1
|
Watanabe M, Salvadori A, Markovic M, Sudo R, Ovsianikov A. Advanced liver-on-chip model mimicking hepatic lobule with continuous microvascular network via high-definition laser patterning. Mater Today Bio 2025; 32:101643. [PMID: 40206147 PMCID: PMC11979415 DOI: 10.1016/j.mtbio.2025.101643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/09/2024] [Accepted: 03/06/2025] [Indexed: 04/11/2025] Open
Abstract
There is a great demand for development of advanced in vitro liver models to predict the efficacy and safety of drug candidates accurately in the preclinical drug development. Despite the great efforts to develop biomimetic models, it remains challenging to precisely mimic a functional unit of the liver (i.e., hepatic lobule) with a continuous microvascular network. Recent progress in laser patterning has allowed us to create arbitrary biomimetic structures with high resolution. Here, we propose an advanced liver-on-chip model mimicking the hepatic lobule with a continuous microvascular network, ranging from the microvessels to the central vein of the liver, utilizing femtosecond laser patterning. Firstly, we optimize the laser power to pattern microchannels mimicking the microvessel and central vein of the hepatic lobule by using a femtosecond laser within a collagen-based hydrogel containing hepatic cells. Secondly, we construct continuous microvessels with luminal structures by comparing different microchannel sizes in diameter. Finally, we assemble a millimeter-scale hepatic lobule-like structure with multiple layers of microvascular networks in the liver-on-chip. Furthermore, our liver-on-chip model exhibits major liver functions and drug-induced hepatotoxicity, as evidenced by albumin and urea productions and by a toxic response to acetaminophen, respectively. Our approach provides valuable strategies for the development of advanced physiological and pathological liver-on-chip models for pharmaceutical and toxicological studies.
Collapse
Affiliation(s)
- Masafumi Watanabe
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), 1060 Vienna, Austria
- Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Austria
- Japan Society for the Promotion of Science (JSPS) Overseas Research Fellow, Japan
| | - Alice Salvadori
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), 1060 Vienna, Austria
- Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Austria
| | - Marica Markovic
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), 1060 Vienna, Austria
- Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Austria
| | - Ryo Sudo
- Department of System Design Engineering, Keio University, 223-8522 Yokohama, Japan
| | - Aleksandr Ovsianikov
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), 1060 Vienna, Austria
- Austrian Cluster for Tissue Regeneration (https://www.tissue-regeneration.at), Austria
| |
Collapse
|
2
|
Vetter J, Palagi I, Waisman A, Blaeser A. Recent advances in blood-brain barrier-on-a-chip models. Acta Biomater 2025; 197:1-28. [PMID: 40127880 DOI: 10.1016/j.actbio.2025.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
The blood-brain barrier is a physiological barrier between the vascular system and the nervous system. Under healthy conditions, it restricts the passage of most biomolecules into the brain, making drug development exceedingly challenging. Conventional cell-based in vitro models provide valuable insights into certain features of the BBB. Nevertheless, these models often lack the three-dimensional structure and dynamic interactions of the surrounding microenvironment, which greatly influence cell functionality. Consequently, considerable efforts have been made to enhance in vitro models for drug development and disease research. Recently, microfluidic organ-on-a-chip systems have emerged as promising candidates to better mimic the dynamic nature of the BBB. This review provides a comprehensive overview of recent BBB-on-chip devices. The typical building blocks, chip designs, the perfusion infrastructure, and readouts used to characterize and evaluate BBB formation are presented, analyzed, and discussed in detail. STATEMENT OF SIGNIFICANCE: The blood-brain barrier (BBB) is a highly selective barrier that controls what can enter the brain. While it protects the brain from harmful substances, it also hinders the delivery of treatments for neurological diseases such as Alzheimer's and Parkinson's. Due to its complexity, studying the BBB in living organisms remains difficult. However, recent advances in "organ-on-a-chip" technology have allowed scientists to create small, engineered models that replicate the BBB. These models provide a powerful platform to study diseases and test potential drugs with greater accuracy than traditional methods. Organ-on-a-chip devices are designed to mimic the behavior of organs or tissues in the human body, offering a more realistic and controlled environment for research. This review highlights recent breakthroughs in BBB-on-a-chip technology, showing how these models enhance current research and have the potential to transform the way we study brain diseases and develop new drugs. By integrating biology and engineering, BBB-on-a-chip technology has the potential to transform neuroscience research, improve drug development, and enhance our understanding of brain disorders.
Collapse
Affiliation(s)
- Johanna Vetter
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - Ilaria Palagi
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Blaeser
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, Darmstadt, Germany; Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
3
|
Kincses A, Vigh JP, Petrovszki D, Valkai S, Kocsis AE, Walter FR, Lin HY, Jan JS, Deli MA, Dér A. The Use of Sensors in Blood-Brain Barrier-on-a-Chip Devices: Current Practice and Future Directions. BIOSENSORS 2023; 13:bios13030357. [PMID: 36979569 PMCID: PMC10046513 DOI: 10.3390/bios13030357] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 06/01/2023]
Abstract
The application of lab-on-a-chip technologies in in vitro cell culturing swiftly resulted in improved models of human organs compared to static culture insert-based ones. These chip devices provide controlled cell culture environments to mimic physiological functions and properties. Models of the blood-brain barrier (BBB) especially profited from this advanced technological approach. The BBB represents the tightest endothelial barrier within the vasculature with high electric resistance and low passive permeability, providing a controlled interface between the circulation and the brain. The multi-cell type dynamic BBB-on-chip models are in demand in several fields as alternatives to expensive animal studies or static culture inserts methods. Their combination with integrated biosensors provides real-time and noninvasive monitoring of the integrity of the BBB and of the presence and concentration of agents contributing to the physiological and metabolic functions and pathologies. In this review, we describe built-in sensors to characterize BBB models via quasi-direct current and electrical impedance measurements, as well as the different types of biosensors for the detection of metabolites, drugs, or toxic agents. We also give an outlook on the future of the field, with potential combinations of existing methods and possible improvements of current techniques.
Collapse
Affiliation(s)
- András Kincses
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
| | - Judit P. Vigh
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
- Doctoral School of Biology, University of Szeged, H-6720 Szeged, Hungary
| | - Dániel Petrovszki
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, H-6720 Szeged, Hungary
| | - Sándor Valkai
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
| | - Anna E. Kocsis
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
| | - Fruzsina R. Walter
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan;
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
| | - András Dér
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
| |
Collapse
|
4
|
Cai Y, Fan K, Lin J, Ma L, Li F. Advances in BBB on Chip and Application for Studying Reversible Opening of Blood-Brain Barrier by Sonoporation. MICROMACHINES 2022; 14:112. [PMID: 36677173 PMCID: PMC9861620 DOI: 10.3390/mi14010112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The complex structure of the blood-brain barrier (BBB), which blocks nearly all large biomolecules, hinders drug delivery to the brain and drug assessment, thus decelerating drug development. Conventional in vitro models of BBB cannot mimic some crucial features of BBB in vivo including a shear stress environment and the interaction between different types of cells. There is a great demand for a new in vitro platform of BBB that can be used for drug delivery studies. Compared with in vivo models, an in vitro platform has the merits of low cost, shorter test period, and simplicity of operation. Microfluidic technology and microfabrication are good tools in rebuilding the BBB in vitro. During the past decade, great efforts have been made to improve BBB penetration for drug delivery using biochemical or physical stimuli. In particular, compared with other drug delivery strategies, sonoporation is more attractive due to its minimized systemic exposure, high efficiency, controllability, and reversible manner. BBB on chips (BOC) holds great promise when combined with sonoporation. More details and mechanisms such as trans-endothelial electrical resistance (TEER) measurements and dynamic opening of tight junctions can be figured out when using sonoporation stimulating BOC, which will be of great benefit for drug development. Herein, we discuss the recent advances in BOC and sonoporation for BBB disruption with this in vitro platform.
Collapse
Affiliation(s)
- Yicong Cai
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518107, China
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Kexin Fan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiawei Lin
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518107, China
| | - Lin Ma
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fenfang Li
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518107, China
| |
Collapse
|
5
|
Schreiner TG, Creangă-Murariu I, Tamba BI, Lucanu N, Popescu BO. In Vitro Modeling of the Blood–Brain Barrier for the Study of Physiological Conditions and Alzheimer’s Disease. Biomolecules 2022; 12:biom12081136. [PMID: 36009030 PMCID: PMC9405874 DOI: 10.3390/biom12081136] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The blood–brain barrier (BBB) is an essential structure for the maintenance of brain homeostasis. Alterations to the BBB are linked with a myriad of pathological conditions and play a significant role in the onset and evolution of neurodegenerative diseases, including Alzheimer’s disease. Thus, a deeper understanding of the BBB’s structure and function is mandatory for a better knowledge of neurodegenerative disorders and the development of effective therapies. Because studying the BBB in vivo imposes overwhelming difficulties, the in vitro approach remains the main possible way of research. With many in vitro BBB models having been developed over the last years, the main aim of this review is to systematically present the most relevant designs used in neurological research. In the first part of the article, the physiological and structural–functional parameters of the human BBB are detailed. Subsequently, available BBB models are presented in a comparative approach, highlighting their advantages and limitations. Finally, the new perspectives related to the study of Alzheimer’s disease with the help of novel devices that mimic the in vivo human BBB milieu gives the paper significant originality.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 21-23 Professor Dimitrie Mangeron Blvd., 700050 Iasi, Romania
- Correspondence:
| | - Ioana Creangă-Murariu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Str., No. 16, 700155 Iasi, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Universitatii Str., No. 16, 700155 Iasi, Romania
| | - Nicolae Lucanu
- Department of Applied Electronics and Intelligent Systems, Faculty of Electronics, Telecommunications and Information Technology, Gheorghe Asachi Technical University of Iasi, 21-23 Professor Dimitrie Mangeron Blvd., 700050 Iasi, Romania
| | - Bogdan Ovidiu Popescu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
6
|
Fabrication of a Cell-Friendly Poly(dimethylsiloxane) Culture Surface via Polydopamine Coating. MICROMACHINES 2022; 13:mi13071122. [PMID: 35888939 PMCID: PMC9315764 DOI: 10.3390/mi13071122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023]
Abstract
In this study, we fabricated a poly(dimethylsiloxane) (PDMS) surface coated with polydopamine (PDA) to enhance cell adhesion. PDA is well known for improving surface adhesion on various surfaces due to the abundant reactions enabled by the phenyl, amine, and catechol groups contained within it. To confirm the successful surface coating with PDA, the water contact angle and X-ray photoelectron spectroscopy were analyzed. Human umbilical vein endothelial cells (HUVECs) and human-bone-marrow-derived mesenchymal stem cells (MSCs) were cultured on the PDA-coated PDMS surface to evaluate potential improvements in cell adhesion and proliferation. HUVECs were also cultured inside a cylindrical PDMS microchannel, which was constructed to mimic a human blood vessel, and their growth and performance were compared to those of cells grown inside a rectangular microchannel. This study provides a helpful perspective for building a platform that mimics in vivo environments in a more realistic manner.
Collapse
|
7
|
Yin F, Su W, Wang L, Hu Q. Microfluidic strategies for the blood-brain barrier construction and assessment. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Bouattour Y, Sautou V, Hmede R, El Ouadhi Y, Gouot D, Chennell P, Lapusta Y, Chapelle F, Lemaire JJ. A Minireview on Brain Models Simulating Geometrical, Physical, and Biochemical Properties of the Human Brain. Front Bioeng Biotechnol 2022; 10:818201. [PMID: 35419353 PMCID: PMC8996142 DOI: 10.3389/fbioe.2022.818201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
There is a growing body of evidences that brain surrogates will be of great interest for researchers and physicians in the medical field. They are currently mainly used for education and training purposes or to verify the appropriate functionality of medical devices. Depending on the purpose, a variety of materials have been used with specific and accurate mechanical and biophysical properties, More recently they have been used to assess the biocompatibility of implantable devices, but they are still not validated to study the migration of leaching components from devices. This minireview shows the large diversity of approaches and uses of brain phantoms, which converge punctually. All these phantoms are complementary to numeric models, which benefit, reciprocally, of their respective advances. It also suggests avenues of research for the analysis of leaching components from implantable devices.
Collapse
Affiliation(s)
- Yassine Bouattour
- Université Clermont Auvergne, CHU Clermont Ferrand, Clermont Auvergne INP, CNRS, ICCF, F-63000, Clermont-Ferrand, France
- *Correspondence: Yassine Bouattour, ; Jean-Jacques Lemaire,
| | - Valérie Sautou
- Université Clermont Auvergne, CHU Clermont Ferrand, Clermont Auvergne INP, CNRS, ICCF, F-63000, Clermont-Ferrand, France
| | - Rodayna Hmede
- Universite Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Youssef El Ouadhi
- Universite Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000, Clermont-Ferrand, France
- Service de Neurochirurgie, CHU Clermont Ferrand, F-63000, Clermont-Ferrand, France
| | - Dimitri Gouot
- Universite Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Philip Chennell
- Université Clermont Auvergne, CHU Clermont Ferrand, Clermont Auvergne INP, CNRS, ICCF, F-63000, Clermont-Ferrand, France
| | - Yuri Lapusta
- Universite Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Frédéric Chapelle
- Universite Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Jean-Jacques Lemaire
- Universite Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000, Clermont-Ferrand, France
- Service de Neurochirurgie, CHU Clermont Ferrand, F-63000, Clermont-Ferrand, France
- *Correspondence: Yassine Bouattour, ; Jean-Jacques Lemaire,
| |
Collapse
|
9
|
In vitro blood brain barrier models: An overview. J Control Release 2022; 343:13-30. [PMID: 35026351 DOI: 10.1016/j.jconrel.2022.01.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/22/2022]
Abstract
Understanding the composition and function of the blood brain barrier (BBB) enables the development of novel, innovative techniques for administering central nervous system (CNS) medications and technologies for improving the existing models. Scientific and methodological interest in the pathology of the BBB resulted in the formation of numerous in vitro BBB models. Once successfully studied and modelled, it would be a valuable tool for elucidating the mechanism of action of the CNS disorders prior to their manifestation and the pathogenic factors. Understanding the rationale behind the selection of the models as well as their working may enable the development of state-of-the-art drugs for treating and managing neurological diseases. Hence, to have realistic simulation of the BBB and test its drug permeability the microfluidics-based BBB-on-Chip model has been developed. To summarise, we aim to evaluate the advanced, newly developed and frequently used in vitro BBB models, thereby providing a brief overview of the components essential for in vitro BBB formation, the methods of chip fabrication and cell culturing, its applications and the recent advances in this technological field. This will be critical for developing CNS treatments with improved BBB penetrability and pharmacokinetic properties.
Collapse
|
10
|
Luo D, Yao C, Zhang R, Zhao R, Iqbal MZ, Mushtaq A, Lee IS, Kong X. Silk Fibroin/Collagen Blended Membrane Fabricated via a Green Papermaking Method for Potential Guided Bone Regeneration Application: In Vitro and In Vivo Evaluation. ACS Biomater Sci Eng 2021; 7:5788-5797. [PMID: 34724784 DOI: 10.1021/acsbiomaterials.1c01060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Guided bone regeneration (GBR) technology is a commonly used surgical procedure for the repair of damaged periodontal tissues. Poor mechanical property and rapid degradation rate are the major reasons for GBR membrane failure in clinical applications. Herein, we applied a green papermaking method to fabricate silk fibroin (SF) membranes blended with collagen and tested their performance. The results showed that the blended SF75 (SF and collagen in a weight ratio of 75:25) membranes are biocompatible with good mechanical properties in the wet condition and appropriate biodegradation rate. MC3T3-E1 osteoblast cell adhesion and proliferation on the membranes were improved by the hybrid biological functions of SF and collagen. Subcutaneous implantation in rats for 9 weeks demonstrated that the membranes induced a less severe inflammatory response. The biodegradation time of the SF75 membranes was appropriate for tissue regeneration. This research, for the first time, reports a blended membrane prepared from silk fibroin and collagen with an ecofriendly method, which shows promise for application in guided bone regeneration.
Collapse
Affiliation(s)
- Dandan Luo
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.,School of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Chenxue Yao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Rui Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.,College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Asim Mushtaq
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - In-Seop Lee
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.,Institute of Natural Sciences, Yonsei University, Seoul 03722, Korea
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.,Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| |
Collapse
|
11
|
Staicu CE, Jipa F, Axente E, Radu M, Radu BM, Sima F. Lab-on-a-Chip Platforms as Tools for Drug Screening in Neuropathologies Associated with Blood-Brain Barrier Alterations. Biomolecules 2021; 11:916. [PMID: 34205550 PMCID: PMC8235582 DOI: 10.3390/biom11060916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Lab-on-a-chip (LOC) and organ-on-a-chip (OOC) devices are highly versatile platforms that enable miniaturization and advanced controlled laboratory functions (i.e., microfluidics, advanced optical or electrical recordings, high-throughput screening). The manufacturing advancements of LOCs/OOCs for biomedical applications and their current limitations are briefly discussed. Multiple studies have exploited the advantages of mimicking organs or tissues on a chip. Among these, we focused our attention on the brain-on-a-chip, blood-brain barrier (BBB)-on-a-chip, and neurovascular unit (NVU)-on-a-chip applications. Mainly, we review the latest developments of brain-on-a-chip, BBB-on-a-chip, and NVU-on-a-chip devices and their use as testing platforms for high-throughput pharmacological screening. In particular, we analyze the most important contributions of these studies in the field of neurodegenerative diseases and their relevance in translational personalized medicine.
Collapse
Affiliation(s)
- Cristina Elena Staicu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
- Center for Advanced Laser Technologies, National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania; (F.J.); (E.A.); (F.S.)
| | - Florin Jipa
- Center for Advanced Laser Technologies, National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania; (F.J.); (E.A.); (F.S.)
| | - Emanuel Axente
- Center for Advanced Laser Technologies, National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania; (F.J.); (E.A.); (F.S.)
| | - Mihai Radu
- Department of Life and Environmental Physics, ‘Horia Hulubei’ National Institute for Physics and Nuclear Engineering, 077125 Măgurele, Romania;
| | - Beatrice Mihaela Radu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| | - Felix Sima
- Center for Advanced Laser Technologies, National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania; (F.J.); (E.A.); (F.S.)
| |
Collapse
|
12
|
Katt ME, Shusta EV. In vitro Models of the Blood-Brain Barrier: Building in physiological complexity. Curr Opin Chem Eng 2020; 30:42-52. [PMID: 32905326 DOI: 10.1016/j.coche.2020.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Development of brain therapeutics is significantly hampered by the presence of the blood-brain barrier (BBB). Classical transwell models are able to recapitulate many important aspects of drug transport across the BBB, but are not completely predictive of in vivo brain uptake. Species differences further complicate translation of experimental therapeutics from the benchtop to the clinic. Human BBB models offer some solutions to this problem, and by increasing device complexity both in terms of multicellularity, flow and physical architecture, physiological models of the BBB have been developed that can more faithfully model different aspects of transport and homeostasis BBB. Using these models, it may be possible to improve the predictive capacity in benchmarking candidate therapeutics, and to identify new druggable targets by studying multicellular interactions.
Collapse
Affiliation(s)
- Moriah E Katt
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
13
|
Choi JH, Santhosh M, Choi JW. In Vitro Blood-Brain Barrier-Integrated Neurological Disorder Models Using a Microfluidic Device. MICROMACHINES 2019; 11:E21. [PMID: 31878184 PMCID: PMC7019695 DOI: 10.3390/mi11010021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) plays critical role in the human physiological system such as protection of the central nervous system (CNS) from external materials in the blood vessel, including toxicants and drugs for several neurological disorders, a critical type of human disease. Therefore, suitable in vitro BBB models with fluidic flow to mimic the shear stress and supply of nutrients have been developed. Neurological disorder has also been investigated for developing realistic models that allow advance fundamental and translational research and effective therapeutic strategy design. Here, we discuss introduction of the blood-brain barrier in neurological disorder models by leveraging a recently developed microfluidic system and human organ-on-a-chip system. Such models could provide an effective drug screening platform and facilitate personalized therapy of several neurological diseases.
Collapse
Affiliation(s)
- Jin-Ha Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, 121-742 Seoul, Korea;
| | - Mallesh Santhosh
- Center for Integrated Biotechnology, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, 121-742 Seoul, Korea;
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, 121-742 Seoul, Korea;
- Center for Integrated Biotechnology, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, 121-742 Seoul, Korea;
| |
Collapse
|