1
|
Agarwal K, Mehta SK, Mondal PK. Unveiling nutrient flow-mediated stress in plant roots using an on-chip phytofluidic device. LAB ON A CHIP 2024; 24:3775-3789. [PMID: 38952240 DOI: 10.1039/d4lc00180j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The initial emergence of the primary root from a germinating seed is a pivotal phase that influences a plant's survival. Abiotic factors such as pH, nutrient availability, and soil composition significantly affect root morphology and architecture. Of particular interest is the impact of nutrient flow on thigmomorphogenesis, a response to mechanical stimulation in early root growth, which remains largely unexplored. This study explores the intricate factors influencing early root system development, with a focus on the cooperative correlation between nutrient uptake and its flow dynamics. Using a physiologically as well as ecologically relevant, portable, and cost-effective microfluidic system for the controlled fluid environments offering hydraulic conductivity comparable to that of the soil, this study analyzes the interplay between nutrient flow and root growth post-germination. Emphasizing the relationship between root growth and nitrogen uptake, the findings reveal that nutrient flow significantly influences early root morphology, leading to increased length and improved nutrient uptake, varying with the flow rate. The experimental findings are supported by mechanical and plant stress-related fluid flow-root interaction simulations and quantitative determination of nitrogen uptake using the total Kjeldahl nitrogen (TKN) method. The microfluidic approach offers novel insights into plant root dynamics under controlled flow conditions, filling a critical research gap. By providing a high-resolution platform, this study contributes to the understanding of how fluid-flow-assisted nutrient uptake and pressure affect root cell behavior, which, in turn, induces mechanical stress leading to thigmomorphogenesis. The findings hold implications for comprehending root responses to changing environmental conditions, paving the way for innovative agricultural and environmental management strategies.
Collapse
Affiliation(s)
- Kaushal Agarwal
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Sumit Kumar Mehta
- Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | - Pranab Kumar Mondal
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati-781039, India.
- Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, India
| |
Collapse
|
2
|
Couttenier E, Bachellier-Bassi S, d'Enfert C, Villard C. Bending stiffness of Candida albicans hyphae as a proxy of cell wall properties. LAB ON A CHIP 2022; 22:3898-3909. [PMID: 36094162 PMCID: PMC9552746 DOI: 10.1039/d2lc00219a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The cell wall is a key component of fungi. It constitutes a highly regulated viscoelastic shell which counteracts internal cell turgor pressure. Its mechanical properties thus contribute to define cell morphology. Measurements of the elastic moduli of the fungal cell wall have been carried out in many species including Candida albicans, a major human opportunistic pathogen. They mainly relied on atomic force microscopy, and mostly considered the yeast form. We developed a parallelized pressure-actuated microfluidic device to measure the bending stiffness of hyphae. We found that the cell wall stiffness lies in the MPa range. We then used three different ways to disrupt cell wall physiology: inhibition of beta-glucan synthesis, a key component of the inner cell wall; application of a hyperosmotic shock triggering a sudden decrease of the hyphal diameter; deletion of two genes encoding GPI-modified cell wall proteins resulting in reduced cell wall thickness. The bending stiffness values were affected to different extents by these environmental stresses or genetic modifications. Overall, our results support the elastic nature of the cell wall and its ability to remodel at the scale of the entire hypha over minutes.
Collapse
Affiliation(s)
- Elodie Couttenier
- Université PSL, Physico-Chimie Curie, CNRS UMR168, F-75005 Paris, France.
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, F-75015 Paris, France
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, F-75015 Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, F-75015 Paris, France
| | - Catherine Villard
- Université PSL, Physico-Chimie Curie, CNRS UMR168, F-75005 Paris, France.
| |
Collapse
|
3
|
Silicone Chambers for Pollen Tube Imaging in Microstructured In Vitro Environments. Methods Mol Biol 2020. [PMID: 32529439 DOI: 10.1007/978-1-0716-0672-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Live cell imaging at high resolution of pollen tubes growing in vitro requires an experimental setup that maintains the elongated cells in a single optical plane and allows for controlled exchange of growth medium. As a low-cost alternative to lithography-based microfluidics, we developed a silicone-based spacer system that allows introducing spatial features and flexible design. These growth chambers can be cleaned and reused repeatedly.
Collapse
|
4
|
Sohrabi Kashani A, Packirisamy M. Efficient Low Shear Flow-based Trapping of Biological Entities. Sci Rep 2019; 9:5511. [PMID: 30940862 PMCID: PMC6445139 DOI: 10.1038/s41598-019-41938-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/11/2019] [Indexed: 11/09/2022] Open
Abstract
Capturing cells or biological entities is an important and challenging step toward in-vitro studies of cells under a precisely controlled microscale environment. In this work, we have developed a compact and efficient microdevice for on-chip trapping of micro-sized particles. This hydrodynamics-based trapping system allows the isolation of polystyrene micro-particles with a shorter time while inducing a less hydrodynamic deformation and stress on the particles or cells both after and before trapping. A numerical simulation was carried out to design a hydrodynamic trapping mechanism and optimize the geometric and fluidic parameters affecting the trapping efficiency of the microfluidic network. By using the finite element analysis, the velocity field, pressure field, and hydrodynamic force on the micro particles were studied. Finally, a PDMS microfluidic device was fabricated to test the device's ability to trap polystyrene microspheres. Computational fluid analysis and experimental testing showed a high trapping efficiency that is more than 90%. This microdevice can be used for single cell studies including their biological, physical and chemical characterization.
Collapse
Affiliation(s)
- Ahmad Sohrabi Kashani
- Optical Bio Microsystem Lab, Mechanical, Industrial, and Aerospace Engineering Department, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Muthukumaran Packirisamy
- Optical Bio Microsystem Lab, Mechanical, Industrial, and Aerospace Engineering Department, Concordia University, Montreal, Quebec, H3G 1M8, Canada.
| |
Collapse
|
5
|
Khan Z, Karamahmutoğlu H, Elitaş M, Yüce M, Budak H. THROUGH THE LOOKING GLASS: Real-Time Imaging in Brachypodium Roots and Osmotic Stress Analysis. PLANTS (BASEL, SWITZERLAND) 2019; 8:E14. [PMID: 30625995 PMCID: PMC6358813 DOI: 10.3390/plants8010014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/23/2018] [Accepted: 01/04/2019] [Indexed: 01/01/2023]
Abstract
To elucidate dynamic developmental processes in plants, live tissues and organs must be visualised frequently and for extended periods. The development of roots is studied at a cellular resolution not only to comprehend the basic processes fundamental to maintenance and pattern formation but also study stress tolerance adaptation in plants. Despite technological advancements, maintaining continuous access to samples and simultaneously preserving their morphological structures and physiological conditions without causing damage presents hindrances in the measurement, visualisation and analyses of growing organs including plant roots. We propose a preliminary system which integrates the optical real-time visualisation through light microscopy with a liquid culture which enables us to image at the tissue and cellular level horizontally growing Brachypodium roots every few minutes and up to 24 h. We describe a simple setup which can be used to track the growth of the root as it grows including the root tip growth and osmotic stress dynamics. We demonstrate the system's capability to scale down the PEG-mediated osmotic stress analysis and collected data on gene expression under osmotic stress.
Collapse
Affiliation(s)
- Zaeema Khan
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey.
| | - Hande Karamahmutoğlu
- Mechatronics Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey.
| | - Meltem Elitaş
- Mechatronics Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey.
| | - Meral Yüce
- Sabanci University SUNUM Nanotechnology Research and Application Centre, Istanbul 34956, Turkey.
| | - Hikmet Budak
- Cereal Genomics Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
6
|
Kanaoka MM. Cell-cell communications and molecular mechanisms in plant sexual reproduction. JOURNAL OF PLANT RESEARCH 2018; 131:37-47. [PMID: 29181649 DOI: 10.1007/s10265-017-0997-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Sexual reproduction is achieved by precise interactions between male and female reproductive organs. In plant fertilization, sperm cells are carried to ovules by pollen tubes. Signals from the pistil are involved in elongation and control of the direction of the pollen tube. Genetic, reverse genetic, and cell biological analyses using model plants have identified various factors related to the regulation of pollen tube growth and guidance. In this review, I summarize the mechanisms and molecules controlling pollen tube growth to the ovule, micropylar guidance, reception of the guidance signal in the pollen tube, rupture of the pollen tube to release sperm cells, and cessation of the tube guidance signal. I also briefly introduce various techniques used to analyze pollen tube guidance in vitro.
Collapse
Affiliation(s)
- Masahiro M Kanaoka
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.
| |
Collapse
|
7
|
Barani A, Paktinat H, Janmaleki M, Mohammadi A, Mosaddegh P, Fadaei-Tehrani A, Sanati-Nezhad A. Microfluidic integrated acoustic waving for manipulation of cells and molecules. Biosens Bioelectron 2016; 85:714-725. [DOI: 10.1016/j.bios.2016.05.059] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/13/2016] [Accepted: 05/19/2016] [Indexed: 12/28/2022]
|
8
|
Maisch J, Kreppenhofer K, Büchler S, Merle C, Sobich S, Görling B, Luy B, Ahrens R, Guber AE, Nick P. Time-resolved NMR metabolomics of plant cells based on a microfluidic chip. JOURNAL OF PLANT PHYSIOLOGY 2016; 200:28-34. [PMID: 27318870 DOI: 10.1016/j.jplph.2016.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
The plant secondary metabolism generates numerous compounds harbouring pharmaceutical activity. In plants, these compounds are typically formed by different and specialised cell types that have to interact constituting a metabolic process chain. This interactivity impedes biotechnological production of secondary compounds, because cell differentiation is suppressed under the conditions of a batch bio-fermenter. We present a novel strategy to address this limitation using a biomimetic approach, where we simulate the situation in a real tissue by a microfluidic chamber system, where plant cells can be integrated into a process flow. We show that walled cells of the plant model tobacco BY-2 can be successfully cultivated in this system and that physiological parameters (such as cell viability, mitotic index and division synchrony) can be preserved over several days. The microfluidic design allows to resolve dynamic changes of specific metabolites over different stages of culture development. These results serve as proof-of-principle that a microfluidic organisation of cultivated plant cells can mimic the metabolic flows in a real plant tissue.
Collapse
Affiliation(s)
- Jan Maisch
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 2, D-76131 Karlsruhe, Germany.
| | - Kristina Kreppenhofer
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Silke Büchler
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany; Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Christian Merle
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany; Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Shukhrat Sobich
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Benjamin Görling
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany; Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Burkhard Luy
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany; Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Ralf Ahrens
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Andreas E Guber
- Institute of Microstructure Technology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Peter Nick
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 2, D-76131 Karlsruhe, Germany
| |
Collapse
|
9
|
Luo CJ, Wightman R, Meyerowitz E, Smoukov SK. A 3-dimensional fibre scaffold as an investigative tool for studying the morphogenesis of isolated plant pells. BMC PLANT BIOLOGY 2015; 15:211. [PMID: 26310239 PMCID: PMC4550058 DOI: 10.1186/s12870-015-0581-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/24/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Cell culture methods allow the detailed observations of individual plant cells and their internal processes. Whereas cultured cells are more amenable to microscopy, they have had limited use when studying the complex interactions between cell populations and responses to external signals associated with tissue and whole plant development. Such interactions result in the diverse range of cell shapes observed in planta compared to the simple polygonal or ovoid shapes in vitro. Microfluidic devices can isolate the dynamics of single plant cells but have restricted use for providing a tissue-like and fibrous extracellular environment for cells to interact. A gap exists, therefore, in the understanding of spatiotemporal interactions of single plant cells interacting with their three-dimensional (3D) environment. A model system is needed to bridge this gap. For this purpose we have borrowed a tool, a 3D nano- and microfibre tissue scaffold, recently used in biomedical engineering of animal and human tissue physiology and pathophysiology in vitro. RESULTS We have developed a method of 3D cell culture for plants, which mimics the plant tissue environment, using biocompatible scaffolds similar to those used in mammalian tissue engineering. The scaffolds provide both developmental cues and structural stability to isolated callus-derived cells grown in liquid culture. The protocol is rapid, compared to the growth and preparation of whole plants for microscopy, and provides detailed subcellular information on cells interacting with their local environment. We observe cell shapes never observed for individual cultured cells. Rather than exhibiting only spheroid or ellipsoidal shapes, the cells adapt their shape to fit the local space and are capable of growing past each other, taking on growth and morphological characteristics with greater complexity than observed even in whole plants. Confocal imaging of transgenic Arabidopsis thaliana lines containing fluorescent microtubule and actin reporters enables further study of the effects of interactions and complex morphologies upon cytoskeletal organisation both in 3D and in time (4D). CONCLUSIONS The 3D culture within the fibre scaffolds permits cells to grow freely within a matrix containing both large and small spaces, a technique that is expected to add to current lithographic technologies, where growth is carefully controlled and constricted. The cells, once seeded in the scaffolds, can adopt a variety of morphologies, demonstrating that they do not need to be part of a tightly packed tissue to form complex shapes. This points to a role of the immediate nano- and micro-topography in plant cell morphogenesis. This work defines a new suite of techniques for exploring cell-environment interactions.
Collapse
Affiliation(s)
- C J Luo
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
| | - Raymond Wightman
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK.
| | - Elliot Meyerowitz
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK.
- Division of Biology and Biological Engineering, and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Stoyan K Smoukov
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
| |
Collapse
|
10
|
Sanati Nezhad A, Packirisamy M, Geitmann A. Dynamic, high precision targeting of growth modulating agents is able to trigger pollen tube growth reorientation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:185-95. [PMID: 25041411 DOI: 10.1111/tpj.12613] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/02/2014] [Accepted: 07/04/2014] [Indexed: 05/06/2023]
Abstract
The pollen tube is the most rapidly growing cell in the plant kingdom and has the function to deliver the sperm cells for fertilization. The growing tip region of the cell behaves in a chemotropic manner to respond to the guidance cues emitted by the pistil and the female gametophyte, but how it perceives and responds to these directional triggers is virtually unknown. Quantitative assessment of chemotropic behavior can greatly be enhanced by the administration of pharmacological or other biologically active agents at subcellular precision, which is a technical challenge when the target area moves as it grows. We developed a laminar flow based microfluidic device that allows for continuous administration of two different solutions with a movable interface that permits the dynamic targeting of the growing pollen tube apex over prolonged periods of time. Asymmetric administration of calcium revealed that rather than following the highest calcium concentration as would be expected with simple chemotropic behavior, the pollen tube of Camellia targets an optimal concentration suggesting the presence of two superimposed mechanisms. Subcellular application of pectin methyl esterase (PME), an enzyme that modifies the growth behavior by rigidifying the pollen tube cell wall, caused the tube to turn away from the agent - providing important evidence for a previously proposed conceptual model of the growth mechanism.
Collapse
Affiliation(s)
- Amir Sanati Nezhad
- Optical-Bio Microsystems Laboratory, Mechanical Engineering, Concordia University, 1515 St. Catherine St., West, Montreal, QC, H3G 1M8, Canada
| | | | | |
Collapse
|