1
|
Song S, McConnell KW, Shan D, Chen C, Oh B, Sun J, Poon ASY, George PM. Conductive gradient hydrogels allow spatial control of adult stem cell fate. J Mater Chem B 2024; 12:1854-1863. [PMID: 38291979 PMCID: PMC10922832 DOI: 10.1039/d3tb02269b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Electrical gradients are fundamental to physiological processes including cell migration, tissue formation, organ development, and response to injury and regeneration. Current electrical modulation of cells is primarily studied under a uniform electrical field. Here we demonstrate the fabrication of conductive gradient hydrogels (CGGs) that display mechanical properties and varying local electrical gradients mimicking physiological conditions. The electrically-stimulated CGGs enhanced human mesenchymal stem cell (hMSC) viability and attachment. Cells on CGGs under electrical stimulation showed a high expression of neural progenitor markers such as Nestin, GFAP, and Sox2. More importantly, CGGs showed cell differentiation toward oligodendrocyte lineage (Oligo2) in the center of the scaffold where the electric field was uniform with a greater intensity, while cells preferred neuronal lineage (NeuN) on the edge of the scaffold on a varying electric field at lower magnitude. Our data suggest that CGGs can serve as a useful platform to study the effects of electrical gradients on stem cells and potentially provide insights on developing new neural engineering applications.
Collapse
Affiliation(s)
- Shang Song
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, 300 Pasteur Dr, MC5778 Stanford Stroke Center, Stanford, CA 94305-5778, USA.
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
- Departments of Neuroscience GIDP, Materials Science and Engineering, BIO5 Institute, The University of Arizona, Tucson, AZ, USA
| | - Kelly W McConnell
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, 300 Pasteur Dr, MC5778 Stanford Stroke Center, Stanford, CA 94305-5778, USA.
| | - Dingying Shan
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, 300 Pasteur Dr, MC5778 Stanford Stroke Center, Stanford, CA 94305-5778, USA.
| | - Cheng Chen
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Byeongtaek Oh
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, 300 Pasteur Dr, MC5778 Stanford Stroke Center, Stanford, CA 94305-5778, USA.
| | - Jindi Sun
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Ada S Y Poon
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Paul M George
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, 300 Pasteur Dr, MC5778 Stanford Stroke Center, Stanford, CA 94305-5778, USA.
- Stanford Stroke Center and Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Muschler GF, Simmons H, Mantripragada V, Piuzzi NS. Bone Marrow as a Source of Cells for Musculoskeletal Cellular Therapies. ORTHOBIOLOGICS 2022:29-45. [DOI: 10.1007/978-3-030-84744-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Obenaus AM, Mollica MY, Sniadecki NJ. (De)form and Function: Measuring Cellular Forces with Deformable Materials and Deformable Structures. Adv Healthc Mater 2020; 9:e1901454. [PMID: 31951099 PMCID: PMC7274881 DOI: 10.1002/adhm.201901454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/04/2019] [Indexed: 12/29/2022]
Abstract
The ability for biological cells to produce mechanical forces is important for the development, function, and homeostasis of tissue. The measurement of cellular forces is not a straightforward task because individual cells are microscopic in size and the forces they produce are at the nanonewton scale. Consequently, studies in cell mechanics rely on advanced biomaterials or flexible structures that permit one to infer these forces by the deformation they impart on the material or structure. Herein, the scientific progression on the use of deformable materials and deformable structures to measure cellular forces are reviewed. The findings and insights made possible with these approaches in the field of cell mechanics are summarized.
Collapse
Affiliation(s)
- Ava M Obenaus
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Molly Y Mollica
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Nathan J Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
4
|
Bai M, Cai L, Li X, Ye L, Xie J. Stiffness and topography of biomaterials dictate cell-matrix interaction in musculoskeletal cells at the bio-interface: A concise progress review. J Biomed Mater Res B Appl Biomater 2020; 108:2426-2440. [PMID: 32027091 DOI: 10.1002/jbm.b.34575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/30/2019] [Accepted: 01/19/2020] [Indexed: 02/05/2023]
Abstract
Mutually interacted musculoskeletal tissues work together within the physiological environment full of varieties of external stimulus. Consistent with the locomotive function of the tissues, musculoskeletal cells are remarkably mechanosensitive to the physical cues. Signals like extracellular matrix (ECM) stiffness, topography, and geometry can be sensed and transduced into intracellular signaling cascades to trigger a series of cell responses, including cell adhesion, cell phenotype maintenance, cytoskeletal reconstruction, and stem cell differentiation (Du et al., 2011; Murphy et al., 2014; Lv et al., 2015; Kim et al., 2016; Kumar et al., 2017). With the development of tissue engineering and regenerative medicine, the potent effects of ECM physical properties on cell behaviors at the cell-matrix interface are drawing much attention. To mimic the interaction between cell and its ECM physical properties, developing advanced biomaterials with desired characteristics which could achieve the biointerface between cells and the surrounded matrix close to the physiological conditions becomes a great hotspot. In this review, based on the current publications in the field of biointerfaces, we systematically summarized the significant roles of stiffness and topography on musculoskeletal cell behaviors. We hope to shed light on the importance of physical cues in musculoskeletal tissue engineering and provide up to date strategies towards the natural or artificial replication of physiological microenvironment.
Collapse
Affiliation(s)
- Mingru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Piuzzi NS, Mantripragada VP, Kwee E, Sumski A, Selvam S, Boehm C, Muschler GF. Bone Marrow-Derived Cellular Therapies in Orthopaedics: Part II: Recommendations for Reporting the Quality of Bone Marrow-Derived Cell Populations. JBJS Rev 2019; 6:e5. [PMID: 30461436 DOI: 10.2106/jbjs.rvw.18.00008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Nicolas S Piuzzi
- Departments of Biomedical Engineering (N.S.P., V.P.M., E.K., A.S., S.S., C.B., and G.F.M.) and Orthopaedic Surgery (N.S.P. and G.F.M.), Cleveland Clinic, Cleveland, Ohio.,Instituto Universitario del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Venkata P Mantripragada
- Departments of Biomedical Engineering (N.S.P., V.P.M., E.K., A.S., S.S., C.B., and G.F.M.) and Orthopaedic Surgery (N.S.P. and G.F.M.), Cleveland Clinic, Cleveland, Ohio
| | - Edward Kwee
- Departments of Biomedical Engineering (N.S.P., V.P.M., E.K., A.S., S.S., C.B., and G.F.M.) and Orthopaedic Surgery (N.S.P. and G.F.M.), Cleveland Clinic, Cleveland, Ohio.,Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Alan Sumski
- Departments of Biomedical Engineering (N.S.P., V.P.M., E.K., A.S., S.S., C.B., and G.F.M.) and Orthopaedic Surgery (N.S.P. and G.F.M.), Cleveland Clinic, Cleveland, Ohio
| | - Selvaanish Selvam
- Departments of Biomedical Engineering (N.S.P., V.P.M., E.K., A.S., S.S., C.B., and G.F.M.) and Orthopaedic Surgery (N.S.P. and G.F.M.), Cleveland Clinic, Cleveland, Ohio
| | - Cynthia Boehm
- Departments of Biomedical Engineering (N.S.P., V.P.M., E.K., A.S., S.S., C.B., and G.F.M.) and Orthopaedic Surgery (N.S.P. and G.F.M.), Cleveland Clinic, Cleveland, Ohio
| | - George F Muschler
- Departments of Biomedical Engineering (N.S.P., V.P.M., E.K., A.S., S.S., C.B., and G.F.M.) and Orthopaedic Surgery (N.S.P. and G.F.M.), Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
6
|
Liu R, Yao X, Liu X, Ding J. Proliferation of Cells with Severe Nuclear Deformation on a Micropillar Array. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:284-299. [PMID: 30513205 DOI: 10.1021/acs.langmuir.8b03452] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cellular responses on a topographic surface are fundamental topics about interfaces and biology. Herein, a poly(lactide- co-glycolide) (PLGA) micropillar array was prepared and found to trigger significant self-deformation of cell nuclei. The time-dependent cell viability and thus cell proliferation was investigated. Despite significant nuclear deformation, all of the examined cell types (Hela, HepG2, MC3T3-E1, and NIH3T3) could survive and proliferate on the micropillar array yet exhibited different proliferation abilities. Compared to the corresponding groups on the smooth surface, the cell proliferation abilities on the micropillar array were decreased for Hela and MC3T3-E1 cells and did not change significantly for HepG2 and NIH3T3 cells. We also found that whether the proliferation ability changed was related to whether the nuclear sizes decreased in the micropillar array, and thus the size deformation of cell nuclei should, besides shape deformation, be taken into consideration in studies of cells on topological surfaces.
Collapse
Affiliation(s)
- Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiang Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiangnan Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|
7
|
Guo Y, Hu B, Tang C, Wu Y, Sun P, Zhang X, Jia Y. Increased osteoblast function in vitro and in vivo through surface nanostructuring by ultrasonic shot peening. Int J Nanomedicine 2015; 10:4593-603. [PMID: 26229463 PMCID: PMC4514313 DOI: 10.2147/ijn.s83788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Surface topography has significant influence on good and fast osseointegration of biomedical implants. In this work, ultrasonic shot peening was conducted to modify titanium to produce nanograined (NG) surface. Its ability to induce new bone formation was evaluated using an in vivo animal model. We demonstrated that the NG surface enhanced osteoblast adhesion, proliferation, differentiation, and mineralization in in vitro experiments compared to coarse-grained titanium surface. Push-out test, histological observations, fluorescent labeling, and histomorphometrical analysis consistently indicated that the NG surfaces developed have the higher osseointegration than coarse-grained surfaces. Those results suggest that ultrasonic shot peening has the potential for future use as a surface modification method in biomedical application.
Collapse
Affiliation(s)
- Yongyuan Guo
- Orthopaedic Department, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Beibei Hu
- Medical Examination Center, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Chu Tang
- Orthopaedic Department, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yunpeng Wu
- Orthopaedic Department, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Pengfei Sun
- Orthopaedic Department, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Xianlong Zhang
- Orthopaedic Department, The Sixth Affiliated People's Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yuhua Jia
- Orthopaedic Department, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|
8
|
Song S, Kim EJ, Bahney CS, Miclau T, Marcucio R, Roy S. The synergistic effect of micro-topography and biochemical culture environment to promote angiogenesis and osteogenic differentiation of human mesenchymal stem cells. Acta Biomater 2015; 18:100-11. [PMID: 25735800 DOI: 10.1016/j.actbio.2015.02.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/30/2015] [Accepted: 02/23/2015] [Indexed: 01/06/2023]
Abstract
Critical failures associated with current engineered bone grafts involve insufficient induction of osteogenesis of the implanted cells and lack of vascular integration between graft scaffold and host tissue. This study investigated the combined effects of surface microtextures and biochemical supplements to achieve osteogenic differentiation of human mesenchymal stem cells (hMSCs) and revascularization of the implants in vivo. Cells were cultured on 10μm micropost-textured polydimethylsiloxane (PDMS) substrates in either proliferative basal medium (BM) or osteogenic medium (OM). In vitro data revealed that cells on microtextured substrates in OM had dense coverage of extracellular matrix, whereas cells in BM displayed more cell spreading and branching. Cells on microtextured substrates in OM demonstrated a higher gene expression of osteoblast-specific markers, namely collagen I, alkaline phosphatase, bone sialoprotein, and osteocalcin, accompanied by substantial amount of bone matrix formation and mineralization. To further investigate the osteogenic capacity, hMSCs on microtextured substrates under different biochemical stimuli were implanted into subcutaneous pockets on the dorsal aspect of immunocompromised mice to study capacity for ectopic bone formation. In vivo data revealed greater expression of osteoblast-specific markers coupled with increased vascular invasion on microtextured substrates with hMSCs cultured in OM. Together, these data represent a novel regenerative strategy that incorporates defined surface microtextures and biochemical stimuli to direct combined osteogenesis and re-vascularization of engineered bone scaffolds for musculoskeletal repair and relevant bone tissue engineering applications.
Collapse
Affiliation(s)
- Shang Song
- Department of Bioengineering and Therapeutic Sciences, University of California - San Francisco, San Francisco, CA 94158, United States
| | - Eun Jung Kim
- Department of Bioengineering and Therapeutic Sciences, University of California - San Francisco, San Francisco, CA 94158, United States
| | - Chelsea S Bahney
- Department of Orthopaedic Surgery, University of California, San Francisco, Orthopaedic Trauma Institute, University of California, San Francisco/San Francisco General Hospital, San Francisco, CA 94110, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, University of California, San Francisco, Orthopaedic Trauma Institute, University of California, San Francisco/San Francisco General Hospital, San Francisco, CA 94110, United States
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, University of California, San Francisco, Orthopaedic Trauma Institute, University of California, San Francisco/San Francisco General Hospital, San Francisco, CA 94110, United States
| | - Shuvo Roy
- Department of Bioengineering and Therapeutic Sciences, University of California - San Francisco, San Francisco, CA 94158, United States.
| |
Collapse
|
9
|
Marino A, Filippeschi C, Genchi GG, Mattoli V, Mazzolai B, Ciofani G. The Osteoprint: a bioinspired two-photon polymerized 3-D structure for the enhancement of bone-like cell differentiation. Acta Biomater 2014; 10:4304-13. [PMID: 24907661 DOI: 10.1016/j.actbio.2014.05.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/06/2014] [Accepted: 05/26/2014] [Indexed: 12/22/2022]
Abstract
The need for a better understanding of cell behavior and for exploiting cell functions in various healthcare applications has driven biomedical research to develop increasingly complex fabrication strategies to reproduce the natural biological microenvironment in vitro. Different approaches have led to the development of refined examples of 2- and 3-D structures able to sustain cellular proliferation, differentiation and functionality very similar to those normally occurring in living organisms. One such approach is two-photon polymerization. In this paper, we present a trabecula-like structure (which we have named "Osteoprint") that resembles to the typical microenvironment of trabecular bone cells. Starting from microtomography images of the trabecular bone, we prepared several Osteoprints through two-photon polymerization and tested the behavior of SaOS-2 bone-like cells cultured on our structures. Interestingly, we found that Osteoprints deeply affect cellular behavior, determining an exit from the cell cycle and an enhancement of osteogenic differentiation. Indeed, we found an up-regulation of the genes involved in SaOS-2 cell maturation and an increase in hydroxyapatite production and accumulation upon SaOS-2 culture on the Osteoprints. The findings we obtained are extremely interesting, and open up new perspectives in "bioinspired" approaches for tissue engineering and regenerative medicine.
Collapse
|