1
|
Anushree U, Shetty S, Kumar R, Bharati S. Adjunctive Diagnostic Methods for Skin Cancer Detection: A Review of Electrical Impedance-Based Techniques. Bioelectromagnetics 2022; 43:193-210. [PMID: 35181899 DOI: 10.1002/bem.22396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 12/06/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
Abstract
Skin cancer is among the fastest-growing cancers with an excellent prognosis, if detected early. However, the current method of diagnosis by visual inspection has several disadvantages such as overlapping tumor characteristics, subjectivity, low sensitivity, and specificity. Hence, several adjunctive diagnostic techniques such as thermal imaging, optical imaging, ultrasonography, tape stripping methods, and electrical impedance imaging are employed along with visual inspection to improve the diagnosis. Electrical impedance-based skin cancer detection depends upon the variations in electrical impedance characteristics of the transformed cells. The information provided by this technique is fundamentally different from other adjunctive techniques and thus has good prospects. Depending on the stage, type, and location of skin cancer, various impedance-based devices have been developed. These devices when used as an adjunct to visual methods have increased the sensitivity and specificity of skin cancer detection up to 100% and 87%, respectively, thus demonstrating their potential to minimize unnecessary biopsies. In this review, the authors track the advancements and progress made in this technique for the detection of skin cancer, focusing mainly on the advantages and limitations in the clinical setting. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- U Anushree
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sachin Shetty
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sanjay Bharati
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
2
|
Liang Y, Ji L, Tu T, Zhang S, Liang B, Ye X. In situ continuously monitoring of cancer cell invasion process based on impedance sensing. Anal Biochem 2021; 622:114155. [PMID: 33736970 DOI: 10.1016/j.ab.2021.114155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
Activation of invasion and metastasis is recognized as one of the hallmarks of cancer. There are 90% of cancer-related deaths due to metastasis and given that it is worthy of note to study cancer progression and metastasis. Owing to restricted tools used to underpin the study of tumor invasion process, an on-site platform was developed to monitor this event in vitro. We used interdigital gold electrodes to monitor the dynamic process of cancer cells invading into extracellular matrix in situ continuously. Influences of collagen concentration and number of cancer cells on the measured impedance was exhibited. In addition, the parameters used to demonstrate the experiment results were optimized. The change of impedance magnitude indicated the cell-matrix interaction during invasion process. The potential further use of this platform would be complementary in cell studies when concerning metastasis.
Collapse
Affiliation(s)
- Yitao Liang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, PR China
| | - Lin Ji
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Tingting Tu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, PR China
| | - Shanshan Zhang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, PR China
| | - Bo Liang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, PR China.
| | - Xuesong Ye
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, PR China.
| |
Collapse
|
3
|
Lu X, Ye Y, Zhang Y, Sun X. Current research progress of mammalian cell-based biosensors on the detection of foodborne pathogens and toxins. Crit Rev Food Sci Nutr 2020; 61:3819-3835. [PMID: 32885986 DOI: 10.1080/10408398.2020.1809341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Foodborne diseases caused by pathogens and toxins are a serious threat to food safety and human health; thus, they are major concern to society. Existing conventional foodborne pathogen or toxin detection methods, including microbiological assay, nucleic acid-based assays, immunological assays, and instrumental analytical method, are time-consuming, labor-intensive and expensive. Because of the fast response and high sensitivity, cell-based biosensors are promising novel tools for food safety risk assessment and monitoring. This review focuses on the properties of mammalian cell-based biosensors and applications in the detection of foodborne pathogens (bacteria and viruses) and toxins (bacterial toxins, mycotoxins and marine toxins). We discuss mammalian cell adhesion and how it is involved in the establishment of 3D cell culture models for mammalian cell-based biosensors, as well as evaluate their limitations for commercialization and further development prospects.
Collapse
Affiliation(s)
- Xin Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| |
Collapse
|
4
|
Qin C, Qin Z, Zhao D, Pan Y, Zhuang L, Wan H, Di Pizio A, Malach E, Niv MY, Huang L, Hu N, Wang P. A bioinspired in vitro bioelectronic tongue with human T2R38 receptor for high-specificity detection of N-C=S-containing compounds. Talanta 2019; 199:131-139. [PMID: 30952236 DOI: 10.1016/j.talanta.2019.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 12/27/2022]
Abstract
Detection and identification of bitter compounds draw great attention in pharmaceutical and food industry. Several well-known agonists of specific bitter taste receptors have been found to exhibit anti-cancer effects. For example, N-C=S-containing compounds, such as allyl-isothiocyanates, have shown cancer chemo-preventive effects. It is worth noting that human T2R38 receptor is specific for compounds containing N-C=S moiety. Here, a bioinspired cell-based bioelctronic tongue (BioET) is developed for the high-specificity isothiocyanate-induced bitter detection, utilizing human Caco-2 cells as a primary sensing element and interdigitated impedance sensor as a secondary transducer. As an intestinal carcinoma cell line, Caco-2 endogenously expresses human bitter receptor T2R38, and the activation of T2R38 induces the changes of cellular morphology which can be detected by electric cell-substrate impedance sensing (ECIS). After configuration and optimization of parameters including timing of compound administration and cell density, quantitative bitter evaluation models were built for two well-known bitter compounds, phenylthiocarbamide (PTC) and propylthiouracil (PROP). The bitter specific detection of this BioET is inhibited by probenecid and U-73122, and is not elicited by other taste modalities or bitter ligands that do not activate T2R38. Moreover, by combining different computational tools, we designed a ligand-based virtual screening (LBVS) protocol to select ligands that are likely to activate T2R38 receptor. Three computationally predicted agonists of T2R38 were selected using the LBVS protocol, and the BioET presented response to the predicted agonists, validating the capability of the LBVS protocol. This study suggests this unique cell-based BioET paves a general and promising way to specifically detect N-C=S-containing compounds that can be used for pharmaceutical study and drug development.
Collapse
Affiliation(s)
- Chunlian Qin
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Zhen Qin
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Healthy & Intelligent Kitchen System Integration of Zhejiang Province, No. 218 Binhai 2nd Road, Ningbo 315336, China
| | - Dongxiao Zhao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxiang Pan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Antonella Di Pizio
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; Leibniz-Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Einav Malach
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Masha Y Niv
- The Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Liquan Huang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ning Hu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|
5
|
LI H, WEI X, GU C, SU K, WAN H, HU N, WANG P. A Dual Functional Cardiomyocyte-based Hybrid-biosensor for the Detection of Diarrhetic Shellfish Poisoning and Paralytic Shellfish Poisoning Toxins. ANAL SCI 2018; 34:893-900. [DOI: 10.2116/analsci.18p029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hongbo LI
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences
| | - Xinwei WEI
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
| | - Chenlei GU
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
| | - Kaiqi SU
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
| | - Hao WAN
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
| | - Ning HU
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
- Department of Biomedical Engineering, Tufts University
| | - Ping WANG
- Key Laboratory for Biomedical Engineering of Ministry of Education, Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences
| |
Collapse
|
6
|
Zhang F, Jin T, Hu Q, He P. Distinguishing skin cancer cells and normal cells using electrical impedance spectroscopy. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|