kraków, Poland
| | - Dominika Święch
- Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Kraków, Poland
| | - Younkyoo Kim
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin, Kyunggi-Do 449-791, Republic of Korea
| | - Leonard M Proniewicz
- Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Kraków, Poland
| | - Edyta Proniewicz
- Faculty of Foundry Engineering, AGH University of Science and Technology, ul. Reymonta 23, 30-059 Kraków, Poland.
| |
Collapse
|
8
|
Carrillo-Sepulveda MA, Matsumoto T, Nunes KP, Webb RC. Therapeutic implications of peptide interactions with G-protein-coupled receptors in diabetic vasculopathy. Acta Physiol (Oxf) 2014; 211:20-35. [PMID: 24640957 DOI: 10.1111/apha.12281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/22/2013] [Accepted: 03/12/2014] [Indexed: 12/16/2022]
Abstract
The dramatic worldwide increase in the prevalence of diabetes has generated an attempt by the scientific community to identify strategies for its treatment and prevention. Vascular dysfunction is a hallmark of diabetes and frequently leads to the development of atherosclerosis, coronary disease-derived myocardial infarction, stroke, peripheral arterial disease and diabetic 'triopathy' (retinopathy, nephropathy and neuropathy). These vascular complications, developing in an increasingly younger cohort of patients with diabetes, contribute to morbidity and mortality. Despite the development of new anti-diabetic or anti-hyperglycaemic drugs, vascular complications remain to be a problem. This warrants a need for new therapeutic strategies to tackle diabetic vasculopathy. There is a growing body of evidence showing that peptide-binding G-protein-coupled receptors (peptide-binding GPCRs) play an important role in the pathophysiology of vascular dysfunction during diabetes. Thus, in this review, we discuss some of the peptide-binding GPCRs involved in the regulation of vascular function that have potential to be a therapeutic target in the treatment of diabetic vasculopathy.
Collapse
Affiliation(s)
| | - T. Matsumoto
- Department of Physiology and Morphology; Institute of Medicinal Chemistry; Hoshi University; Shinagawa-ku Tokyo Japan
| | - K. P. Nunes
- Department of Physiology; Georgia Regents University; Augusta GA USA
- Department of Cell and Regenerative Biology; School of Medicine and Public Health; University of Wisconsin; Madison WI USA
| | - R. C. Webb
- Department of Physiology; Georgia Regents University; Augusta GA USA
| |
Collapse
|
9
|
De Ricco R, Valensin D, Gaggelli E, Valensin G. Conformation propensities of des-acyl-ghrelin as probed by CD and NMR. Peptides 2013; 43:62-7. [PMID: 23470254 DOI: 10.1016/j.peptides.2013.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/20/2013] [Accepted: 02/20/2013] [Indexed: 12/30/2022]
Abstract
Des-acyl-ghrelin is a 28 amino acid peptide secreted by both human and rat stomach. Together with ghrelin and obestatin, it is obtained by post-translational modification of a 117 aminoacid prepropeptide mainly expressed in distinct endocrine cell type in the stomach. Although its receptor has not been unambiguously identified so far, des-acyl-ghrelin is considered one of the strongest antagonists of ghrelin in activating the growth hormone secretagogue receptor (GHS-R). Here the secondary structure of des-acyl-ghrelin in different experimental conditions has been investigated and compared with that of obestatin, a bioactive peptide having similar biological functions. CD and NMR techniques have been combined for gaining the desired conformational features. The obtained structures support a steady alpha-helix structure spanning residues from 7 to 14, very similar to that observed for obestatin at the same experimental conditions, leading to suggest that a similar secondary structure can be associated with the similar biological role.
Collapse
Affiliation(s)
- Riccardo De Ricco
- Department of Biotechnology, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | | | | | | |
Collapse
|
10
|
Hewage CM, Venneti KC. Structural aspects of gut peptides with therapeutic potential for type 2 diabetes. ChemMedChem 2013; 8:560-7. [PMID: 23292985 DOI: 10.1002/cmdc.201200445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Indexed: 12/25/2022]
Abstract
Gut hormones represent a niche subset of pharmacologically active agents that are rapidly gaining importance in medicine. Due to their exceptional specificity for their receptors, these hormones along with their analogues have attracted considerable pharmaceutical interest for the treatment of human disorders including type 2 diabetes. With the recent advances in the structural biology, a significant amount of structural information for these hormones is now available. This Minireview presents an overview of the structural aspects of these hormones, which have roles in physiological processes such as insulin secretion, as well as a discussion on the relevant structural modifications used to improve these hormones for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Chandralal M Hewage
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | | |
Collapse
|
11
|
Modi V, Lama D, Sankararamakrishnan R. Relationship between helix stability and binding affinities: molecular dynamics simulations of Bfl-1/A1-binding pro-apoptotic BH3 peptide helices in explicit solvent. J Biomol Struct Dyn 2013; 31:65-77. [DOI: 10.1080/07391102.2012.691363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Dürr UN, Gildenberg M, Ramamoorthy A. The magic of bicelles lights up membrane protein structure. Chem Rev 2012; 112:6054-74. [PMID: 22920148 PMCID: PMC3497859 DOI: 10.1021/cr300061w] [Citation(s) in RCA: 274] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Indexed: 12/12/2022]
Affiliation(s)
| | - Melissa Gildenberg
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055,
United States
| | - Ayyalusamy Ramamoorthy
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055,
United States
| |
Collapse
|
13
|
Molecular dynamics simulations of pro-apoptotic BH3 peptide helices in aqueous medium: relationship between helix stability and their binding affinities to the anti-apoptotic protein Bcl-X(L). J Comput Aided Mol Des 2011; 25:413-26. [PMID: 21523491 DOI: 10.1007/s10822-011-9428-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/11/2011] [Indexed: 01/28/2023]
Abstract
The B-cell lymphoma 2 (Bcl-2) family of proteins regulates the intrinsic pathway of apoptosis. Interactions between specific anti- and pro-apoptotic Bcl-2 proteins determine the fate of a cell. Anti-apoptotic Bcl-2 proteins have been shown to be over-expressed in certain cancers and they are attractive targets for developing anti-cancer drugs. Peptides from the BH3 region of pro-apoptotic proteins have been shown to interact with anti-apoptotic Bcl-2 proteins and induce biological activity similar to that observed in parent proteins. However, the specificity of BH3 peptides derived from different pro-apoptotic proteins differ for different anti-apoptotic Bcl-2 proteins. In this study, we have investigated the relationship between the stable helical nature of BH3 peptides and their affinities to Bcl-X(L), an anti-apoptotic Bcl-2 protein. We have carried out molecular dynamics simulations of six BH3 peptides derived from Bak, Bad and Bim pro-apoptotic proteins for a period of 50 ns each in aqueous medium. Due to the amphipathic nature of BH3 peptides, the hydrophobic residues on the hydrophobic face tend to cluster together in all BH3 peptides. While this process resulted in a complete loss of helical structure in 16-mer Bak and 16-mer Bad wild type peptides, stabilizing interactions in the hydrophilic face of the BH3 peptides and capping interactions helped to maintain partial helical character in 16-mer Bad mutant and 16-mer Bim peptides. The latter two 16-mer peptides exhibit higher affinity for Bcl-X(L). Similarly the longer BH3 peptides, 25-mer Bad and 33-mer Bim, also resulted in smaller and stable helical fragments and their helical conformation is stabilized by interactions between residues in the solvent-exposed hydrophilic half of the peptide. The stable nature of helical segment in a BH3 peptide can be directly correlated to its binding affinity and the helical region encompassed the highly conserved Leu residue. We propose that upon approaching the hydrophobic groove of anti-apoptotic proteins, a longer helix will be induced in high affinity BH3 peptides by extending the smaller stable helical segments around the conserved Leu residue in both N- and C-terminal regions. The results reported in this study will have implications in developing peptide-based inhibitors for anti-apoptotic Bcl-2 proteins.
Collapse
|
14
|
Venneti KC, Malthouse JPG, O'Harte FPM, Hewage CM. Conformational, receptor interaction and alanine scan studies of glucose-dependent insulinotropic polypeptide. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:882-8. [PMID: 21539943 DOI: 10.1016/j.bbapap.2011.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/28/2011] [Accepted: 04/04/2011] [Indexed: 10/18/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is an insulinotropic incretin hormone that stimulates insulin secretion during a meal. GIP has glucose lowering abilities and hence is considered as a potential target molecule for type 2 diabetes therapy. In this article, we present the solution structure of GIP in membrane-mimicking environments by proton NMR spectroscopy and molecular modelling. GIP adopts an α-helical conformation between residues Phe(6)-Gly(31) and Ala(13)-Gln(29) for micellar and bicellar media, respectively. Previously we examined the effect of N-terminal Ala substitution in GIP, but here eight GIP analogues were synthesised by replacing individual residues within the central 8-18 region with alanine. These studies showed relatively minor changes in biological activity as assessed by insulin releasing potency. However, at higher concentration, GIP(Ala(16)), and GIP(Ala(18)) showed insulin secreting activity higher than the native GIP (P<0.01 to P<0.001) in cultured pancreatic BRIN-BD11 cells. Receptor interaction studies of the native GIP with the extracellular domain of its receptor were performed by using two different docking algorithms. At the optimised docking conformation, the complex was stabilised by the presence of hydrophobic interactions and intermolecular hydrogen bonding. Further, we have identified some potentially important additional C-terminal interactions of GIP with its N-terminal extracellular receptor domain.
Collapse
Affiliation(s)
- Kalyana C Venneti
- School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, SEC Strategic Research Cluster, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | | | | | | |
Collapse
|
15
|
Arakawa T, Niikura T, Kita Y. The biological activity of Humanin analogs correlates with structure stabilities in solution. Int J Biol Macromol 2011; 49:93-7. [PMID: 21510972 DOI: 10.1016/j.ijbiomac.2011.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/01/2011] [Accepted: 04/04/2011] [Indexed: 11/19/2022]
Abstract
A single mutation has resulted in large differences in neuroprotective activity of a 24 amino acid Humanin (HN). A mutation of Ser7Ala (S7A-HN) resulted in loss of activity, while a mutation of Ser14Gly (S14G-HN) resulted in about 1000-fold increase. The mechanism of the effects conferred by these mutations have been totally unclear, although our recent structure analysis suggested a possibility of the effect of mutation on the structure stability. Here, we have studied the effects of buffer and temperature on the structure of these three HN peptides. These peptides showed a similar disordered structure at 10°C in 10mM phosphate, pH 6.0. They were also similar in phosphate-buffered saline (PBS) as long as the temperature was kept low at 10°C. However, a large difference was observed in both phosphate buffer and PBS between the peptides, when the temperature was raised to a physiological temperature of 37°C. While S14G-HN showed small changes in both solutions at 37°C, the less active HN and inactive S7A-HN showed much larger changes under the identical conditions. In addition, it appeared that structure change at 37°C was faster for S7A-HN than HN. These results show that the structure stability at 37°C increases in the order of S7A-HN, HN and S14G-HN, in correlation with their neuroprotective activities.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, 3957 Corte Cancion, Thousand Oaks, CA 91360, United States.
| | | | | |
Collapse
|
16
|
Structure of three Humanin peptides with different activities upon interaction with liposome. Int J Biol Macromol 2011; 48:360-3. [DOI: 10.1016/j.ijbiomac.2010.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/15/2010] [Accepted: 12/16/2010] [Indexed: 11/19/2022]
|
17
|
Scrima M, Di Marino S, Grimaldi M, Mastrogiacomo A, Novellino E, Bifulco M, D'Ursi AM. Binding of the hemopressin peptide to the cannabinoid CB1 receptor: structural insights. Biochemistry 2010; 49:10449-57. [PMID: 21062041 DOI: 10.1021/bi1011833] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hemopressin, a bioactive nonapeptide derived from the α1 chain of hemoglobin, was recently shown to possess selective antagonist activity at the cannabinoid CB(1) receptor [Heimann, A. S., et al. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 20588-20593]. CB(1) receptor antagonists have been extensively studied for their possible therapeutic use in the treatment of obesity, drug abuse, and heroin addiction. In particular, many compounds acting as CB(1) receptor antagonists have been synthesized and subjected to experiments as possible anti-obesity drugs, but their therapeutic application is still complicated by important side effects. Using circular dichroism and nuclear magnetic resonance spectroscopy, this work reports the conformational analysis of hemopressin and its truncated, biologically active fragment hemopressin(1-6). The binding modes of both hemopressin and hemopressin(1-6) are investigated by molecular docking calculations. Our conformational data indicate that regular turn structures in the central portion of hemopressin and hemopressin(1-6) are critical for an effective interaction with the receptor. The results of molecular docking calculations, indicating similarities and differences in comparison to the most accepted CB(1) pharmacophore model, suggest the possibility of new chemical scaffolds for the design of new CB(1) antagonist lead compounds.
Collapse
Affiliation(s)
- Mario Scrima
- Department of Pharmaceutical Sciences, University of Salerno, I-84084 Fisciano, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Sharma P, Singh P, Bisetty K, Rodriguez A, Perez JJ. Conformational space search of Neuromedin C using replica exchange molecular dynamics and molecular dynamics. J Pept Sci 2010; 17:174-83. [DOI: 10.1002/psc.1295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/04/2010] [Accepted: 08/06/2010] [Indexed: 11/08/2022]
|
19
|
Lubecka E, Kwiatkowska A, Ciarkowski J, Sikorska E. NMR studies of new arginine vasopressin analogs modified with alpha-2-indanylglycine enantiomers at position 2 bound to sodium dodecyl sulfate micelles. Biophys Chem 2010; 151:139-48. [PMID: 20598431 DOI: 10.1016/j.bpc.2010.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/08/2010] [Accepted: 06/08/2010] [Indexed: 11/17/2022]
Abstract
In this paper, we use NMR spectroscopy and molecular modeling to examine four new vasopressin analogs modified with alpha-2-indanylglycine (Igl) at position 2, [L-Igl(2)]AVP (I), [D-Igl(2)]AVP (II), [Mpa(1),L-Igl(2)]AVP (III) and [Mpa(1),D-Igl(2)]AVP (IV), embedded in a sodium dodecyl sulfate (SDS) micelle. All the analogs display antiuterotonic activity. In addition, the analogs with D-Igl reveal antipressor properties. Each analog exhibits the tendency to adopt beta-turns at positions 2, 3 and/or 3, 4, which is characteristic of oxytocin-like peptides. Mutual arrangement of aromatic residues at positions 2 and 3 has been found to be crucial for binding antagonists with the OT and V(1a) receptors. The orientation of the Gln(4) side chain seems to be important for the V(1a) receptor affinity. In each of the peptides studied, the Gln(4) side chain is folded back over the ring moiety. However, it lies on the opposite face of the tocin moiety in analogs with L and D enantiomers of Igl.
Collapse
|
20
|
Structure changes of natively disordered Humanin in the presence of lipid. Int J Biol Macromol 2010; 46:375-9. [DOI: 10.1016/j.ijbiomac.2010.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2009] [Revised: 01/13/2010] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
|
21
|
Arakawa T, Niikura T, Arisaka F, Kita Y. Short neuroprotective peptides, ADNF9 and NAP, are structurally disordered and monomeric in PBS. Int J Biol Macromol 2009; 45:8-11. [PMID: 19447252 DOI: 10.1016/j.ijbiomac.2009.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 03/23/2009] [Accepted: 03/24/2009] [Indexed: 10/21/2022]
Abstract
Activity-dependent neurotrophic factor 9 (ADNF9) and NAP are nine and eight amino acid peptides, which exhibit neuroprotective activity at femtomolar concentrations against cell toxic agents. We have here characterized their structures and interactions with dodecylphosphocholine (DPC) in phosphate-buffered saline (PBS). Circular dichroism analysis showed that ADNF9 and NAP are structurally disordered in PBS independent of peptide concentration and temperature, but appear to assume different secondary structure at increasing temperature. Sedimentation equilibrium analysis showed that both ADNF9 and NAP are monomeric at 37 degrees C, suggesting no self-association under physiological conditions. No secondary structure changes were observed in the presence of DPC, suggesting that ADNF9 and NAP do not interact with lipids.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, 3957 Corte Cancion, Thousand Oaks, CA 91360, USA.
| | | | | | | |
Collapse
|
22
|
Lee JY, Moon JS, Eu YJ, Lee CW, Yang ST, Lee SK, Jung HH, Kim HH, Rhim H, Seong JY, Kim JI. Molecular interaction between kisspeptin decapeptide analogs and a lipid membrane. Arch Biochem Biophys 2009; 485:109-14. [PMID: 19275876 DOI: 10.1016/j.abb.2009.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 03/01/2009] [Accepted: 03/04/2009] [Indexed: 11/15/2022]
Abstract
Kisspeptin-10 is the C-terminal decapeptide amide of kisspeptin, an endogenous ligand for GPR54, and exhibits the same binding and agonist activity as the parent molecule. Although GPR54 is a membrane-embedded protein, details of the molecular interaction between kisspeptin-10 and lipid membranes remain unclear. Here, we performed a series of structural analyses using alanine-scanning analogs of kisspeptin-10 in membrane-mimetic medium. We found that there is a close correlation between lipid membrane binding and agonist activity. For instance, the F10A and non-amidated (NH2-->OH) analogs showed little or no GPR54-agonist activity and elicited no blue shift in tryptophan fluorescence. NMR analysis of kisspeptin-10 analog in DPC micelles revealed it to contain several tight turn structures, encompassing residues Trp3 to Phe10, but no helical conformation like that seen previously with SDS micelles. Together, our results suggest that kisspeptin-10 may activate GPR54 via a ligand transportation pathway incorporating a lipid membrane.
Collapse
Affiliation(s)
- Ju Yeon Lee
- Department of Life Science, Research Center for Bio-imaging, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hess S, Ovadia O, Shalev DE, Senderovich H, Qadri B, Yehezkel T, Salitra Y, Sheynis T, Jelinek R, Gilon C, Hoffman A. Effect of structural and conformation modifications, including backbone cyclization, of hydrophilic hexapeptides on their intestinal permeability and enzymatic stability. J Med Chem 2007; 50:6201-11. [PMID: 17983214 DOI: 10.1021/jm070836d] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A library of 18 hexapeptide analogs was synthesized, including sub-libraries of N- or C-methylation of the parent hexapeptide Phe-Gly-Gly-Gly-Gly-Phe, as well as backbone cyclized analogs of each linear analog with various ring sizes. N- or C-methylation as well as cyclization (but not backbone cyclization) have been suggested to improve intestinal permeability and metabolic stability of peptides in general. Here we aimed to assess their applicability to hydrophilic peptides. The intestinal permeability (Papp) of the 18-peptide library was in the range of 0.2-6.8 x 10-6 cm/sec. Based on several tests, we concluded that the absorption mechanism of all tested analogs is paracellular, regardless of the structural or conformational modifications. In all cases, backbone cyclization increased Papp (5-fold) in comparison to the linear analogs due to the smaller 3D size and also dramatically decreased peptide proteolysis by brush border enzymes. N- or C-methylation did not enhance the permeability of the linear analogs in this series.
Collapse
Affiliation(s)
- Shmuel Hess
- Departments of Pharmaceutics and Organic Chemistry, and the Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Safra Campus, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gao F, Handl H, Vagner J, Hruby V, Gillies R. Convenient and Efficient Synthesis of a Lanthanide-Coordinated, Diethylene Triamine Pentaacetic Acid Labeled Biopolymer as an Assay for the Cholecystokinin B Receptor. J Appl Polym Sci 2007; 106:2683-2688. [PMID: 19562042 DOI: 10.1002/app.26910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To develop an assay for the cholecystokinin B receptor with an Eu(3+)-labeled cholecystokinin peptide via a diethylene triamine pentaacetic acid chelating linker, a commercial dianhydride diethylene triamine pentaacetic acid precursor was directly attached to the N-terminus of cholecystokinin peptides by a solid-phase synthesis method with a satisfactory yield and purity after reverse-phase high-performance liquid chromatography separation. Lanthanide was then coordinated to the peptide via a diethylene triamine pentaacetic acid bifunctional agent. This method is a useful approach to the large-scale synthesis of lanthanide(3+)-coordinated, diethylene triamine pentaacetic acid labeled biopolymers. This research provides not only a simple and convenient method for the preparation of lanthanide-based peptide ligand libraries but also possible lanthanide-based high-throughput screening of peptide receptors with a timeresolved fluorescence assay system. Five biopolymers were synthesized and characterized with high-resolution electrospray ionization in this study.
Collapse
Affiliation(s)
- F Gao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China 400044
| | | | | | | | | |
Collapse
|