1
|
Carannante V, Wiklund M, Önfelt B. In vitro models to study natural killer cell dynamics in the tumor microenvironment. Front Immunol 2023; 14:1135148. [PMID: 37457703 PMCID: PMC10338882 DOI: 10.3389/fimmu.2023.1135148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Immunotherapy is revolutionizing cancer therapy. The rapid development of new immunotherapeutic strategies to treat solid tumors is posing new challenges for preclinical research, demanding novel in vitro methods to test treatments. Such methods should meet specific requirements, such as enabling the evaluation of immune cell responses like cytotoxicity or cytokine release, and infiltration into the tumor microenvironment using cancer models representative of the original disease. They should allow high-throughput and high-content analysis, to evaluate the efficacy of treatments and understand immune-evasion processes to facilitate development of new therapeutic targets. Ideally, they should be suitable for personalized immunotherapy testing, providing information for patient stratification. Consequently, the application of in vitro 3-dimensional (3D) cell culture models, such as tumor spheroids and organoids, is rapidly expanding in the immunotherapeutic field, coupled with the development of novel imaging-based techniques and -omic analysis. In this paper, we review the recent advances in the development of in vitro 3D platforms applied to natural killer (NK) cell-based cancer immunotherapy studies, highlighting the benefits and limitations of the current methods, and discuss new concepts and future directions of the field.
Collapse
Affiliation(s)
- Valentina Carannante
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Martin Wiklund
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Björn Önfelt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Center for Infectious Medicine, Department of Medicine Huddinge, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Ong LJY, Fan X, Rujia Sun A, Mei L, Toh YC, Prasadam I. Controlling Microenvironments with Organs-on-Chips for Osteoarthritis Modelling. Cells 2023; 12:579. [PMID: 36831245 PMCID: PMC9954502 DOI: 10.3390/cells12040579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Osteoarthritis (OA) remains a prevalent disease affecting more than 20% of the global population, resulting in morbidity and lower quality of life for patients. The study of OA pathophysiology remains predominantly in animal models due to the complexities of mimicking the physiological environment surrounding the joint tissue. Recent development in microfluidic organ-on-chip (OoC) systems have demonstrated various techniques to mimic and modulate tissue physiological environments. Adaptations of these techniques have demonstrated success in capturing a joint tissue's tissue physiology for studying the mechanism of OA. Adapting these techniques and strategies can help create human-specific in vitro models that recapitulate the cellular processes involved in OA. This review aims to comprehensively summarise various demonstrations of microfluidic platforms in mimicking joint microenvironments for future platform design iterations.
Collapse
Affiliation(s)
- Louis Jun Ye Ong
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane City, QLD 4000, Australia
| | - Xiwei Fan
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Antonia Rujia Sun
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Lin Mei
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Yi-Chin Toh
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Centre for Microbiome Research, Queensland University of Technology, Brisbane City, QLD 4000, Australia
| | - Indira Prasadam
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia
- Center for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| |
Collapse
|
3
|
Nouri-Goushki M, Eijkel BIM, Minneboo M, Fratila-Apachitei LE, Zadpoor AA. Osteoimmunomodulatory potential of 3D printed submicron patterns assessed in a direct co-culture model. BIOMATERIALS ADVANCES 2022; 139:212993. [PMID: 35882142 DOI: 10.1016/j.bioadv.2022.212993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Modulation of the immune response following the implantation of biomaterials can have beneficial effects on bone regeneration. This involves complex interactions between the inflammatory and osteogenic cells. Therefore, the study of cell-cell interactions using direct co-culture models integrated with biomaterials is of great interest. This research aimed to study the viability, morphology, and osteogenic activity of preosteoblasts (OBs) co-cultured with pro-inflammatory macrophages (M1s) on the 3D printed (non)patterned surfaces. OBs and M1s remained alive and proliferated actively for 14 days in the mixture of Dulbecco's Modified Eagle's Medium (DMEM) and alpha Minimum Essential Medium (α-MEM) (1:1), regardless of the cell ratio in the co-cultures. The spatial organization of the two types of cells changed with the time of culture from an initially uniform cell distribution to the formation of a thick layer of OBs covered by clusters of M1s. On day 7, the expression of PGE2 and TNF-α were upregulated in the co-culture relative to the mono-culture of OBs and M1s. The inflammation decreased differentiation and matrix mineralization of OBs after 28 days of culture. Interestingly, the incorporation of 3D printed submicron pillars into the direct co-culture model enhanced the differentiation of preosteoblasts, as shown by relatively higher RUNX2 expression, thereby revealing the osteoimmunomodulatory potential of such surface patterns.
Collapse
Affiliation(s)
- M Nouri-Goushki
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, the Netherlands.
| | - B I M Eijkel
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, the Netherlands
| | - M Minneboo
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, the Netherlands
| | - L E Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, the Netherlands.
| | - A A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, the Netherlands
| |
Collapse
|
4
|
Akther F, Yakob SB, Nguyen NT, Ta HT. Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices. BIOSENSORS 2020; 10:E182. [PMID: 33228050 PMCID: PMC7699314 DOI: 10.3390/bios10110182] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022]
Abstract
Microfluidic lab-on-a-chip cell culture techniques have been gaining popularity by offering the possibility of reducing the amount of samples and reagents and greater control over cellular microenvironment. Polydimethylsiloxane (PDMS) is the commonly used polymer for microfluidic cell culture devices because of the cheap and easy fabrication techniques, non-toxicity, biocompatibility, high gas permeability, and optical transparency. However, the intrinsic hydrophobic nature of PDMS makes cell seeding challenging when applied on PDMS surface. The hydrophobicity of the PDMS surface also allows the non-specific absorption/adsorption of small molecules and biomolecules that might affect the cellular behaviour and functions. Hydrophilic modification of PDMS surface is indispensable for successful cell seeding. This review collates different techniques with their advantages and disadvantages that have been used to improve PDMS hydrophilicity to facilitate endothelial cells seeding in PDMS devices.
Collapse
Affiliation(s)
- Fahima Akther
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia;
- Queensland Micro-and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia;
| | - Shazwani Binte Yakob
- School of Pharmacy, the University of Queensland, Brisbane, QLD 4102, Australia;
| | - Nam-Trung Nguyen
- Queensland Micro-and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia;
| | - Hang T. Ta
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia;
- Queensland Micro-and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia;
- School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
5
|
Wang L, Jiang D, Wang Q, Wang Q, Hu H, Jia W. The Application of Microfluidic Techniques on Tissue Engineering in Orthopaedics. Curr Pharm Des 2019; 24:5397-5406. [PMID: 30827230 DOI: 10.2174/1381612825666190301142833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/20/2019] [Indexed: 12/15/2022]
Abstract
Background:
Tissue engineering (TE) is a promising solution for orthopaedic diseases such as bone or
cartilage defects and bone metastasis. Cell culture in vitro and scaffold fabrication are two main parts of TE, but
these two methods both have their own limitations. The static cell culture medium is unable to achieve multiple
cell incubation or offer an optimal microenvironment for cells, while regularly arranged structures are unavailable
in traditional cell-laden scaffolds, which results in low biocompatibility. To solve these problems, microfluidic
techniques are combined with TE. By providing 3-D networks and interstitial fluid flows, microfluidic platforms
manage to maintain phenotype and viability of osteocytic or chondrocytic cells, and the precise manipulation of
liquid, gel and air flows in microfluidic devices leads to the highly organized construction of scaffolds.
Methods:
In this review, we focus on the recent advances of microfluidic techniques applied in the field of tissue
engineering, especially in orthropaedics. An extensive literature search was done using PubMed. The introduction
describes the properties of microfluidics and how it exploits the advantages to the full in the aspects of TE. Then
we discuss the application of microfluidics on the cultivation of osteocytic cells and chondrocytes, and other
extended researches carried out on this platform. The following section focuses on the fabrication of highly organized
scaffolds and other biomaterials produced by microfluidic devices. Finally, the incubation and studying of
bone metastasis models in microfluidic platforms are discussed.
Conclusion:
The combination of microfluidics and tissue engineering shows great potentials in the osteocytic cell
culture and scaffold fabrication. Though there are several problems that still require further exploration, the future
of microfluidics in TE is promising.
Collapse
Affiliation(s)
- Lingtian Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Dajun Jiang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Qiyang Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Qing Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Haoran Hu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Weitao Jia
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| |
Collapse
|
6
|
Mestres G, Perez RA, D’Elía NL, Barbe L. Advantages of microfluidic systems for studying cell-biomaterial interactions—focus on bone regeneration applications. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab1033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Gu L, Yu G, Li CW. A fast and low-cost microfabrication approach for six types of thermoplastic substrates with reduced feature size and minimized bulges using sacrificial layer assisted laser engraving. Anal Chim Acta 2018; 997:24-34. [DOI: 10.1016/j.aca.2017.10.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 01/20/2023]
|
8
|
Gencturk E, Mutlu S, Ulgen KO. Advances in microfluidic devices made from thermoplastics used in cell biology and analyses. BIOMICROFLUIDICS 2017; 11:051502. [PMID: 29152025 PMCID: PMC5654984 DOI: 10.1063/1.4998604] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/11/2017] [Indexed: 05/10/2023]
Abstract
Silicon and glass were the main fabrication materials of microfluidic devices, however, plastics are on the rise in the past few years. Thermoplastic materials have recently been used to fabricate microfluidic platforms to perform experiments on cellular studies or environmental monitoring, with low cost disposable devices. This review describes the present state of the development and applications of microfluidic systems used in cell biology and analyses since the year 2000. Cultivation, separation/isolation, detection and analysis, and reaction studies are extensively discussed, considering only microorganisms (bacteria, yeast, fungi, zebra fish, etc.) and mammalian cell related studies in the microfluidic platforms. The advantages/disadvantages, fabrication methods, dimensions, and the purpose of creating the desired system are explained in detail. An important conclusion of this review is that these microfluidic platforms are still open for research and development, and solutions need to be found for each case separately.
Collapse
Affiliation(s)
- Elif Gencturk
- Department of Chemical Engineering, Biosystems Engineering Laboratory, Bogazici University, 34342 Istanbul, Turkey
| | - Senol Mutlu
- Department of Electrical and Electronics Engineering, BUMEMS Laboratory, Bogazici University, 34342 Istanbul, Turkey
| | - Kutlu O Ulgen
- Department of Chemical Engineering, Biosystems Engineering Laboratory, Bogazici University, 34342 Istanbul, Turkey
| |
Collapse
|
9
|
Li R, Lv X, Zhang X, Saeed O, Deng Y. Microfluidics for cell-cell interactions: A review. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1550-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Menon NV, Chuah YJ, Cao B, Lim M, Kang Y. A microfluidic co-culture system to monitor tumor-stromal interactions on a chip. BIOMICROFLUIDICS 2014; 8:064118. [PMID: 25553194 PMCID: PMC4257957 DOI: 10.1063/1.4903762] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/26/2014] [Indexed: 05/08/2023]
Abstract
The living cells are arranged in a complex natural environment wherein they interact with extracellular matrix and other neighboring cells. Cell-cell interactions, especially those between distinct phenotypes, have attracted particular interest due to the significant physiological relevance they can reveal for both fundamental and applied biomedical research. To study cell-cell interactions, it is necessary to develop co-culture systems, where different cell types can be cultured within the same confined space. Although the current advancement in lab-on-a-chip technology has allowed the creation of in vitro models to mimic the complexity of in vivo environment, it is still rather challenging to create such co-culture systems for easy control of different colonies of cells. In this paper, we have demonstrated a straightforward method for the development of an on-chip co-culture system. It involves a series of steps to selectively change the surface property for discriminative cell seeding and to induce cellular interaction in a co-culture region. Bone marrow stromal cells (HS5) and a liver tumor cell line (HuH7) have been used to demonstrate this co-culture model. The cell migration and cellular interaction have been analyzed using microscopy and biochemical assays. This co-culture system could be used as a disease model to obtain biological insight of pathological progression, as well as a tool to evaluate the efficacy of different drugs for pharmaceutical studies.
Collapse
Affiliation(s)
- Nishanth V Menon
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459
| | - Yon Jin Chuah
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459
| | | | - Mayasari Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459
| | - Yuejun Kang
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459
| |
Collapse
|
11
|
Design Criteria for Generating Physiologically Relevant In Vitro Models in Bioreactors. Processes (Basel) 2014. [DOI: 10.3390/pr2030548] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
12
|
Yap YC, Guijt RM, Dickson TC, King AE, Breadmore MC. Stainless Steel Pinholes for Fast Fabrication of High-Performance Microchip Electrophoresis Devices by CO2 Laser Ablation. Anal Chem 2013; 85:10051-6. [DOI: 10.1021/ac402631g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yiing C. Yap
- School
of Pharmacy, University of Tasmania, Private Bag 26, Hobart, Tasmania, 7001, Australia
- Menzies
Research Institutes, University of Tasmania, Private Bag 29, Hobart, Tasmania, Australia 7000
- Wicking
Dementia Research and Education Centre, School of Medicine, University of Tasmania, Private Bag 29, Hobart, Tasmania, Australia 7000
- School
of Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia
| | - Rosanne M. Guijt
- School
of Pharmacy, University of Tasmania, Private Bag 26, Hobart, Tasmania, 7001, Australia
| | - Tracey C. Dickson
- Menzies
Research Institutes, University of Tasmania, Private Bag 29, Hobart, Tasmania, Australia 7000
| | - Anna E. King
- Wicking
Dementia Research and Education Centre, School of Medicine, University of Tasmania, Private Bag 29, Hobart, Tasmania, Australia 7000
| | - Michael C. Breadmore
- School
of Chemistry, University of Tasmania, Private Bag 75, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
13
|
Xue Gou, Ho Chun Han, Songyu Hu, Leung AYH, Dong Sun. Applying Combined Optical Tweezers and Fluorescence Microscopy Technologies to Manipulate Cell Adhesions for Cell-to-Cell Interaction Study. IEEE Trans Biomed Eng 2013; 60:2308-15. [DOI: 10.1109/tbme.2013.2255287] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Abstract
BACKGROUND Microfluidic technology emerges as a convenient route to applying automated and reliable assays in a high-throughput manner with low cost. OBJECTIVE This review aims to answer questions related to the capabilities and potential applications of microfluidic assays that can benefit the drug development process and extends an outlook on its future trends. METHODS This article reviews recent publications in the field of microfluidics, with an emphasis on novel applications for drug development. RESULTS/CONCLUSION Microfluidics affords unique capabilities in sample preparation and separation, combinatorial synthesis and array formation, and incorporating nanotechnology for more functionalities. The pharmaceutical industry, facing challenges from limited productivity and accelerated competition, can thus greatly benefit from applying new microfluidic assays in various drug development stages, from target screening and lead optimization to absorption distribution metabolism elimination and toxicity studies in preclinical evaluations, diagnostics in clinical trials and drug formulation and manufacturing process optimization.
Collapse
Affiliation(s)
- Yuan Wen
- The Ohio State University, Department of Chemical and Biomolecular Engineering, 140 West 19th Avenue, Columbus, Ohio 43210, USA +1 614 2926611 ; +1 614 2923769 ;
| | | |
Collapse
|
15
|
Weibull E, Matsui S, Sakai M, Andersson Svahn H, Ohashi T. Microfluidic device for generating a stepwise concentration gradient on a microwell slide for cell analysis. BIOMICROFLUIDICS 2013; 7:64115. [PMID: 24396549 PMCID: PMC3874052 DOI: 10.1063/1.4846435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/28/2013] [Indexed: 05/04/2023]
Abstract
Understanding biomolecular gradients and their role in biological processes is essential for fully comprehending the underlying mechanisms of cells in living tissue. Conventional in vitro gradient-generating methods are unpredictable and difficult to characterize, owing to temporal and spatial fluctuations. The field of microfluidics enables complex user-defined gradients to be generated based on a detailed understanding of fluidic behavior at the μm-scale. By using microfluidic gradients created by flow, it is possible to develop rapid and dynamic stepwise concentration gradients. However, cells exposed to stepwise gradients can be perturbed by signals from neighboring cells exposed to another concentration. Hence, there is a need for a device that generates a stepwise gradient at discrete and isolated locations. Here, we present a microfluidic device for generating a stepwise concentration gradient, which utilizes a microwell slide's pre-defined compartmentalized structure to physically separate different reagent concentrations. The gradient was generated due to flow resistance in the microchannel configuration of the device, which was designed using hydraulic analogy and theoretically verified by computational fluidic dynamics simulations. The device had two reagent channels and two dilutant channels, leading to eight chambers, each containing 4 microwells. A dose-dependency assay was performed using bovine aortic endothelial cells treated with saponin. High reproducibility between experiments was confirmed by evaluating the number of living cells in a live-dead assay. Our device generates a fully mixed fluid profile using a simple microchannel configuration and could be used in various gradient studies, e.g., screening for cytostatics or antibiotics.
Collapse
Affiliation(s)
- Emilie Weibull
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH-Royal Institute of Technology, 171 65 Stockholm, Sweden
| | - Shunsuke Matsui
- Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Manabu Sakai
- Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Helene Andersson Svahn
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH-Royal Institute of Technology, 171 65 Stockholm, Sweden
| | - Toshiro Ohashi
- Faculty of Engineering, Hokkaido University, Sapporo Hokkaido 060-8628, Japan
| |
Collapse
|
16
|
Macro and microfluidic flows for skeletal regenerative medicine. Cells 2012; 1:1225-45. [PMID: 24710552 PMCID: PMC3901127 DOI: 10.3390/cells1041225] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/07/2012] [Accepted: 12/04/2012] [Indexed: 11/16/2022] Open
Abstract
Fluid flow has a great potential as a cell stimulatory tool for skeletal regenerative medicine, because fluid flow-induced bone cell mechanotransduction in vivo plays a critical role in maintaining healthy bone homeostasis. Applications of fluid flow for skeletal regenerative medicine are reviewed at macro and microscale. Macroflow in two dimensions (2D), in which flow velocity varies along the normal direction to the flow, has explored molecular mechanisms of bone forming cell mechanotransduction responsible for flow-regulated differentiation, mineralized matrix deposition, and stem cell osteogenesis. Though 2D flow set-ups are useful for mechanistic studies due to easiness in in situ and post-flow assays, engineering skeletal tissue constructs should involve three dimensional (3D) flows, e.g., flow through porous scaffolds. Skeletal tissue engineering using 3D flows has produced promising outcomes, but 3D flow conditions (e.g., shear stress vs. chemotransport) and scaffold characteristics should further be tailored. Ideally, data gained from 2D flows may be utilized to engineer improved 3D bone tissue constructs. Recent microfluidics approaches suggest a strong potential to mimic in vivo microscale interstitial flows in bone. Though there have been few microfluidics studies on bone cells, it was demonstrated that microfluidic platform can be used to conduct high throughput screening of bone cell mechanotransduction behavior under biomimicking flow conditions.
Collapse
|
17
|
Zheng C, Zhao L, Chen G, Zhou Y, Pang Y, Huang Y. Quantitative study of the dynamic tumor-endothelial cell interactions through an integrated microfluidic coculture system. Anal Chem 2012; 84:2088-93. [PMID: 22263607 DOI: 10.1021/ac2032029] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction between tumor and endothelial cells is crucial to cancer metastasis and angiogenesis. We developed a novel microfluidic device to assess the cell-cell interaction quantitatively at the single cell resolution. This integrated chip offers 16 coculture experiments in parallel with controllable microenvironments to study interactions between cells dynamically. We applied this approach to model the tumor invasion using Hela cells and human umbilical vein endothelial cells (HUVECs) and monitored the migration of both. We observed the retreatment of HUVECs upon the approach of Hela cells during coculture, indicating that the interaction between two cells was mediated by soluble factors. This interaction was further analyzed through quantitatively processing the phase-contrast microscopic time-lapse images of each individual coculture chamber. We also confirmed this paracrine effect by varying the frequency of medium change. This microfluidic technique is highly controllable, contamination free, fully automatic, and inexpensive. This approach not only offers a unique way to quantitatively study the interaction between cells but also provides accurate spatial-temporal tunability of microenvironments for cell coculture. We believe this method, intrinsically high-throughput and quantitative, will greatly facilitate the study of cell-cell interactions and communications.
Collapse
Affiliation(s)
- Chunhong Zheng
- College of Engineering and Biodynamic Optical Imaging Center, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
18
|
Jastrzebska Jedrych E, Grabowska-Jadach I, Chudy M, Dybko A, Brzozka Z. Multi-function microsystem for cells migration analysis and evaluation of photodynamic therapy procedure in coculture. BIOMICROFLUIDICS 2012; 6:44116. [PMID: 24339849 PMCID: PMC3555799 DOI: 10.1063/1.4771966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/27/2012] [Indexed: 05/12/2023]
Abstract
Cell migration is an important physiological process, which is involved in cancer metastasis. Therefore, the investigation of cell migration may lead to the development of novel therapeutic approaches. In this study, we have successfully developed a microsystem for culture of two cell types (non-malignant and carcinoma) and for analysis of cell migration dependence on distance between them. Finally, we studied quantitatively the influence of photodynamic therapy (PDT) procedures on the viability of pairs of non-malignant (MRC5 or Balb/3T3) and carcinoma (A549) cells coculture. The proposed geometry of the microsystem allowed for separate introduction of two cell lines and analysis of cells migration dependence on distance between the cells. We found that a length of connecting microchannel has an influence on cell migration and viability of non-malignant cells after PDT procedure. Summarizing, the developed microsystem can constitute a new tool for carrying out experiments, which offers a few functions: cell migration analysis, carcinoma and non-malignant cells coculture, and evaluation of PDT procedure in the various steps of cell migration.
Collapse
|
19
|
Engineering Quasi-Vivo in vitro organ models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 745:138-53. [PMID: 22437817 DOI: 10.1007/978-1-4614-3055-1_9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Cell culture is the workhorse of biologists, toxicologists, tissue engineers and a whole host of research fields in both academia and industry. Having explored individual molecular mechanisms inside cells for decades using traditional cell culture techniques, researchers have only just begun to appreciate that the intricate interconnectivity between cells and cellular networks as well as with the external environment is far more important to cellular orchestration than are single molecular events inside the cell. For example many questions regarding cell, tissue, organ and system response to drugs, environmental toxins, stress and nutrients cannot possibly be answered by concentrating on the minutiae of what goes on in the deepest recesses of single cells. New models are required to investigate cellular cross-talk between different cell types and to construct complex in-vitro models to properly study tissue, organ and system interaction without resorting to animal experiments. This chapter describes how tissue and organ models can be developed using the Quasi-Vivo system and discusses how they may be used in drug toxicity studies.
Collapse
|
20
|
Medium to High Throughput Screening: Microfabrication and Chip-Based Technology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 745:181-209. [DOI: 10.1007/978-1-4614-3055-1_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Zahorodny-Burke M, Nearingburg B, Elias A. Finite element analysis of oxygen transport in microfluidic cell culture devices with varying channel architectures, perfusion rates, and materials. Chem Eng Sci 2011. [DOI: 10.1016/j.ces.2011.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Moraes C, Mehta G, Lesher-Perez SC, Takayama S. Organs-on-a-chip: a focus on compartmentalized microdevices. Ann Biomed Eng 2011; 40:1211-27. [PMID: 22065201 DOI: 10.1007/s10439-011-0455-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 10/24/2011] [Indexed: 01/23/2023]
Abstract
Advances in microengineering technologies have enabled a variety of insights into biomedical sciences that would not have been possible with conventional techniques. Engineering microenvironments that simulate in vivo organ systems may provide critical insight into the cellular basis for pathophysiologies, development, and homeostasis in various organs, while curtailing the high experimental costs and complexities associated with in vivo studies. In this article, we aim to survey recent attempts to extend tissue-engineered platforms toward simulating organ structure and function, and discuss the various approaches and technologies utilized in these systems. We specifically focus on microtechnologies that exploit phenomena associated with compartmentalization to create model culture systems that better represent the in vivo organ microenvironment.
Collapse
Affiliation(s)
- Christopher Moraes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | | |
Collapse
|
23
|
Zervantonakis IK, Kothapalli CR, Chung S, Sudo R, Kamm RD. Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments. BIOMICROFLUIDICS 2011; 5:13406. [PMID: 21522496 PMCID: PMC3082343 DOI: 10.1063/1.3553237] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 01/11/2011] [Indexed: 05/04/2023]
Abstract
Microfluidic devices allow for precise control of the cellular and noncellular microenvironment at physiologically relevant length- and time-scales. These devices have been shown to mimic the complex in vivo microenvironment better than conventional in vitro assays, and allow real-time monitoring of homotypic or heterotypic cellular interactions. Microfluidic culture platforms enable new assay designs for culturing multiple different cell populations and∕or tissue specimens under controlled user-defined conditions. Applications include fundamental studies of cell population behaviors, high-throughput drug screening, and tissue engineering. In this review, we summarize recent developments in this field along with studies of heterotypic cell-cell interactions and tissue specimen culture in microfluidic devices from our own laboratory.
Collapse
|
24
|
Kaji H, Camci-Unal G, Langer R, Khademhosseini A. Engineering systems for the generation of patterned co-cultures for controlling cell-cell interactions. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1810:239-50. [PMID: 20655984 PMCID: PMC3026923 DOI: 10.1016/j.bbagen.2010.07.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 06/08/2010] [Accepted: 07/09/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Inside the body, cells lie in direct contact or in close proximity to other cell types in a tightly controlled architecture that often regulates the resulting tissue function. Therefore, tissue engineering constructs that aim to reproduce the architecture and the geometry of tissues will benefit from methods of controlling cell-cell interactions with microscale resolution. SCOPE OF THE REVIEW We discuss the use of microfabrication technologies for generating patterned co-cultures. In addition, we categorize patterned co-culture systems by cell type and discuss the implications of regulating cell-cell interactions in the resulting biological function of the tissues. MAJOR CONCLUSIONS Patterned co-cultures are a useful tool for fabricating tissue engineered constructs and for studying cell-cell interactions in vitro, because they can be used to control the degree of homotypic and heterotypic cell-cell contact. In addition, this approach can be manipulated to elucidate important factors involved in cell-matrix interactions. GENERAL SIGNIFICANCE Patterned co-culture strategies hold significant potential to develop biomimetic structures for tissue engineering. It is expected that they would create opportunities to develop artificial tissues in the future. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.
Collapse
Affiliation(s)
- Hirokazu Kaji
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Gulden Camci-Unal
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Robert Langer
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
25
|
Marimuthu M, Kim S. Microfluidic cell coculture methods for understanding cell biology, analyzing bio/pharmaceuticals, and developing tissue constructs. Anal Biochem 2011; 413:81-9. [PMID: 21354094 DOI: 10.1016/j.ab.2011.02.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/11/2011] [Accepted: 02/18/2011] [Indexed: 02/06/2023]
Affiliation(s)
- Mohana Marimuthu
- College of Bionanotechnology, Kyungwon University, Gyeonggi-Do 461 701, Republic of Korea
| | | |
Collapse
|
26
|
Huang M, Fan S, Xing W, Liu C. Microfluidic cell culture system studies and computational fluid dynamics. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.mcm.2010.01.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
27
|
Young EWK, Simmons CA. Macro- and microscale fluid flow systems for endothelial cell biology. LAB ON A CHIP 2010; 10:143-60. [PMID: 20066241 DOI: 10.1039/b913390a] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recent advances in microfluidics have brought forth new tools for studying flow-induced effects on mammalian cells, with important applications in cardiovascular, bone and cancer biology. The plethora of microscale systems developed to date demonstrate the flexibility of microfluidic designs, and showcase advantages of the microscale that are simply not available at the macroscale. However, the majority of these systems will likely not achieve widespread use in the biological laboratory due to their complexity and lack of user-friendliness. To gain widespread acceptance in the biological research community, microfluidics engineers must understand the needs of cell biologists, while biologists must be made aware of available technology. This review provides a critical evaluation of cell culture flow (CCF) systems used to study the effects of mechanical forces on endothelial cells (ECs) in vitro. To help understand the need for various designs of CCF systems, we first briefly summarize main properties of ECs and their native environments. Basic principles of various macro- and microscale systems are described and evaluated. New opportunities are uncovered for developing technologies that have potential to both improve efficiency of experimentation as well as answer important biological questions that otherwise cannot be tackled with existing systems. Finally, we discuss some of the unresolved issues related to microfluidic cell culture, suggest possible avenues of investigation that could resolve these issues, and provide an outlook for the future of microfluidics in biological research.
Collapse
Affiliation(s)
- Edmond W K Young
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA.
| | | |
Collapse
|
28
|
Microfluidic chip: Next-generation platform for systems biology. Anal Chim Acta 2009; 650:83-97. [DOI: 10.1016/j.aca.2009.04.051] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 04/16/2009] [Accepted: 04/27/2009] [Indexed: 12/30/2022]
|
29
|
Nuclear translocation kinetics of NF-kappaB in macrophages challenged with pathogens in a microfluidic platform. Biomed Microdevices 2009; 11:693-700. [PMID: 19169824 DOI: 10.1007/s10544-008-9281-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We have developed a microfluidic platform for real-time imaging of host-pathogen interactions and cellular signaling events. Host cells are immobilized in a controlled environment for optical interrogation of the kinetics and stochasticity of immune response to pathogenic challenges. Here, we have quantitatively measured activation of the toll-like receptor 4 (TLR4) pathway in RAW264.7 murine macrophage-like cells. This was achieved by measuring the cytoplasm-to-nucleus translocation kinetics of a green fluorescent protein fusion construct to the NF-kappaB transcription factor subunit RelA (GFP-RelA). Translocation kinetics in response to live bacteria and purified lipopolysaccharide (LPS) challenges were measured, and this work presents the first demonstration of live imaging of host cell infection on a microfluidic platform with quantitative analysis of an early (<0.5 h from infection) immune signaling event. Our data show that a 1,000x increase in the LPS dose led to a ~10x increase in a host cell activation metric we developed in order to describe NF-kappaB translocation kinetics. Using this metric, live bacteria challenges were assigned an equivalent LPS dose as a first step towards comparing NF-kappaB translocation kinetics between TLR4-only pathway signaling (activated by LPS) and multiple pathway signaling (activated by whole bacteria). The device also contains a unique architecture for capturing and fluidically isolating single host cells for the purpose of differentiating between primary and secondary immune signaling.
Collapse
|
30
|
Mahto SK, Yoon TH, Shin H, Rhee SW. Multicompartmented microfluidic device for characterization of dose-dependent cadmium cytotoxicity in BALB/3T3 fibroblast cells. Biomed Microdevices 2008; 11:401-11. [DOI: 10.1007/s10544-008-9246-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Huang WH, Ai F, Wang ZL, Cheng JK. Recent advances in single-cell analysis using capillary electrophoresis and microfluidic devices. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 866:104-22. [DOI: 10.1016/j.jchromb.2008.01.030] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 01/10/2008] [Accepted: 01/18/2008] [Indexed: 01/09/2023]
|
32
|
Fu LM, Lee CY, Liao MH, Lin CH. Fabrication and testing of high-performance detection sensor for capillary electrophoresis microchips. Biomed Microdevices 2007; 10:73-80. [PMID: 17680365 DOI: 10.1007/s10544-007-9111-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study presents a new approach for high-performance detection sensors for MEMS-based capillary electrophoresis chips to substitute laser induced fluorescence (LIF) detection systems. The developed sensors easily integrate with well-known microfabrication techniques for glass-based microfluidic devices. Three-dimensional gold electrodes are structured in enveloping side channels by sputtering and patterned using a standard "lift-off" process. The variations in the capacitance between the electrodes in the side channels are measured as different samples and ions pass through the detection region of the capillary electrophoresis separation channel. Samples of beer, white wine and milk are each mixed in different buffer solutions, then successfully separated and detected using the developed device. The proposed high-performance detection sensors have microscale dimensions and provide a critical step towards the realization of the lab-on-a-chip concept.
Collapse
Affiliation(s)
- Lung-Ming Fu
- Department of Materials Engineering, National Pingtung University of Science and Technology, 912 Pingtung, Taiwan
| | | | | | | |
Collapse
|
33
|
Fu LM, Leong JC, Lin CF, Tai CH, Tsai CH. High performance microfluidic capillary electrophoresis devices. Biomed Microdevices 2007; 9:405-12. [PMID: 17487587 DOI: 10.1007/s10544-007-9049-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This paper presents a novel microfluidic capillary electrophoresis (CE) device featuring a double-T-form injection system and an expansion chamber located at the inlet of the separation channel. This study addresses the principal material transport mechanisms depending on parameters such as the expansion ratio, the expansion length, the fluid flow. Its design utilizes a double-L injection technique and combines the expansion chamber to minimize the sample leakage effect and to deliver a high-quality sample plug into the separation channel so that the detection performance of the device is enhanced. Experimental and numerical testing of the proposed microfluidic device that integrates an expansion chamber located at the inlet of the separation channel confirms its ability to increase the separation efficiency by improving the sample plug shape and orientation. The novel microfluidic capillary electrophoresis device presented in this paper has demonstrated a sound potential for future use in high-quality, high-throughput chemical analysis applications and throughout the micro-total-analysis systems field.
Collapse
Affiliation(s)
- Lung-Ming Fu
- Department of Materials Engineering, National Pingtung University of Science and Technology, Pingtung, Taiwan 912
| | | | | | | | | |
Collapse
|
34
|
Lin CH, Tsai CH, Pan CW, Fu LM. Rapid circular microfluidic mixer utilizing unbalanced driving force. Biomed Microdevices 2007; 9:43-50. [PMID: 17106640 DOI: 10.1007/s10544-006-9009-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This paper proposes a novel rapid circular microfluidic mixer for micro-total-analysis-systems (mu-TAS) applications in which an unbalanced driving force is used to mix fluids in a circular chamber at low Reynolds numbers (Re). The microfluidic mixer has a three-layered structure and is fabricated on low-cost glass slides using a simple and reliable fabrication process. Using hydrodynamic pumps, fluids are driven from two inlet ports into a circular mixing chamber. Each inlet port separates into two separate channels, which are then attached to opposite sides of the 3-dimensional (3-D) circular mixing chamber. The unequal lengths of these inlet channels generate an unbalanced driving force, which enhances the mixing effect in the mixing chamber. Numerical simulations are performed to predict the fluid phenomena in the mixing chamber and to estimate the mixing performance under various Reynolds number conditions. The numerical results are verified by performing flow visualization experiments. A good agreement is found between the two sets of results. The numerical and experimental results reveal that the mixing performance can reach 91% within a mixing chamber of 1 mm diameter at a Reynolds number of Re=3. Additionally, the results confirm that the unbalanced driving force produces a flow rotation in the circular mixer at low Reynolds numbers, which significantly enhances the mixing performance. The novel micromixing method presented in this study provides a simple solution for mixing problems in Lab-on-a-chip systems.
Collapse
Affiliation(s)
- Che-Hsin Lin
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan, 804
| | | | | | | |
Collapse
|
35
|
Huang MZ, Yang RJ, Tai CH, Tsai CH, Fu LM. Application of electrokinetic instability flow for enhanced micromixing in cross-shaped microchannel. Biomed Microdevices 2007; 8:309-15. [PMID: 17003961 DOI: 10.1007/s10544-006-0034-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This paper proposes a cross-shaped micromixer featuring a pair barrier within the mixing channel. The proposed device obtains a rapid mixing of two sample fluids by means of the electrokinetic instability-induced shedding effects which are produced when a DC electric field of an appropriate intensity is applied. The proposed device uses a single high-voltage power source to simultaneously drive and mix the sample fluids. The effectiveness of the mixer is characterized experimentally as a function of the applied electric field intensity and the extent to which a pair barrier obstruct the mixing channel. The experimental results indicate that the mixing performance reaches 96% at a cross-section located 1 mm downstream of the cross-junction when an electric field of 300 V/cm is applied. The micromixing method presented in this study provides a simple low-cost solution to mixing problems in lab-on-a-chip systems.
Collapse
Affiliation(s)
- Min-Zhong Huang
- Department of Engineering Science, National Cheng-Kung University, Taiwan 701
| | | | | | | | | |
Collapse
|
36
|
Abstract
This paper presents a novel microfluidic DNA digestion system incorporating a high performance micro-mixer. Through the appropriate control of fixed and periodic switching DC electric fields, electrokinetic forces are established to mix the DNA and restriction enzyme samples and to drive them through the reaction column of the device. The experimental and numerical results show that a mixing performance of 98% can be achieved within a mixing channel of length 1.6 mm when a 150 V/cm driving voltage and a 5 Hz switching frequency are applied. The relationship between the mixing performance, switching frequency, and main applied electric field is derived. It is found that the optimal switching frequency depends upon the magnitude of the main applied electric field. The successful digestion of lambda-DNA using Eco RI restriction enzyme is demonstrated. The DNA-enzyme reaction is completed within 15 min in the proposed microfluidic system, compared to 50 min in a conventional large-scale system. Hence, the current device provides a valuable tool for rapid lambda-DNA digestion, while its mixer system delivers a simple yet effective solution for mixing problems in the micro-total-analysis-systems field.
Collapse
Affiliation(s)
- Lung-Ming Fu
- Department of Materials Engineering, National Pingtung University of Science and Technology, Pingtung, Taiwan, 912, China
| | | |
Collapse
|