1
|
Tjahjono NS, Subramanian D, Shihabeddin TZ, Hicks HD, Varner VD, Petroll WM, Schmidtke DW. Effect of Decorin and Aligned Collagen Fibril Topography on TGF-β1 Activation of Corneal Keratocytes. Bioengineering (Basel) 2025; 12:259. [PMID: 40150723 PMCID: PMC11939610 DOI: 10.3390/bioengineering12030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
During corneal wound healing, transforming growth factor-beta 1 (TGF-β1) causes differentiation of quiescent keratocytes into myofibroblasts. Decorin has been investigated as a promising anti-fibrotic therapeutic for corneal healing due to its interaction with TGF-β1, collagen, and cell surface receptors. In this study, a novel microfluidic method for coating aligned collagen fibrils with decorin was developed to mimic the presence of decorin within the corneal stroma. Decorin was found to bind selectively to collagen and remained bound for at least five days. To investigate the effects of decorin coatings on keratocyte activation, primary rabbit keratocytes were cultured in the presence of TGF-β1 for 5 days on substrates with or without decorin and stained for α-smooth muscle actin (α-SMA). The expression of α-SMA was reduced by similar amounts on monomeric collagen (40%), random collagen fibrils (32%), and aligned collagen fibrils (32%) coated with decorin as controls. However, α-SMA expression was differentially expressed between the collagen substrates not coated with decorin, with significantly lower expression on uncoated aligned collagen fibrils compared to uncoated collagen monomers. Addition of decorin directly to culture media, had a limited effect on reducing myofibroblast differentiation. Taken together, these results demonstrate the importance of topography and ECM composition on keratocyte activation.
Collapse
Affiliation(s)
- Nathaniel S. Tjahjono
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (N.S.T.); (D.S.); (T.Z.S.); (H.D.H.); (V.D.V.)
| | - Divya Subramanian
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (N.S.T.); (D.S.); (T.Z.S.); (H.D.H.); (V.D.V.)
| | - Tarik Z. Shihabeddin
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (N.S.T.); (D.S.); (T.Z.S.); (H.D.H.); (V.D.V.)
| | - Hudson D. Hicks
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (N.S.T.); (D.S.); (T.Z.S.); (H.D.H.); (V.D.V.)
| | - Victor D. Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (N.S.T.); (D.S.); (T.Z.S.); (H.D.H.); (V.D.V.)
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - W. Matthew Petroll
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75090, USA
| | - David W. Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (N.S.T.); (D.S.); (T.Z.S.); (H.D.H.); (V.D.V.)
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
2
|
Subramanian D, Tjahjono NS, Nammi S, Miron-Mendoza M, Varner VD, Petroll WM, Schmidtke DW. Effects of Cell Seeding Density, Extracellular Matrix Composition, and Geometry on Yes-Associated Protein Translocation in Corneal Fibroblasts. Int J Mol Sci 2025; 26:1183. [PMID: 39940950 PMCID: PMC11818043 DOI: 10.3390/ijms26031183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Corneal fibroblasts are central to normal and abnormal wound healing in the cornea. During the wound healing process, several biochemical and biophysical signals that are present in the extracellular matrix (ECM) play critical roles in regulating corneal fibroblast behavior. The translocation and activation of Yes-associated protein (YAP)-a main transcriptional factor in the Hippo signaling pathway-is one example of mechanotransduction involving these signals. However, how corneal fibroblasts integrate these simultaneous cues is unknown. In this study, we utilized well-defined micropatterns of aligned collagen fibrils and other ECM proteins to explore the effects of cell density, topography, geometric confinement, and ECM composition on the translocation of YAP in corneal fibroblasts. We observed that when human corneal fibroblasts (HTKs) were confined to narrow micropatterns (50 μm and 100 μm) of proteins, there was a high degree of cell alignment irrespective of cell seeding density. However, the location of YAP was dependent upon the cell seeding density, ECM composition, and topography. YAP was more nuclear-localized on substrates coated with aligned collagen fibrils or fibronectin as compared to substrates coated with monomeric collagen, random collagen fibrils, or poly-L-Lysine. In addition, we also observed that YAP nuclear localization was significantly reduced when HTKs were cultured on aligned collagen fibrils, monomeric collagen, or fibronectin in the presence of monoclonal blocking antibodies against α5 or β1 integrin subunits. Finally, we observed that HTK cells formed fibrillar fibronectin on both monomeric collagen and aligned collagen fibrils. These findings provide new insights into how simultaneous biochemical and biophysical cues affect YAP localization in corneal fibroblasts.
Collapse
Affiliation(s)
- Divya Subramanian
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (D.S.); (N.S.T.); (S.N.); (V.D.V.)
| | - Nathaniel S. Tjahjono
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (D.S.); (N.S.T.); (S.N.); (V.D.V.)
| | - Satweka Nammi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (D.S.); (N.S.T.); (S.N.); (V.D.V.)
| | - Miguel Miron-Mendoza
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (M.M.-M.); (W.M.P.)
| | - Victor D. Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (D.S.); (N.S.T.); (S.N.); (V.D.V.)
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W. Matthew Petroll
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (M.M.-M.); (W.M.P.)
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David W. Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (D.S.); (N.S.T.); (S.N.); (V.D.V.)
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
3
|
Subramanian D, Tjahjono N, Hernandez PA, Varner VD, Petroll WM, Schmidtke DW. Fabrication of Micropatterns of Aligned Collagen Fibrils. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2551-2561. [PMID: 38277615 PMCID: PMC11001481 DOI: 10.1021/acs.langmuir.3c02676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Many tissues in vivo contain aligned structures such as filaments, fibrils, and fibers, which expose cells to anisotropic structural and topographical cues that range from the nanometer to micrometer scales. Understanding how cell behavior is regulated by these cues during physiological and pathological processes (e.g., wound healing, cancer invasion) requires substrates that can expose cells to anisotropic cues over several length scales. In this study, we developed a novel method of fabricating micropatterns of aligned collagen fibrils of different geometry onto PDMS-coated glass coverslips that allowed us to investigate the roles of topography and confinement on corneal cell behavior. When corneal cells were cultured on micropatterns of aligned collagen fibrils in the absence of confinement, the degree of cell alignment increased from 40 ± 14 to 82 ± 5% as the size of the micropattern width decreased from 750 to 50 μm. Although the cell area (∼2500 μm2), cell length (∼160 μm), and projected nuclear area (∼175 μm2) were relatively constant on the different micropattern widths, cells displayed an increased aspect ratio as the width of the aligned collagen fibril micropatterns decreased. We also observed that the morphology of cells adhering to the surrounding uncoated PDMS was dependent upon both the size of the aligned collagen fibril micropattern and the distance from the micropatterns. When corneal cells were confined to the micropatterns of aligned collagen fibrils by a Pluronic coating to passivate the surrounding area, a similar trend in increasing cell alignment was observed (35 ± 10 to 89 ± 2%). However, the projected nuclear area decreased significantly (∼210 to 130 μm2) as the micropattern width decreased from 750 to 50 μm. The development of this method allows for the deposition of aligned collagen fibril micropatterns of different geometries on a transparent and elastic substrate and provides an excellent model system to investigate the role of anisotropic cues in cell behavior.
Collapse
Affiliation(s)
- Divya Subramanian
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
| | - Nathaniel Tjahjono
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
| | - Paula A. Hernandez
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center at Dallas, TX, 75390
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center at Dallas, TX, 75390
| | - Victor D. Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
- Department of Surgery, University of Texas Southwestern Medical Center at Dallas, TX, 75390
| | - W. Matthew Petroll
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, TX, 75390
| | - David W. Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX
- Department of Surgery, University of Texas Southwestern Medical Center at Dallas, TX, 75390
| |
Collapse
|
4
|
Petroll WM, Miron-Mendoza M, Sunkara Y, Ikebe HR, Sripathi NR, Hassaniardekani H. The impact of UV cross-linking on corneal stromal cell migration, differentiation and patterning. Exp Eye Res 2023; 233:109523. [PMID: 37271309 PMCID: PMC10825899 DOI: 10.1016/j.exer.2023.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Previous studies have demonstrated that UV cross-linking (CXL) increases stromal stiffness and produces alterations in extracellular matrix (ECM) microstructure. In order to investigate how CXL impacts both keratocyte differentiation and patterning within the stroma, and fibroblast migration and myofibroblast differentiation on top of the stroma, we combined CXL with superficial phototherapeutic keratectomy (PTK) in a rabbit model. Twenty-six rabbits underwent a 6 mm diameter, 70 μm deep phototherapeutic keratectomy (PTK) with an excimer laser to remove the epithelium and anterior basement membrane. In 14 rabbits, standard CXL was performed in the same eye immediately after PTK. Contralateral eyes served as controls. In vivo confocal microscopy through focusing (CMTF) was used to analyze corneal epithelial and stromal thickness, as well as stromal keratocyte activation and corneal haze. CMTF scans were collected pre-operatively, and from 7 to 120 days after the procedure. A subset of rabbits was sacrificed at each time point, and corneas were fixed and labeled in situ for multiphoton fluorescence microscopy and second harmonic generation imaging. In vivo and in situ imaging demonstrated that haze after PTK was primarily derived from a layer of myofibroblasts that formed on top of the native stroma. Over time, this fibrotic layer was remodeled into more transparent stromal lamellae, and quiescent cells replaced myofibroblasts. Migrating cells within the native stroma underneath the photoablated area were elongated, co-aligned with collagen, and lacked stress fibers. In contrast, following PTK + CXL, haze was derived primarily from highly reflective necrotic "ghost cells" in the anterior stroma, and fibrosis on top of the photoablated stroma was not observed at any time point evaluated. Cells formed clusters as they migrated into the cross-linked stromal tissue and expressed stress fibers; some cells at the edge of the CXL area also expressed α-SM actin, suggesting myofibroblast transformation. Stromal thickness increased significantly between 21 and 90 days after PTK + CXL (P < 0.001) and was over 35 μm higher than baseline at Day 90 (P < 0.05). Overall, these data suggest that cross-linking inhibits interlamellar cell movement, and that these changes lead to a disruption of normal keratocyte patterning and increased activation during stromal repopulation. Interestingly, CXL also prevents PTK-induced fibrosis on top of the stroma, and results in long term increases in stromal thickness in the rabbit model.
Collapse
Affiliation(s)
- W Matthew Petroll
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA; Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX, USA.
| | | | - Yukta Sunkara
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Hikaru R Ikebe
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nishith R Sripathi
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
5
|
Li Q, Wong HL, Ip YL, Chu WY, Li MS, Saha C, Shih KC, Chan YK. Current microfluidic platforms for reverse engineering of cornea. Mater Today Bio 2023; 20:100634. [PMID: 37139464 PMCID: PMC10149412 DOI: 10.1016/j.mtbio.2023.100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023] Open
Abstract
According to the World Health Organization, corneal blindness constitutes 5.1% of global blindness population. Surgical outcomes have been improved significantly in the treatment of corneal blindness. However, corneal transplantation is limited by global shortage of donor tissue, prompting researchers to explore alternative therapies such as novel ocular pharmaceutics to delay corneal disease progression. Animal models are commonly adopted for investigating pharmacokinetics of ocular drugs. However, this approach is limited by physiological differences in the eye between animals and human, ethical issues and poor bench-to-bedside translatability. Cornea-on-a-chip (CoC) microfluidic platforms have gained great attention as one of the advanced in vitro strategies for constructing physiologically representative corneal models. With significant improvements in tissue engineering technology, CoC integrates corneal cells with microfluidics to recapitulate human corneal microenvironment for the study of corneal pathophysiological changes and evaluation of ocular drugs. Such model, in complement to animal studies, can potentially accelerate translational research, in particular the pre-clinical screening of ophthalmic medication, driving clinical treatment advancement for corneal diseases. This review provides an overview of engineered CoC platforms with respect to their merits, applications, and technical challenges. Emerging directions in CoC technology are also proposed for further investigations, to accentuate preclinical obstacles in corneal research.
Collapse
Affiliation(s)
- Qinyu Li
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Ho Lam Wong
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Yan Lam Ip
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Wang Yee Chu
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Man Shek Li
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Chinmoy Saha
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Kendrick Co Shih
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| | - Yau Kei Chan
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong, China
| |
Collapse
|
6
|
Lam KH, Shihabeddin TZ, Awkal JA, Najjar AM, Miron-Mendoza M, Maruri DP, Varner VD, Petroll WM, Schmidtke DW. Effects of Topography and PDGF on the Response of Corneal Keratocytes to Fibronectin-Coated Surfaces. J Funct Biomater 2023; 14:217. [PMID: 37103307 PMCID: PMC10144166 DOI: 10.3390/jfb14040217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
During corneal wound healing, corneal keratocytes are exposed to both biophysical and soluble cues that cause them to transform from a quiescent state to a repair phenotype. How keratocytes integrate these multiple cues simultaneously is not well understood. To investigate this process, primary rabbit corneal keratocytes were cultured on substrates patterned with aligned collagen fibrils and coated with adsorbed fibronectin. After 2 or 5 days of culture, keratocytes were fixed and stained to assess changes in cell morphology and markers of myofibroblastic activation by fluorescence microscopy. Initially, adsorbed fibronectin had an activating effect on the keratocytes as evidenced by changes in cell shape, stress fiber formation, and expression of alpha-smooth muscle actin (α-SMA). The magnitude of these effects depended upon substrate topography (i.e., flat substrate vs aligned collagen fibrils) and decreased with culture time. When keratocytes were simultaneously exposed to adsorbed fibronectin and soluble platelet-derived growth factor-BB (PDGF-BB), the cells elongated and had reduced expression of stress fibers and α-SMA. In the presence of PDGF-BB, keratocytes plated on the aligned collagen fibrils elongated in the direction of the fibrils. These results provide new information on how keratocytes respond to multiple simultaneous cues and how the anisotropic topography of aligned collagen fibrils influences keratocyte behavior.
Collapse
Affiliation(s)
- Kevin H. Lam
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Tarik Z. Shihabeddin
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jacob A. Awkal
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Alex M. Najjar
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Miguel Miron-Mendoza
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel P. Maruri
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Victor D. Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W. Matthew Petroll
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David W. Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Ahmed A, Joshi IM, Mansouri M, Ahamed NNN, Hsu MC, Gaborski TR, Abhyankar VV. Engineering fiber anisotropy within natural collagen hydrogels. Am J Physiol Cell Physiol 2021; 320:C1112-C1124. [PMID: 33852366 PMCID: PMC8285641 DOI: 10.1152/ajpcell.00036.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022]
Abstract
It is well known that biophysical properties of the extracellular matrix (ECM), including stiffness, porosity, composition, and fiber alignment (anisotropy), play a crucial role in controlling cell behavior in vivo. Type I collagen (collagen I) is a ubiquitous structural component in the ECM and has become a popular hydrogel material that can be tuned to replicate the mechanical properties found in vivo. In this review article, we describe popular methods to create 2-D and 3-D collagen I hydrogels with anisotropic fiber architectures. We focus on methods that can be readily translated from engineering and materials science laboratories to the life-science community with the overall goal of helping to increase the physiological relevance of cell culture assays.
Collapse
Affiliation(s)
- Adeel Ahmed
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York
| | - Indranil M Joshi
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York
| | - Mehran Mansouri
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York
| | - Nuzhet N N Ahamed
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York
| | - Meng-Chun Hsu
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York
| | - Thomas R Gaborski
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York
| | - Vinay V Abhyankar
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York
| |
Collapse
|
8
|
Sears PR, Bustamante-Marin XM, Gong H, Markovetz MR, Superfine R, Hill DB, Ostrowski LE. Induction of ciliary orientation by matrix patterning and characterization of mucociliary transport. Biophys J 2021; 120:1387-1395. [PMID: 33705757 PMCID: PMC8105732 DOI: 10.1016/j.bpj.2021.01.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Impaired mucociliary clearance (MCC) is a key feature of many airway diseases, including asthma, bronchiectasis, chronic obstructive pulmonary disease, cystic fibrosis, and primary ciliary dyskinesia. To improve MCC and develop new treatments for these diseases requires a thorough understanding of how mucus concentration, mucus composition, and ciliary activity affect MCC, and how different therapeutics impact this process. Although differentiated cultures of human airway epithelial cells are useful for investigations of MCC, the extent of ciliary coordination in these cultures varies, and the mechanisms controlling ciliary orientation are not completely understood. By introducing a pattern of ridges and grooves into the underlying collagen substrate, we demonstrate for the first time, to our knowledge, that changes in the extracellular matrix can induce ciliary alignment. Remarkably, 90% of human airway epithelial cultures achieved continuous directional mucociliary transport (MCT) when grown on the patterned substrate. These cultures maintain transport for months, allowing carefully controlled investigations of MCC over a wide range of normal and pathological conditions. To characterize the system, we measured the transport of bovine submaxillary gland mucin (BSM) under several conditions. Transport of 5% BSM was significantly reduced compared with that of 2% BSM, and treatment of 5% BSM with the reducing agent tris(2-carboxyethyl)phosphine (TCEP) reduced viscosity and increased the rate of MCT by approximately twofold. Addition of a small amount of high-molecular-weight DNA increased mucus viscosity and reduced MCT by ∼75%, demonstrating that the composition of mucus, as well as the concentration, can have significant effects on MCT. Our results demonstrate that a simple patterning of the collagen substrate results in highly coordinated ciliated cultures that develop directional MCT, and can be used to investigate the mechanisms controlling the regulation of ciliary orientation. Furthermore, the results demonstrate that this method provides an improved system for studying the effects of mucus composition and therapeutic agents on MCC.
Collapse
Affiliation(s)
- Patrick R Sears
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | | | - Henry Gong
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Matthew R Markovetz
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Richard Superfine
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina
| | - David B Hill
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina; Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence E Ostrowski
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina; Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
9
|
Petroll WM, Varner VD, Schmidtke DW. Keratocyte mechanobiology. Exp Eye Res 2020; 200:108228. [PMID: 32919993 PMCID: PMC7655662 DOI: 10.1016/j.exer.2020.108228] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 01/22/2023]
Abstract
In vivo, corneal keratocytes reside within a complex 3D extracellular matrix (ECM) consisting of highly aligned collagen lamellae, growth factors, and other extracellular matrix components, and are subjected to various mechanical stimuli during developmental morphogenesis, fluctuations in intraocular pressure, and wound healing. The process by which keratocytes convert changes in mechanical stimuli (e.g. local topography, applied force, ECM stiffness) into biochemical signaling is known as mechanotransduction. Activation of the various mechanotransductive pathways can produce changes in cell migration, proliferation, and differentiation. Here we review how corneal keratocytes respond to and integrate different biochemical and biophysical factors. We first highlight how growth factors and other cytokines regulate the activity of Rho GTPases, cytoskeletal remodeling, and ultimately the mechanical phenotype of keratocytes. We then discuss how changes in the mechanical properties of the ECM have been shown to regulate keratocyte behavior in sophisticated 2D and 3D experimental models of the corneal microenvironment. Finally, we discuss how ECM topography and protein composition can modulate cell phenotypes, and review the different methods of fabricating in vitro mimics of corneal ECM topography, novel approaches for examining topographical effects in vivo, and the impact of different ECM glycoproteins and proteoglycans on keratocyte behavior.
Collapse
Affiliation(s)
- W Matthew Petroll
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|