1
|
Seručnik M, Dogsa I, Zadravec LJ, Mandic-Mulec I, Žnidaršič-Plazl P. Development of a Microbioreactor for Bacillus subtilis Biofilm Cultivation. MICROMACHINES 2024; 15:1037. [PMID: 39203688 PMCID: PMC11356062 DOI: 10.3390/mi15081037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024]
Abstract
To improve our understanding of Bacillus subtilis growth and biofilm formation under different environmental conditions, two versions of a microfluidic reactor with two channels separated by a polydimethylsiloxane (PDMS) membrane were developed. The gas phase was introduced into the channel above the membrane, and oxygen transfer from the gas phase through the membrane was assessed by measuring the dissolved oxygen concentration in the liquid phase using a miniaturized optical sensor and oxygen-sensitive nanoparticles. B. subtilis biofilm formation was monitored in the growth channels of the microbioreactors, which were designed in two shapes: one with circular extensions and one without. The volumes of these microbioreactors were (17 ± 4) μL for the reactors without extensions and (28 ± 4) μL for those with extensions. The effect of microbioreactor geometry and aeration on B. subtilis biofilm growth was evaluated by digital image analysis. In both microbioreactor geometries, stable B. subtilis biofilm formation was achieved after 72 h of incubation at a growth medium flow rate of 1 μL/min. The amount of oxygen significantly influenced biofilm formation. When the culture was cultivated with a continuous air supply, biofilm surface coverage and biomass concentration were higher than in cultivations without aeration or with a 100% oxygen supply. The channel geometry with circular extensions did not lead to a higher total biomass in the microbioreactor compared to the geometry without extensions.
Collapse
Affiliation(s)
- Mojca Seručnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia; (M.S.); (L.J.Z.)
| | - Iztok Dogsa
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia; (I.D.); (I.M.-M.)
| | - Lan Julij Zadravec
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia; (M.S.); (L.J.Z.)
| | - Ines Mandic-Mulec
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia; (I.D.); (I.M.-M.)
- Chair of Micro Process Engineering and Technology—COMPETE, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Polona Žnidaršič-Plazl
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia; (M.S.); (L.J.Z.)
- Chair of Micro Process Engineering and Technology—COMPETE, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Zhang Z, Tang Y, Tao C, Zhang J, Dong F, Liu S, Zhang D, Wang X. Mesoscopic ring element growth and deformation induced biofilm streamer evolution in microfluidic channels. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2867-2879. [PMID: 38877618 DOI: 10.2166/wst.2024.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/10/2024] [Indexed: 06/16/2024]
Abstract
In a fluid environment, biofilms usually form and grow into streamers attached to solid surfaces. Existing research on single streamers studied their formation and failure modes. In the experiment on biofilm growth in a microfluidic channel, we found that rings composed of bacteria and an extracellular matrix are important elements on a mesoscopic scale. In the fluid environment, the failure of these ring elements causes damage to streamers. We simulated the growth and deformation of the ring structure in the micro-channel using multi-agent simulation and fluid-structure coupling of a porous elastic body. Based on this, we simulated the biofilm evolution involving multi-ring deformation, which provides a new length scale to study the biofilm streamer dynamics in fluid environments.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yangyang Tang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Cong Tao
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinchang Zhang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fulin Dong
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Song Liu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Duohuai Zhang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoling Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA E-mail:
| |
Collapse
|
3
|
Tang Y, Tao C, Zhang Z, Liu S, Dong F, Zhang D, Zhang J, Wang X. The porous structure induced heterogeneous and localized failure of the biofilm in microfluidic channels. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:3181-3193. [PMID: 38154803 PMCID: wst_2023_384 DOI: 10.2166/wst.2023.384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Understanding the mechanism of biofilm distribution and detachment is very important to effectively improve water treatment and prevent blockage in porous media. The existing research is more related to the local biofilm evolving around one or few microposts and the lack of the integral biofilm evolution in a micropost array for a longer growth period. This study combines microfluidic experiments and mathematical simulations to study the distribution and detachment of biofilm in porous media. Microfluidic chips with an array of microposts with different sizes are designed to simulate the physical pore structure of soil. The research shows that the initial formation and distribution of biofilm are influenced by bacterial transport velocity gradients within the pore space. Bacteria prefer to aggregate areas with smaller microposts, leading to the development of biofilm in those regions. Consequently, impermeable blockage structures form in this area. By analyzing experimental images of biofilm structures at the later stages, as well as coupling fluid flow and porous medium, and the finite element simulation, we find that the biofilm detachment is correlated with the morphology and permeability (kb) (from 10-15 to 10-9 m2) of the biofilm. The simulations show that there are two modes of biofilm detachment, such as internal detachment and external erosion.
Collapse
Affiliation(s)
- Yangyang Tang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China E-mail:
| | - Cong Tao
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zheng Zhang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Song Liu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fulin Dong
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Duohuai Zhang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinchang Zhang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoling Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
4
|
Pilarska AA, Marzec-Grządziel A, Paluch E, Pilarski K, Wolna-Maruwka A, Kubiak A, Kałuża T, Kulupa T. Biofilm Formation and Genetic Diversity of Microbial Communities in Anaerobic Batch Reactor with Polylactide (PLA) Addition. Int J Mol Sci 2023; 24:10042. [PMID: 37373189 DOI: 10.3390/ijms241210042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
In this paper, an anaerobic digestion (AD) study was conducted on confectionery waste with granular polylactide (PLA) as a cell carrier. Digested sewage sludge (SS) served as the inoculum and buffering agent of systems. This article shows the results of the analyses of the key experimental properties of PLA, i.e., morphological characteristics of the microstructure, chemical composition and thermal stability of the biopolymer. The evaluation of quantitative and qualitative changes in the genetic diversity of bacterial communities, performed using the state-of-the-art next generation sequencing (NGS) technique, revealed that the material significantly enhanced bacterial proliferation; however, it does not change microbiome biodiversity, as also confirmed via statistical analysis. More intense microbial proliferation (compared to the control sample, without PLA and not digested, CW-control, CW-confectionery waste) may be indicative of the dual role of the biopolymer-support and medium. Actinobacteria (34.87%) were the most abundant cluster in the CW-control, while the most dominant cluster in digested samples was firmicutes: in the sample without the addition of the carrier (CW-dig.) it was 68.27%, and in the sample with the addition of the carrier (CW + PLA) it was only 26.45%, comparable to the control sample (CW-control)-19.45%. Interestingly, the number of proteobacteria decreased in the CW-dig. sample (17.47%), but increased in the CW + PLA sample (39.82%) compared to the CW-control sample (32.70%). The analysis of biofilm formation dynamics using the BioFlux microfluidic system shows a significantly faster growth of the biofilm surface area for the CW + PLA sample. This information was complemented by observations of the morphological characteristics of the microorganisms using fluorescence microscopy. The images of the CW + PLA sample showed carrier sections covered with microbial consortia.
Collapse
Affiliation(s)
- Agnieszka A Pilarska
- Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, Piątkowska 94A, 60-649 Poznan, Poland
| | - Anna Marzec-Grządziel
- Department of Agriculture Microbiology, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
| | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Tytusa Chałubińskiego 4, 50-376 Wroclaw, Poland
| | - Krzysztof Pilarski
- Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznan, Poland
| | - Agnieszka Wolna-Maruwka
- Department of Soil Science and Microbiology, Poznań University of Life Sciences, Szydłowska 50, 60-656 Poznan, Poland
| | - Adrianna Kubiak
- Department of Soil Science and Microbiology, Poznań University of Life Sciences, Szydłowska 50, 60-656 Poznan, Poland
| | - Tomasz Kałuża
- Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, Piątkowska 94A, 60-649 Poznan, Poland
| | - Tomasz Kulupa
- Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, Piątkowska 94A, 60-649 Poznan, Poland
| |
Collapse
|
5
|
Quantitative and Qualitative Changes in the Genetic Diversity of Bacterial Communities in Anaerobic Bioreactors with the Diatomaceous Earth/Peat Cell Carrier. Cells 2022; 11:cells11162571. [PMID: 36010646 PMCID: PMC9406963 DOI: 10.3390/cells11162571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
This paper analyses the impact of the diatomaceous earth/peat (DEP; 3:1) microbial carrier on changes in the bacterial microbiome and the development of biofilm in the anaerobic digestion (AD) of confectionery waste, combined with digested sewage sludge as inoculum. The physicochemical properties of the carrier material are presented, with particular focus on its morphological and dispersion characteristics, as well as adsorption and thermal properties. In this respect, the DEP system was found to be a suitable carrier for both mesophilic and thermophilic AD. The evaluation of quantitative and qualitative changes in the genetic diversity of bacterial communities, carried out using next-generation sequencing (NGS), showed that the material has a modifying effect on the bacterial microbiome. While Actinobacteria was the most abundant cluster in the WF-control sample (WF—waste wafers), Firmicutes was the dominant cluster in the digested samples without the carrier (WF-dig.; dig.—digested) and with the carrier (WF + DEP). The same was true for the count of Proteobacteria, which decreased twofold during biodegradation in favor of Synergistetes. The Syntrophomonas cluster was identified as the most abundant genus in the two samples, particularly in WF + DEP. This information was supplemented by observations of morphological features of microorganisms carried out using fluorescence microscopy. The biodegradation process itself had a significant impact on changes in the microbiome of samples taken from anaerobic bioreactors, reducing its biodiversity. As demonstrated by the results of this innovative method, namely the BioFlux microfluidic flow system, the decrease in the number of taxa in the digested samples and the addition of DEP contributed to the microbial adhesion in the microfluidic system and the formation of a stable biofilm.
Collapse
|
6
|
Nguyen AV, Shourabi AY, Yaghoobi M, Zhang S, Simpson KW, Abbaspourrad A. A high-throughput integrated biofilm-on-a-chip platform for the investigation of combinatory physicochemical responses to chemical and fluid shear stress. PLoS One 2022; 17:e0272294. [PMID: 35960726 PMCID: PMC9374262 DOI: 10.1371/journal.pone.0272294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/15/2022] [Indexed: 11/19/2022] Open
Abstract
Physicochemical conditions play a key role in the development of biofilm removal strategies. This study presents an integrated, double-layer, high-throughput microfluidic chip for real-time screening of the combined effect of antibiotic concentration and fluid shear stress (FSS) on biofilms. Biofilms of Escherichia coli LF82 and Pseudomonas aeruginosa were tested against gentamicin and streptomycin to examine the time dependent effects of concentration and FSS on the integrity of the biofilm. A MatLab image analysis method was developed to measure the bacterial surface coverage and total fluorescent intensity of the biofilms before and after each treatment. The chip consists of two layers. The top layer contains the concentration gradient generator (CGG) capable of diluting the input drug linearly into four concentrations. The bottom layer contains four expanding FSS chambers imposing three different FSSs on cultured biofilms. As a result, 12 combinatorial states of concentration and FSS can be investigated on the biofilm simultaneously. Our proof-of-concept study revealed that the reduction of E. coli biofilms was directly dependent upon both antibacterial dose and shear intensity, whereas the P. aeruginosa biofilms were not impacted as significantly. This confirmed that the effectiveness of biofilm removal is dependent on bacterial species and the environment. Our experimental system could be used to investigate the physicochemical responses of other biofilms or to assess the effectiveness of biofilm removal methods.
Collapse
Affiliation(s)
- Ann V. Nguyen
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Arash Yahyazadeh Shourabi
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Mohammad Yaghoobi
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Shiying Zhang
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Kenneth W. Simpson
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|