1
|
Xu H, Zhang H, Li T, Duan X. Recent advances in microscale techniques for red blood cells manipulation. BIOMICROFLUIDICS 2025; 19:031501. [PMID: 40375901 PMCID: PMC12077923 DOI: 10.1063/5.0267049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/17/2025] [Indexed: 05/18/2025]
Abstract
Manipulation of red blood cells (RBCs) in microscale has proven to play a pivotal role in various applications, such as disease diagnosis and drug delivery. Over the past decades, the capabilities of microscale manipulation techniques have evolved from simple particle manipulation to cells and organisms, with numerous microfluidic-based research tools being developed for RBC manipulation. This review first introduces the reported microscale manipulation techniques and their principles, including passive microfluidic methods based on microstructures and hydrodynamics, as well as active methods such as acoustic, optical, and electrical techniques. It then focuses on the application scenarios of these micro-scale manipulation methods for RBC manipulation, including the investigation of RBC mechanical properties, the preparation of RBC carriers, the control of RBC rotation, and RBC lysis. Finally, the future prospects of microscale techniques in RBC manipulation are discussed. This review offers a comprehensive comparison of various techniques, aiming to provide researchers from different fields with a broad perspective and to guide the continued development of microscale manipulation methods for RBC applications. It seeks to help researchers from diverse backgrounds stay informed about the latest trends and advancements in the field.
Collapse
Affiliation(s)
- Huihui Xu
- State Key Laboratory of Precision Measuring Technology and Instruments, and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Huijing Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Tiechuan Li
- State Key Laboratory of Precision Measuring Technology and Instruments, and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
He W, Zhu J, Feng Y, Liang F, You K, Chai H, Sui Z, Hao H, Li G, Zhao J, Deng L, Zhao R, Wang W. Neuromorphic-enabled video-activated cell sorting. Nat Commun 2024; 15:10792. [PMID: 39737963 PMCID: PMC11685671 DOI: 10.1038/s41467-024-55094-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Imaging flow cytometry allows image-activated cell sorting (IACS) with enhanced feature dimensions in cellular morphology, structure, and composition. However, existing IACS frameworks suffer from the challenges of 3D information loss and processing latency dilemma in real-time sorting operation. Herein, we establish a neuromorphic-enabled video-activated cell sorter (NEVACS) framework, designed to achieve high-dimensional spatiotemporal characterization content alongside high-throughput sorting of particles in wide field of view. NEVACS adopts event camera, CPU, spiking neural networks deployed on a neuromorphic chip, and achieves sorting throughput of 1000 cells/s with relatively economic hybrid hardware solution (~$10 K for control) and simple-to-make-and-use microfluidic infrastructures. Particularly, the application of NEVACS in classifying regular red blood cells and blood-disease-relevant spherocytes highlights the accuracy of using video over a single frame (i.e., average error of 0.99% vs 19.93%), indicating NEVACS' potential in cell morphology screening and disease diagnosis.
Collapse
Affiliation(s)
- Weihua He
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Junwen Zhu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Yongxiang Feng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Fei Liang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Kaichao You
- Software School, Tsinghua University, Beijing, China
| | - Huichao Chai
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Zhipeng Sui
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Haiqing Hao
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Guoqi Li
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jingjing Zhao
- Institute of Medical Equipment Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Deng
- Center for Brain-Inspired Computing Research (CBICR), Beijing Advanced Innovation Center for Integrated Circuits, Optical Memory National Engineering Research Center, & Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Rong Zhao
- Center for Brain-Inspired Computing Research (CBICR), Beijing Advanced Innovation Center for Integrated Circuits, Optical Memory National Engineering Research Center, & Department of Precision Instrument, Tsinghua University, Beijing, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Saeidpour Z, Bouloorchi Tabalvandani M, Javadizadeh S, Badieirostami M. Enhanced sperm isolation via bulk acoustic waves for high-throughput motility screening. Sci Rep 2024; 14:26717. [PMID: 39496817 PMCID: PMC11535287 DOI: 10.1038/s41598-024-78536-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/31/2024] [Indexed: 11/06/2024] Open
Abstract
The increasing infertility rate has become a worrying global challenge in recent years. According to the report of the World Health Organization, the male factor is responsible for over half of infertility cases, which includes the lack of desirable characteristics in sperm motility, morphology, and DNA integrity. In recent years, it has been shown that clinical methods including density gradient centrifugation cause damage to sperm DNA and besides being invasive, they are costly and time-consuming. In contrast, microfluidics has been used as a promising and non-invasive approach to manipulate biological cells. Here, by using the microvortices created by the oscillation of the bubbles caused by the bulk acoustic waves, we were able to trap sperms with less motility. In contrast, the highly motile sperms overcame the force of the microvortices and were guided to the outlet pool by following the channel boundaries. As a result, over 50% and 44% improvement in sperm progressive motility and viability, respectively, as well as 40% improvement in DNA integrity, were observed in the analysis of sperms retrieved from the output pool. In addition to being fast and non-invasive, the proposed device benefits from an easy method for sperms retrieval and does not require any preprocessing of the raw sperm sample.
Collapse
Affiliation(s)
- Zahra Saeidpour
- MEMS Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Saeed Javadizadeh
- MEMS Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Badieirostami
- MEMS Lab, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Cardenas-Benitez B, Hurtado R, Luo X, Lee AP. Three-dimensional isotropic imaging of live suspension cells enabled by droplet microvortices. Proc Natl Acad Sci U S A 2024; 121:e2408567121. [PMID: 39436653 PMCID: PMC11536124 DOI: 10.1073/pnas.2408567121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Fast, nondestructive three-dimensional (3D) imaging of live suspension cells remains challenging without substrate treatment or fixation, precluding scalable single-cell morphometry with minimal alterations. While optical sectioning techniques achieve 3D live cell imaging, lateral versus depth resolution differences further complicate analysis. We present a scalable microfluidic method capable of 3D fluorescent isotropic imaging of live, nonadherent cells suspended inside picoliter droplets with high-speed single-cell volumetric readout (800 to 1,200 slices in 5 to 8 s) and near-diffraction limit resolution (~216 nm). The platform features a droplet trap array that leverages flow-induced droplet interfacial shear to generate intradroplet microvortices, which rotate single cells on their axis to enable optical projection tomography (OPT)-based imaging. This allows gentle (~1 mPa shear stress) observation of cells encapsulated inside nontoxic isotonic buffer droplets, facilitating scalable OPT acquisition by simultaneous spinning of hundreds of cells. We demonstrate 3D imaging of live myeloid and lymphoid cells in suspension, including K562 cells, as well as naive and activated T cells-small cells prone to movement in their suspended phenotype. Our fully suspended, orientation-independent cell morphometry, driven by isotropic imaging and spherical harmonic analysis, enabled the study of primary T cells across various immunological activation states. This approach unveiled six distinct nuclear content distributions, contrasting with conventional 2D images that typically portray spheroid and bean-like nuclear shapes associated with lymphocytes. Our arrayed-droplet OPT technology is capable of isotropic, single live-cell 3D imaging, with the potential to perform large-scale morphometry of immune cell effector function states while providing compatibility with microfluidic droplet operations.
Collapse
Affiliation(s)
- Braulio Cardenas-Benitez
- Department of Biomedical Engineering, University of California, Irvine, CA92697
- Center for Advanced Design & Manufacturing of Integrated Microfluidics, University of California, Irvine, CA92697
| | - Richard Hurtado
- Department of Biomedical Engineering, University of California, Irvine, CA92697
- Center for Advanced Design & Manufacturing of Integrated Microfluidics, University of California, Irvine, CA92697
| | - Xuhao Luo
- Department of Biomedical Engineering, University of California, Irvine, CA92697
- Center for Advanced Design & Manufacturing of Integrated Microfluidics, University of California, Irvine, CA92697
| | - Abraham P. Lee
- Department of Biomedical Engineering, University of California, Irvine, CA92697
- Center for Advanced Design & Manufacturing of Integrated Microfluidics, University of California, Irvine, CA92697
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA92697
| |
Collapse
|
5
|
Wang Y, Zhou S, Quan Y, Liu Y, Zhou B, Chen X, Ma Z, Zhou Y. Label-free spatiotemporal decoding of single-cell fate via acoustic driven 3D tomography. Mater Today Bio 2024; 28:101201. [PMID: 39221213 PMCID: PMC11364901 DOI: 10.1016/j.mtbio.2024.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
Label-free three-dimensional imaging plays a crucial role in unraveling the complexities of cellular functions and interactions in biomedical research. Conventional single-cell optical tomography techniques offer affordability and the convenience of bypassing laborious cell labelling protocols. However, these methods are encumbered by restricted illumination scanning ranges on abaxial plane, resulting in the loss of intricate cellular imaging details. The ability to fully control cellular rotation across all angles has emerged as an optimal solution for capturing comprehensive structural details of cells. Here, we introduce a label-free, cost-effective, and readily fabricated contactless acoustic-induced vibration system, specifically designed to enable multi-degree-of-freedom rotation of cells, ultimately attaining stable in-situ rotation. Furthermore, by integrating this system with advanced deep learning technologies, we perform 3D reconstruction and morphological analysis on diverse cell types, thus validating groups of high-precision cell identification. Notably, long-term observation of cells reveals distinct features associated with drug-induced apoptosis in both cancerous and normal cells populations. This methodology, based on deep learning-enabled cell 3D reconstruction, charts a novel trajectory for groups of real-time cellular visualization, offering promising advancements in the realms of drug screening and post-single-cell analysis, thereby addressing potential clinical requisites.
Collapse
Affiliation(s)
- Yuxin Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Shizheng Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Yue Quan
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Yu Liu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| |
Collapse
|
6
|
Hidaka M, Kojima M, Sakai S. Micromixer driven by bubble-induced acoustic microstreaming for multi-ink 3D bioprinting. LAB ON A CHIP 2024; 24:4571-4580. [PMID: 39221588 DOI: 10.1039/d4lc00552j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Recently, the 3D printing of cell-laden hydrogel structures, known as bioprinting, has received increasing attention owing to advances in tissue engineering and drug screening. However, a micromixing technology that efficiently mixes viscous bioinks under mild conditions is needed. Therefore, this study presents a novel method for achieving homogeneous mixing of multiple inks in 3D bioprinting through acoustic stimulation. This technique involves generating an acoustic microstream through bubble oscillations inside a 3D bioprinting nozzle. We determined the optimal hole design for trapping a bubble, hole arrangement, and voltage for efficient mixing, resulting in a four-fold increase in mixing efficiency compared to a single bubble arrangement. Subsequently, we propose a nozzle design for efficient mixing during bioprinting. The proposed nozzle design enabled the successful printing of line structures with a uniform mixture of different viscous bioinks, achieving a mixing efficiency of over 80% for mixing 0.5-1.0 wt% sodium alginate aqueous solutions. Additionally, acoustic stimulation had no adverse effects on cell viability, maintaining a high cell viability of 88% after extrusion. This study presents the first use of a bubble micromixer in 3D bioprinting, demonstrating gentle yet effective multi-ink mixing. We believe this approach will broaden 3D printing applications, particularly for constructing functional structures in 3D bioprinting.
Collapse
Affiliation(s)
- Mitsuyuki Hidaka
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, Japan.
| | - Masaru Kojima
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, Japan.
| | - Shinji Sakai
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, Japan.
| |
Collapse
|
7
|
Wu G, Xian W, You Q, Zhang J, Chen X. AcousticRobots: Smart acoustically powered micro-/nanoswimmers for precise biomedical applications. Adv Drug Deliv Rev 2024; 207:115201. [PMID: 38331256 DOI: 10.1016/j.addr.2024.115201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/24/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Although nanotechnology has evolutionarily progressed in biomedical field over the past decades, achieving satisfactory therapeutic effects remains difficult with limited delivery efficiency. Ultrasound could provide a deep penetration and maneuverable actuation to efficiently power micro-/nanoswimmers with little harm, offering an emerging and fascinating alternative to the active delivery platform. Recent advances in novel fabrication, controllable concepts like intelligent swarm and the integration of hybrid propulsions have promoted its function and potential for medical applications. In this review, we will summarize the mechanisms and types of ultrasonically propelled micro/nanorobots (termed here as "AcousticRobots"), including the interactions between AcousticRobots and acoustic field, practical design considerations (e.g., component, size, shape), the synthetic methods, surface modification, controllable behaviors, and the advantages when combined with other propulsion approaches. The representative biomedical applications of functional AcousticRobots are also highlighted, including drug delivery, invasive surgery, eradication on the surrounding bio-environment, cell manipulation, detection, and imaging, etc. We conclude by discussing the challenges and outlook of AcousticRobots in biomedical applications.
Collapse
Affiliation(s)
- Gege Wu
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wei Xian
- Siansonic Technology Limited, No.1, Xingguang 5th Street, Ciqu, Tongzhou District, Beijing 101111, China
| | - Qing You
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Chemical and Biomolecular Engineering, and Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| |
Collapse
|
8
|
Lin L, Zhu R, Li W, Dong G, You H. The Shape Effect of Acoustic Micropillar Array Chips in Flexible Label-Free Separation of Cancer Cells. MICROMACHINES 2024; 15:421. [PMID: 38675233 PMCID: PMC11052022 DOI: 10.3390/mi15040421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
The precise isolation of circulating tumor cells (CTCs) from blood samples is a potent tool for cancer diagnosis and clinical prognosis. However, CTCs are present in extremely low quantities in the bloodstream, posing a significant challenge to their isolation. In this study, we propose a non-contact acoustic micropillar array (AMPA) chip based on acoustic streaming for the flexible, label-free capture of cancer cells. Three shapes of micropillar array chips (circular, rhombus, and square) were fabricated. The acoustic streaming characteristics generated by the vibration of microstructures of different shapes are studied in depth by combining simulation and experiment. The critical parameters (voltage and flow rate) of the device were systematically investigated using microparticle experiments to optimize capture performance. Subsequently, the capture efficiencies of the three micropillar structures were experimentally evaluated using mouse whole blood samples containing cancer cells. The experimental results revealed that the rhombus microstructure was selected as the optimal shape, demonstrating high capture efficiency (93%) and cell activity (96%). Moreover, the reversibility of the acoustic streaming was harnessed for the flexible release and capture of cancer cells, facilitating optical detection and analysis. This work holds promise for applications in monitoring cancer metastasis, bio-detection, and beyond.
Collapse
Affiliation(s)
- Lin Lin
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China; (R.Z.); (W.L.); (G.D.)
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| | - Rongxing Zhu
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China; (R.Z.); (W.L.); (G.D.)
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| | - Wang Li
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China; (R.Z.); (W.L.); (G.D.)
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| | - Guoqiang Dong
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China; (R.Z.); (W.L.); (G.D.)
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| | - Hui You
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China; (R.Z.); (W.L.); (G.D.)
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| |
Collapse
|
9
|
Zhang Z, Cao Y, Caviglia S, Agrawal P, Neuhauss SCF, Ahmed D. A vibrating capillary for ultrasound rotation manipulation of zebrafish larvae. LAB ON A CHIP 2024; 24:764-775. [PMID: 38193588 PMCID: PMC10863645 DOI: 10.1039/d3lc00817g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024]
Abstract
Multifunctional micromanipulation systems have garnered significant attention due to the growing interest in biological and medical research involving model organisms like zebrafish (Danio rerio). Here, we report a novel acoustofluidic rotational micromanipulation system that offers rapid trapping, high-speed rotation, multi-angle imaging, and 3D model reconstruction of zebrafish larvae. An ultrasound-activated oscillatory glass capillary is used to trap and rotate a zebrafish larva. Simulation and experimental results demonstrate that both the vibrating mode and geometric placement of the capillary contribute to the developed polarized vortices along the long axis of the capillary. Given its capacities for easy-to-operate, stable rotation, avoiding overheating, and high-throughput manipulation, our system poses the potential to accelerate zebrafish-directed biomedical research.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Acoustic Robotics Systems Laboratory, Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, Säumerstrasse 4, CH-8803 Zurich, Switzerland.
| | - Yilin Cao
- Acoustic Robotics Systems Laboratory, Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, Säumerstrasse 4, CH-8803 Zurich, Switzerland.
| | - Sara Caviglia
- Neuhauss Laboratory, Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Prajwal Agrawal
- Acoustic Robotics Systems Laboratory, Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, Säumerstrasse 4, CH-8803 Zurich, Switzerland.
| | - Stephan C F Neuhauss
- Neuhauss Laboratory, Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Daniel Ahmed
- Acoustic Robotics Systems Laboratory, Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, Säumerstrasse 4, CH-8803 Zurich, Switzerland.
| |
Collapse
|
10
|
Wu Y, Yue Y, Zhang H, Ma X, Zhang Z, Li K, Meng Y, Wang S, Wang X, Huang W. Three-dimensional rotation of deformable cells at a bipolar electrode array using a rotating electric field. LAB ON A CHIP 2024; 24:933-945. [PMID: 38273814 DOI: 10.1039/d3lc00882g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Three-dimensional rotation of cells is imperative in a variety of applications such as biology, medicine, and chemistry. We report for the first time a versatile approach for executing controllable 3D rotation of cells or particles at a bipolar electrode (BPE) array using a rotating electric field. The versatility of this method is demonstrated by 3D rotating various cells including yeast cells and K562 cells and the cells can be rotated to a desired orientation and immobilized for further operations. Our results demonstrate how electrorotation torque, induced charge electroosmosis (ICEO) flow and dielectrophoresis can be exerted on certain cells for modulating the rotation axis, speed, and direction. ICEO-based out-of-plane rotation is capable of rotating various cells in a vertical plane regardless of their shape and size. It can realize cell orientation by rotating cells toward a specific angle and enable cell rotation by steadily rotating multiple cells at a controllable speed. The rotation spectrum for in-plane rotation is further used to extract the cellular dielectric properties. This work offers a flexible method for controllable, contactless and precise rotation of different cells or particles, offering a rapid, high-throughput, and nondestructive rotation method for cell analysis and drug discovery.
Collapse
Affiliation(s)
- Yupan Wu
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, PR China
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518000, PR China
- Yangtze River Delta Research Institute of NPU, Taicang, 215400, PR China
| | - Yuanbo Yue
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Haohao Zhang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Xun Ma
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Zhexin Zhang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Kemu Li
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Yingqi Meng
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Shaoxi Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.
| |
Collapse
|
11
|
Mahkam N, Aghakhani A, Sheehan D, Gardi G, Katzschmann R, Sitti M. Acoustic Streaming-Induced Multimodal Locomotion of Bubble-Based Microrobots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304233. [PMID: 37884484 PMCID: PMC10724404 DOI: 10.1002/advs.202304233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/12/2023] [Indexed: 10/28/2023]
Abstract
Acoustically-driven bubbles at the micron scale can generate strong microstreaming flows in its surrounding fluidic medium. The tunable acoustic streaming strength of oscillating microbubbles and the diversity of the generated flow patterns enable the design of fast-moving microrobots with multimodal locomotion suitable for biomedical applications. The acoustic microrobots holding two coupled microbubbles inside a rigid body are presented; trapped bubbles inside the L-shaped structure with different orifices generate various streaming flows, thus allowing multiple degrees of freedom in locomotion. The streaming pattern and mean streaming speed depend on the intensity and frequency of the acoustic wave, which can trigger four dominant locomotion modes in the microrobot, denoted as translational and rotational, spinning, rotational, and translational modes. Next, the effect of various geometrical and actuation parameters on the control and navigation of the microrobot is investigated. Furthermore, the surface-slipping multimodal locomotion, flow mixing, particle manipulation capabilities, the effective interaction of high flow rates with cells, and subsequent cancerous cell lysing abilities of the proposed microrobot are demonstrated. Overall, these results introduce a design toolbox for the next generation of acoustic microrobots with higher degrees of freedom with multimodal locomotion in biomedical applications.
Collapse
Affiliation(s)
- Nima Mahkam
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH ZurichZurich8092Switzerland
| | - Amirreza Aghakhani
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute of Biomaterials and Biomolecular SystemsUniversity of Stuttgart70569StuttgartGermany
| | - Devin Sheehan
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Gaurav Gardi
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Robert Katzschmann
- Department of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH ZurichZurich8092Switzerland
- School of MedicineKoç UniversityIstanbul34450Turkey
- College of EngineeringKoç UniversityIstanbul34450Turkey
| |
Collapse
|
12
|
Liu Y, Yin Q, Luo Y, Huang Z, Cheng Q, Zhang W, Zhou B, Zhou Y, Ma Z. Manipulation with sound and vibration: A review on the micromanipulation system based on sub-MHz acoustic waves. ULTRASONICS SONOCHEMISTRY 2023; 96:106441. [PMID: 37216791 PMCID: PMC10213378 DOI: 10.1016/j.ultsonch.2023.106441] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
Manipulation of micro-objects have been playing an essential role in biochemical analysis or clinical diagnostics. Among the diverse technologies for micromanipulation, acoustic methods show the advantages of good biocompatibility, wide tunability, a label-free and contactless manner. Thus, acoustic micromanipulations have been widely exploited in micro-analysis systems. In this article, we reviewed the acoustic micromanipulation systems that were actuated by sub-MHz acoustic waves. In contrast to the high-frequency range, the acoustic microsystems operating at sub-MHz acoustic frequency are more accessible, whose acoustic sources are at low cost and even available from daily acoustic devices (e.g. buzzers, speakers, piezoelectric plates). The broad availability, with the addition of the advantages of acoustic micromanipulation, make sub-MHz microsystems promising for a variety of biomedical applications. Here, we review recent progresses in sub-MHz acoustic micromanipulation technologies, focusing on their applications in biomedical fields. These technologies are based on the basic acoustic phenomenon, such as cavitation, acoustic radiation force, and acoustic streaming. And categorized by their applications, we introduce these systems for mixing, pumping and droplet generation, separation and enrichment, patterning, rotation, propulsion and actuation. The diverse applications of these systems hold great promise for a wide range of enhancements in biomedicines and attract increasing interest for further investigation.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China; Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Qiu Yin
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yucheng Luo
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China
| | - Ziyu Huang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Quansheng Cheng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Wenming Zhang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China.
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
13
|
Liang F, Zhu J, Chai H, Feng Y, Zhao P, Liu S, Yang Y, Lin L, Cao L, Wang W. Non-Invasive and Minute-Frequency 3D Tomographic Imaging Enabling Long-Term Spatiotemporal Observation of Single Cell Fate. SMALL METHODS 2023:e2201492. [PMID: 36950762 DOI: 10.1002/smtd.202201492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Non-invasive and rapid imaging technique at subcellular resolution is significantly important for multiple biological applications such as cell fate study. Label-free refractive-index (RI)-based 3D tomographic imaging constitutes an excellent candidate for 3D imaging of cellular structures, but its full potential in long-term spatiotemporal cell fate observation is locked due to the lack of an efficient integrated system. Here, a long-term 3D RI imaging system incorporating a cutting-edge white light diffraction phase microscopy module with spatiotemporal stability, and an acoustofluidic device to roll and culture single cells in a customized live cell culture chamber is reported. Using this system, 3D RI imaging experiments are conducted for 250 cells and demonstrate efficient cell identification with high accuracy. Importantly, long-term and frequency-on-demand 3D RI imaging of K562 and MCF-7 cancer cells reveal different characteristics during normal cell growth, drug-induced cell apoptosis, and necrosis of drug-treated cells. Overall, it is believed that the proposed 3D tomographic imaging technique opens up a new avenue for visualizing intracellular structures and will find many applications such as disease diagnosis and nanomedicine.
Collapse
Affiliation(s)
- Fei Liang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Junwen Zhu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Huichao Chai
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Yongxiang Feng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Peng Zhao
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Shaofeng Liu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Yuanmu Yang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Linhan Lin
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Liangcai Cao
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Suzuki M, Kawai S, Shee CF, Yamada R, Uchida S, Yasukawa T. Development of a simultaneous electrorotation device with microwells for monitoring the rotation rates of multiple single cells upon chemical stimulation. LAB ON A CHIP 2023; 23:692-701. [PMID: 36355051 DOI: 10.1039/d2lc00627h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Here, we described a unique simultaneous electrorotation (ROT) device for monitoring the rotation rate of Jurkat cells via chemical stimulation without fluorescent labeling and an algorithm for estimating cell rotation rates. The device comprised two pairs of interdigitated array electrodes that were stacked orthogonally through a 20 μm-thick insulating layer with rectangular microwells. Four microelectrodes (two were patterned on the bottom of the microwells and the other two on the insulating layer) were arranged on each side of the rectangular microwells. The cells, which were trapped in the microwells, underwent ROT when AC voltages were applied to the four microelectrodes to generate a rotating electric field. These microwells maintained the cells even in fluid flows. Thereafter, the ROT rates of the trapped cells were estimated and monitored during the stimulation. We demonstrated the feasibility of estimating the chemical efficiency of cells by monitoring the ROT rates of the cells. After introducing a Jurkat cell suspension into the device, the cells were subjected to ROT by applying an AC signal. Further, the rotating cells were chemically stimulated by adding an ionomycin (a calcium ionophore)-containing aliquot. The ROT rate of the ionomycin-stimulated cells decreased gradually to 90% of the initial rate after 30 s. The ROT rate was reduced by an increase in membrane capacitance. Thus, our device enabled the simultaneous chemical stimulation-induced monitoring of the alterations in the membrane capacitances of many cells without fluorescent labeling.
Collapse
Affiliation(s)
- Masato Suzuki
- Graduate School of Science, University of Hyogo, Hyogo, Japan.
- Advanced Medical Engineering Research Institute, University of Hyogo, Hyogo, Japan
| | - Shikiho Kawai
- Graduate School of Science, University of Hyogo, Hyogo, Japan.
| | - Chean Fei Shee
- Department of Advanced Information Technology, Kyushu University, Fukuoka, Japan
| | - Ryoga Yamada
- Graduate School of Science, University of Hyogo, Hyogo, Japan.
| | - Seiichi Uchida
- Department of Advanced Information Technology, Kyushu University, Fukuoka, Japan
| | - Tomoyuki Yasukawa
- Graduate School of Science, University of Hyogo, Hyogo, Japan.
- Advanced Medical Engineering Research Institute, University of Hyogo, Hyogo, Japan
| |
Collapse
|
15
|
Zhang Q, Zhou C, Yu W, Sun Y, Guo G, Wang X. Isotropic imaging-based contactless manipulation for single-cell spatial heterogeneity analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Danaeifar M. New horizons in developing cell lysis methods: A Review. Biotechnol Bioeng 2022; 119:3007-3021. [PMID: 35900072 DOI: 10.1002/bit.28198] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/08/2022]
Abstract
Cell lysis is an essential step in many studies related to biology and medicine. Based on the scale and medium that cell lysis is carried out, there are three main types of the cell lysis: 1) lysis of the cells in the surrounding environment, 2) lysis of the isolated or cultured cells and 3) Single cell lysis. Conventionally, several cell lysis methods have been developed, such as freeze-thawing, bead beating, incursion in liquid nitrogen, sonication and enzymatic and chemical based approaches. In recent years, various novel technologies have been employed to develop new methods of cell lysis. The aim of studies in this field is to introduce more precise and efficient tools or to reduce the costs of cell lysis procedures. Nanostructure based lysis methods, acoustic oscillation, electrical current, irradiation, bacteria-mediated cell lysis, magnetic ionic liquids, bacteriophage genes, monolith columns, hydraulic forces and steam explosion are some examples of new developed cell lysis methods. Beside the significant advances in this field, there are still many challenges and the tools must be further improved. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohsen Danaeifar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Zhou Y, Dai L, Jiao N. Review of Bubble Applications in Microrobotics: Propulsion, Manipulation, and Assembly. MICROMACHINES 2022; 13:1068. [PMID: 35888885 PMCID: PMC9324494 DOI: 10.3390/mi13071068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023]
Abstract
In recent years, microbubbles have been widely used in the field of microrobots due to their unique properties. Microbubbles can be easily produced and used as power sources or tools of microrobots, and the bubbles can even serve as microrobots themselves. As a power source, bubbles can propel microrobots to swim in liquid under low-Reynolds-number conditions. As a manipulation tool, microbubbles can act as the micromanipulators of microrobots, allowing them to operate upon particles, cells, and organisms. As a microrobot, microbubbles can operate and assemble complex microparts in two- or three-dimensional spaces. This review provides a comprehensive overview of bubble applications in microrobotics including propulsion, micromanipulation, and microassembly. First, we introduce the diverse bubble generation and control methods. Then, we review and discuss how bubbles can play a role in microrobotics via three functions: propulsion, manipulation, and assembly. Finally, by highlighting the advantages and current challenges of this progress, we discuss the prospects of microbubbles in microrobotics.
Collapse
Affiliation(s)
- Yuting Zhou
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liguo Dai
- College of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
| | - Niandong Jiao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
18
|
Wu H, Dang D, Yang X, Wang J, Qi R, Yang W, Liang W. Accurate and Automatic Extraction of Cell Self-Rotation Speed in an ODEP Field Using an Area Change Algorithm. MICROMACHINES 2022; 13:mi13060818. [PMID: 35744432 PMCID: PMC9229272 DOI: 10.3390/mi13060818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022]
Abstract
Cells are complex biological units that can sense physicochemical stimuli from their surroundings and respond positively to them through characterization of the cell behavior. Thus, understanding the motions of cells is important for investigating their intrinsic properties and reflecting their various states. Computer-vision-based methods for elucidating cell behavior offer a novel approach to accurately extract cell motions. Here, we propose an algorithm based on area change to automatically extract the self-rotation of cells in an optically induced dielectrophoresis field. To obtain a clear and complete outline of the cell structure, dark corner removal and contrast stretching techniques are used in the pre-processing stage. The self-rotation speed is calculated by determining the frequency of the cell area changes in all of the captured images. The algorithm is suitable for calculating in-plane and out-of-plane rotations, while addressing the problem of identical images at different rotation angles when dealing with rotations of spherical and flat cells. In addition, the algorithm can be used to determine the motion trajectory of cells. The experimental results show that the algorithm can efficiently and accurately calculate cell rotation speeds of up to ~155 rpm. Potential applications of the proposed algorithm include cell morphology extraction, cell classification, and characterization of the cell mechanical properties. The algorithm can be very helpful for those who are interested in using computer vision and artificial-intelligence-based ideology in single-cell studies, drug treatment, and other bio-related fields.
Collapse
Affiliation(s)
- Haiyang Wu
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (H.W.); (X.Y.); (J.W.)
| | - Dan Dang
- School of Science, Shenyang Jianzhu University, Shenyang 110168, China
- Correspondence: (D.D.); (R.Q.); (W.L.)
| | - Xieliu Yang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (H.W.); (X.Y.); (J.W.)
| | - Junhai Wang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (H.W.); (X.Y.); (J.W.)
| | - Ruolong Qi
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (H.W.); (X.Y.); (J.W.)
- Correspondence: (D.D.); (R.Q.); (W.L.)
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China;
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; (H.W.); (X.Y.); (J.W.)
- Correspondence: (D.D.); (R.Q.); (W.L.)
| |
Collapse
|
19
|
Lu X, Wei Y, Ou H, Zhao C, Shi L, Liu W. Universal Control for Micromotor Swarms with a Hybrid Sonoelectrode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104516. [PMID: 34608753 DOI: 10.1002/smll.202104516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Enabled by active motion of microrobots, conventional biological detection and chemical analyses limited by passive diffusion can be significantly enhanced with fast testing speed and unique sensitiveness. However, controlled release and precise enrichment of microrobot swarms are still difficult to accomplish and thus prohibit them away from practical applications. Here, an efficient and versatile strategy utilizing a needle-shaped hybrid sonoelectrode to disperse and aggregate distinct micromotors is presented, remarkably accelerating mass transfer and enhancing the signal intensity. Hydrogen bubbles generated at the tip of charged electrode can oscillate as actuated by the acoustic field, creating intensified vortexes to disperse micromotors spontaneously. Via removing the attached bubble, the sonoelectrode serving as solid needle isolator is capable of collecting micromotors in a large scale with acoustic streaming in the working reservoir at higher ultrasound frequency. Numerical calculation reveals the streaming profiles with/without microbubbles, and manipulations on classic spherical and tubular micromotor models confirm that the acoustic-powered prototype device is effective for controlling different swarming behaviors in microfluidic channels. Overall, the proposed hybrid sonoelectrode offers a universal and rapid strategy to tailor micromotor swarm behaviors, advancing intelligent microrobots to be featured with active enrichment and compatible for next-generation sensitive portable detection microsystems.
Collapse
Affiliation(s)
- Xiaolong Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China
| | - Ying Wei
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China
| | - Huan Ou
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China
| | - Cong Zhao
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China
| | - Lukai Shi
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China
| | - Wenjuan Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China
| |
Collapse
|
20
|
Kleiber A, Kraus D, Henkel T, Fritzsche W. Review: tomographic imaging flow cytometry. LAB ON A CHIP 2021; 21:3655-3666. [PMID: 34514484 DOI: 10.1039/d1lc00533b] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Within the last decades, conventional flow cytometry (FC) has evolved as a powerful measurement method in clinical diagnostics, biology, life sciences and healthcare. Imaging flow cytometry (IFC) extends the power of traditional FC by adding high resolution optical and spectroscopic information. However, the conventional IFC only provides a 2D projection of a 3D object. To overcome this limitation, tomographic imaging flow cytometry (tIFC) was developed to access 3D information about the target particles. The goal of tIFC is to visualize surfaces and internal structures in a holistic way. This review article gives an overview of the past and current developments in tIFC.
Collapse
Affiliation(s)
- Andreas Kleiber
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany
| | - Daniel Kraus
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany
| | - Thomas Henkel
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany
| | - Wolfgang Fritzsche
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, D-07745 Jena, Germany
| |
Collapse
|
21
|
Kvåle Løvmo M, Pressl B, Thalhammer G, Ritsch-Marte M. Controlled orientation and sustained rotation of biological samples in a sono-optical microfluidic device. LAB ON A CHIP 2021; 21:1563-1578. [PMID: 33634305 DOI: 10.1039/d0lc01261k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In cell biology, recently developed technologies for studying suspended cell clusters, such as organoids or cancer spheroids, hold great promise relative to traditional 2D cell cultures. There is, however, growing awareness that sample confinement, such as fixation on a surface or embedding in a gel, has substantial impact on cell clusters. This creates a need for contact-less tools for 3D manipulation and inspection. This work addresses this demand by presenting a reconfigurable, hybrid sono-optical system for contact-free 3D manipulation and imaging, which is suitable for biological samples up to a few hundreds of micrometers in liquid suspension. In our sono-optical device, three independently addressable MHz transducers, an optically transparent top-transducer for levitation and two side-transducers, provide ultrasound excitation from three orthogonal directions. Steerable holographic optical tweezers give us an additional means of manipulation of the acoustically trapped specimen with high spatial resolution. We demonstrate how to control the reorientation or the spinning of complex samples, for instance for 3D visual inspection or for volumetric reconstruction. Whether continuous rotation or transient reorientation takes place depends on the strength of the acoustic radiation torque, arising from pressure gradients, compared to the acoustic viscous torque, arising from the shear forces at the viscous boundary layer around the particle. Based on numerical simulations and experimental insights, we develop a strategy to achieve a desired alignment or continuous rotation around a chosen axis, by tuning the relative strengths of the transducers and thus adjusting the relative contributions of viscous and radiation torques. The approach is widely applicable, as we discuss in several generic examples, with limitations dictated by size and shape asymmetry of the samples.
Collapse
Affiliation(s)
- Mia Kvåle Løvmo
- Institut für Biomedizinische Physik, Medizinische Universität Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria.
| | - Benedikt Pressl
- Institut für Biomedizinische Physik, Medizinische Universität Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria.
| | - Gregor Thalhammer
- Institut für Biomedizinische Physik, Medizinische Universität Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria.
| | - Monika Ritsch-Marte
- Institut für Biomedizinische Physik, Medizinische Universität Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria.
| |
Collapse
|
22
|
Li Y, Liu X, Huang Q, Ohta AT, Arai T. Bubbles in microfluidics: an all-purpose tool for micromanipulation. LAB ON A CHIP 2021; 21:1016-1035. [PMID: 33538756 DOI: 10.1039/d0lc01173h] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In recent decades, the integration of microfluidic devices and multiple actuation technologies at the microscale has greatly contributed to the progress of related fields. In particular, microbubbles are playing an increasingly important role in microfluidics because of their unique characteristics that lead to specific responses to different energy sources and gas-liquid interactions. Many effective and functional bubble-based micromanipulation strategies have been developed and improved, enabling various non-invasive, selective, and precise operations at the microscale. This review begins with a brief introduction of the morphological characteristics and formation of microbubbles. The theoretical foundations and working mechanisms of typical micromanipulations based on acoustic, thermodynamic, and chemical microbubbles in fluids are described. We critically review the extensive applications and the frontline advances of bubbles in microfluidics, including microflow patterns, position and orientation control, biomedical applications, and development of bubble-based microrobots. We lastly present an outlook to provide directions for the design and application of microbubble-based micromanipulation tools and attract the attention of relevant researchers to the enormous potential of microbubbles in microfluidics.
Collapse
Affiliation(s)
- Yuyang Li
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | | | | | | | | |
Collapse
|
23
|
Huang L, Feng Y, Liang F, Zhao P, Wang W. Dual-fiber microfluidic chip for multimodal manipulation of single cells. BIOMICROFLUIDICS 2021; 15:014106. [PMID: 33537113 PMCID: PMC7846294 DOI: 10.1063/5.0039087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/05/2021] [Indexed: 05/22/2023]
Abstract
On-chip single-cell manipulation is imperative in cell biology and it is desirable for a microfluidic chip to have multimodal manipulation capability. Here, we embedded two counter-propagating optical fibers into the microfluidic chip and configured their relative position in space to produce different misalignments. By doing so, we demonstrated multimodal manipulation of single cells, including capture, stretching, translation, orbital revolution, and spin rotation. The rotational manipulation can be in-plane or out-of-plane, providing flexibility and capability to observe the cells from different angles. Based on out-of-plane rotation, we performed a 3D reconstruction of cell morphology and extracted its five geometric parameters as biophysical features. We envision that this type of microfluidic chip configured with dual optical fibers can be helpful in manipulating cells as the upstream process of single-cell analysis.
Collapse
Affiliation(s)
| | - Yongxiang Feng
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100084, China
| | - Fei Liang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100084, China
| | - Peng Zhao
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100084, China
| | - Wenhui Wang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Huang L, Liang F, Feng Y, Zhao P, Wang W. On-chip integrated optical stretching and electrorotation enabling single-cell biophysical analysis. MICROSYSTEMS & NANOENGINEERING 2020; 6:57. [PMID: 34567668 PMCID: PMC8433418 DOI: 10.1038/s41378-020-0162-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/08/2020] [Accepted: 03/31/2020] [Indexed: 05/05/2023]
Abstract
Cells have different intrinsic markers such as mechanical and electrical properties, which may be used as specific characteristics. Here, we present a microfluidic chip configured with two opposing optical fibers and four 3D electrodes for multiphysical parameter measurement. The chip leverages optical fibers to capture and stretch a single cell and uses 3D electrodes to achieve rotation of the single cell. According to the stretching deformation and rotation spectrum, the mechanical and dielectric properties can be extracted. We provided proof of concept by testing five types of cells (HeLa, A549, HepaRG, MCF7 and MCF10A) and determined five biophysical parameters, namely, shear modulus, steady-state viscosity, and relaxation time from the stretching deformation and area-specific membrane capacitance and cytoplasm conductivity from the rotation spectra. We showed the potential of the chip in cancer research by observing subtle changes in the cellular properties of transforming growth factor beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) A549 cells. The new chip provides a microfluidic platform capable of multiparameter characterization of single cells, which can play an important role in the field of single-cell research.
Collapse
Affiliation(s)
- Liang Huang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, China
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, China
| | - Fei Liang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, China
| | - Yongxiang Feng
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, China
| | - Peng Zhao
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, China
| | - Wenhui Wang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing, China
| |
Collapse
|