1
|
Molema F, Gleich F, Burgard P, van der Ploeg AT, Summar ML, Chapman KA, Barić I, Lund AM, Kölker S, Williams M. Evaluation of dietary treatment and amino acid supplementation in organic acidurias and urea-cycle disorders: On the basis of information from a European multicenter registry. J Inherit Metab Dis 2019; 42:1162-1175. [PMID: 30734935 DOI: 10.1002/jimd.12066] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/25/2019] [Indexed: 12/30/2022]
Abstract
Organic acidurias (OAD) and urea-cycle disorders (UCD) are rare inherited disorders affecting amino acid and protein metabolism. As dietary practice varies widely, we assessed their long-term prescribed dietary treatment against published guideline and studied plasma amino acids levels. We analyzed data from the first visit recorded in the European registry and network for intoxication type metabolic diseases (E-IMD, Chafea no. 2010 12 01). In total, 271 methylmalonic aciduria (MMA) and propionic aciduria (PA) and 361 UCD patients were included. Median natural protein prescription was consistent with the recommended daily allowance (RDA), plasma L-valine (57%), and L-isoleucine (55%) levels in MMA and PA lay below reference ranges. Plasma levels were particularly low in patients who received amino acid mixtures (AAMs-OAD) and L-isoleucine:L-leucine:L-valine (BCAA) ratio was 1.0:3.0:3.2. In UCD patients, plasma L-valine, L-isoleucine, and L-leucine levels lay below reference ranges in 18%, 30%, and 31%, respectively. In symptomatic UCD patients who received AAM-UCD, the median natural protein prescription lay below RDA, while their L-valine and L-isoleucine levels and plasma BCAA ratios were comparable to those in patients who did not receive AAM-UCD. Notably, in patients with ornithine transcarbamylase syndrome (OTC-D), carbamylphosphate synthetase 1 syndrome (CPS1-D) and hyperammonemia-hyperornithinemia-homocitrullinemia (HHH) syndrome selective L-citrulline supplementation resulted in higher plasma L-arginine levels than selective L-arginine supplementation. In conclusion, while MMA and PA patients who received AAMs-OAD had very low BCAA levels and disturbed plasma BCAA ratios, AAMs-UCD seemed to help UCD patients obtain normal BCAA levels. In patients with OTC-D, CPS1-D, and HHH syndrome, selective L-citrulline seemed preferable to selective L-arginine supplementation.
Collapse
Affiliation(s)
- Femke Molema
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Florian Gleich
- Division of Neuropaediatrics and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Burgard
- Division of Neuropaediatrics and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ans T van der Ploeg
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marshall L Summar
- Department of Genetics and Metabolism, Children's National Medical Center, Washington, District of Columbia
| | - Kimberly A Chapman
- Department of Genetics and Metabolism, Children's National Medical Center, Washington, District of Columbia
| | - Ivo Barić
- Department of Pediatrics, University Hospital Center Zagreb and University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Allan M Lund
- Departments of Paediatrics and Clinical Genetics, Centre for Inherited Metabolic Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Stefan Kölker
- Division of Neuropaediatrics and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Monique Williams
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Li J, Wang QL, Liu Y, Ke Y, Fan QQ, Zhou P, An MC, Liu HM. Simultaneous determination of 24 free amino acids in MGC803 cells by hydrophilic interaction liquid chromatography with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1132:121792. [DOI: 10.1016/j.jchromb.2019.121792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/15/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023]
|
3
|
Häberle J, Burlina A, Chakrapani A, Dixon M, Karall D, Lindner M, Mandel H, Martinelli D, Pintos-Morell G, Santer R, Skouma A, Servais A, Tal G, Rubio V, Huemer M, Dionisi-Vici C. Suggested guidelines for the diagnosis and management of urea cycle disorders: First revision. J Inherit Metab Dis 2019; 42:1192-1230. [PMID: 30982989 DOI: 10.1002/jimd.12100] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Abstract
In 2012, we published guidelines summarizing and evaluating late 2011 evidence for diagnosis and therapy of urea cycle disorders (UCDs). With 1:35 000 estimated incidence, UCDs cause hyperammonemia of neonatal (~50%) or late onset that can lead to intellectual disability or death, even while effective therapies do exist. In the 7 years that have elapsed since the first guideline was published, abundant novel information has accumulated, experience on newborn screening for some UCDs has widened, a novel hyperammonemia-causing genetic disorder has been reported, glycerol phenylbutyrate has been introduced as a treatment, and novel promising therapeutic avenues (including gene therapy) have been opened. Several factors including the impact of the first edition of these guidelines (frequently read and quoted) may have increased awareness among health professionals and patient families. However, under-recognition and delayed diagnosis of UCDs still appear widespread. It was therefore necessary to revise the original guidelines to ensure an up-to-date frame of reference for professionals and patients as well as for awareness campaigns. This was accomplished by keeping the original spirit of providing a trans-European consensus based on robust evidence (scored with GRADE methodology), involving professionals on UCDs from nine countries in preparing this consensus. We believe this revised guideline, which has been reviewed by several societies that are involved in the management of UCDs, will have a positive impact on the outcomes of patients by establishing common standards, and spreading and harmonizing good practices. It may also promote the identification of knowledge voids to be filled by future research.
Collapse
Affiliation(s)
- Johannes Häberle
- University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
| | - Alberto Burlina
- Division of Inborn Metabolic Disease, Department of Pediatrics, University Hospital Padua, Padova, Italy
| | - Anupam Chakrapani
- Department of Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marjorie Dixon
- Dietetics, Great Ormond Street Hospital for Children, NHS Trust, London, UK
| | - Daniela Karall
- Clinic for Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Lindner
- University Children's Hospital, Frankfurt am Main, Germany
| | - Hanna Mandel
- Institute of Human Genetics and metabolic disorders, Western Galilee Medical Center, Nahariya, Israel
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital, Rome, Italy
| | - Guillem Pintos-Morell
- Centre for Rare Diseases, University Hospital Vall d'Hebron, Barcelona, Spain
- CIBERER_GCV08, Research Institute IGTP, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasia Skouma
- Institute of Child Health, Agia Sofia Children's Hospital, Athens, Greece
| | - Aude Servais
- Service de Néphrologie et maladies métaboliques adulte Hôpital Necker 149, Paris, France
| | - Galit Tal
- The Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia (IBV-CSIC), Centro de Investigación Biomédica en Red para Enfermedades Raras (CIBERER), Valencia, Spain
| | - Martina Huemer
- University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
- Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | | |
Collapse
|
4
|
Tran C, Bonafé L, Nuoffer JM, Rieger J, Berger MM. Adult classical homocystinuria requiring parenteral nutrition: Pitfalls and management. Clin Nutr 2017; 37:1114-1120. [PMID: 28779878 DOI: 10.1016/j.clnu.2017.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/07/2017] [Accepted: 07/16/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Homocystinuria due to cystathionine beta synthase (CBS) deficiency presents with a wide clinical spectrum. Treatment by the enteral route aims at reducing homocysteine levels by using vitamin B6, possibly methionine-restricted diet, betaine and/or folate and vitamin B12 supplementation. Currently no nutritional guidelines exist regarding parenteral nutrition (PN) under acute conditions. METHODS Exhaustive literature search was performed, in order to identify the relevant studies describing the pathogenesis and nutritional intervention of adult classical homocystinuria requiring PN. Description of an illustrative case of an adult female with CBS deficiency and intestinal perforation, who required total PN due to contraindication to enteral nutrition. RESULTS Nutritional management of decompensated classical homocystinuria is complex and currently no recommendation exists regarding PN composition. Amino acid profile and monitoring of total homocysteine concentration are the main tools enabling a precise assessment of the severity of metabolic alterations. In case of contraindication to enteral nutrition, compounded PN will be required, as described in this paper, to ensure adequate low amounts of methionine and others essential amino acids and avoid potentially fatal toxic hypermethioninemia. CONCLUSIONS By reviewing the literature and reporting successful nutritional management of a decompensated CBS deficiency using tailored PN with limited methionine intake and n-3 PUFA addition, we would like to underscore the fact that standard PN solutions are not adapted for CBS deficient critical ill patients: new solutions are required. High methionine levels (>800 μmol/L) being potentially neurotoxic, there is an urgent need to improve our knowledge of acute nutritional therapy.
Collapse
Affiliation(s)
- Christel Tran
- Center for Molecular Diseases, Division of Genetic Medicine, Lausanne University Hospital, Lausanne, Switzerland.
| | - Luisa Bonafé
- Center for Molecular Diseases, Division of Genetic Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Jean-Marc Nuoffer
- University Institute of Clinical Chemistry, University Children's Hospital, Inselspital AG Bern, University of Bern, Bern, Switzerland
| | - Julie Rieger
- Pharmacy, Lausanne University Hospital, Lausanne, Switzerland
| | - Mette M Berger
- Service of Adult Intensive Care and Burns Centre, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
5
|
Abstract
Inborn errors of metabolism are single gene disorders resulting from the defects in the biochemical pathways of the body. Although these disorders are individually rare, collectively they account for a significant portion of childhood disability and deaths. Most of the disorders are inherited as autosomal recessive whereas autosomal dominant and X-linked disorders are also present. The clinical signs and symptoms arise from the accumulation of the toxic substrate, deficiency of the product, or both. Depending on the residual activity of the deficient enzyme, the initiation of the clinical picture may vary starting from the newborn period up until adulthood. Hundreds of disorders have been described until now and there has been a considerable clinical overlap between certain inborn errors. Resulting from this fact, the definite diagnosis of inborn errors depends on enzyme assays or genetic tests. Especially during the recent years, significant achievements have been gained for the biochemical and genetic diagnosis of inborn errors. Techniques such as tandem mass spectrometry and gas chromatography for biochemical diagnosis and microarrays and next-generation sequencing for the genetic diagnosis have enabled rapid and accurate diagnosis. The achievements for the diagnosis also enabled newborn screening and prenatal diagnosis. Parallel to the development the diagnostic methods; significant progress has also been obtained for the treatment. Treatment approaches such as special diets, enzyme replacement therapy, substrate inhibition, and organ transplantation have been widely used. It is obvious that by the help of the preclinical and clinical research carried out for inborn errors, better diagnostic methods and better treatment approaches will high likely be available.
Collapse
|
6
|
Approach to the diagnosis and treatment of cyclic vomiting syndrome: a large single-center experience with 106 patients. Pediatr Neurol 2014; 50:569-73. [PMID: 24842256 DOI: 10.1016/j.pediatrneurol.2014.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/05/2014] [Accepted: 02/12/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cyclic vomiting syndrome is characterized by repeated, stereotypical vomiting episodes. The diagnosis is made by exclusion of other organic diseases, which can lead to extensive testing. It has been suggested that these patients can have mitochondrial dysfunction. The aim of the study was to examine the evaluation of our cyclic vomiting patients and to determine whether they had associated, undiagnosed metabolic abnormalities. METHODS This retrospective study included 106 patients aged <21 years at diagnosis. Information regarding medical history, laboratory, and imaging studies were collected. Metabolic studies in plasma and urine were obtained when patients were well and when patients were in a vomiting cycle, including plasma amino acids, acylcarnitines, and urine organic acids. RESULTS The mean age at diagnosis was 8.9 ± 5.0 years. Neuroimaging revealed previously unknown intracranial abnormalities in <10% of patients, none of whom explained the vomiting signs. Abdominal ultrasounds revealed abnormalities in 15% of patients during an acute episode and 7% of patients when well. Sixty-one patients had an upper gastrointestinal series, all of which were normal. A total of 92% of patients had laboratory testing with 38% indicating abnormalities possibly suggesting mitochondrial dysfunction. CONCLUSIONS This large, single-center study further evaluated the need for more focused evaluation in patients with suspected cyclic vomiting syndrome. Thirty-eight percent of our patients had abnormalities in blood and/or urine suggesting mitochondrial dysfunction, which requires more detailed investigation in the future.
Collapse
|
7
|
Rodney S, Boneh A. Amino Acid Profiles in Patients with Urea Cycle Disorders at Admission to Hospital due to Metabolic Decompensation. JIMD Rep 2012; 9:97-104. [PMID: 23430554 DOI: 10.1007/8904_2012_186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 09/20/2012] [Accepted: 09/21/2012] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Urea cycle disorders (UCDs) result from inherited defects in the ammonia detoxification pathway, leading to episodes of hyperammonaemia and encephalopathy. The purpose of this study was to answer the question, "what is the likely plasma amino acid profile of a patient known to have a UCD presenting with hyperammonaemia during acute metabolic decompensation", in order to support informed decisions regarding management.We analysed the results of plasma ammonia levels and amino acid profiles taken simultaneously or within 30 min of each other during acute admissions of all patients with a UCD at the Royal Children's Hospital, Melbourne, over 28 years. Samples from 96 admissions (79, 9 and 8 admissions for OTC, CPS and ASS deficiencies, respectively) from 14 patients fulfilled these criteria. Amino acid levels were measured by ion exchange chromatography with post-column ninhydrin derivatisation and interpreted in relation to age-related reference ranges.Plasma concentrations of all measured essential amino acids were low or low-normal in almost all samples. There was a strong positive correlation between low plasma branched-chain amino acids and other essential amino acids, and a negative correlation between ammonia and phenylalanine to tyrosine (Phe:Tyr) ratio in patients with OTC deficiency, and between glutamine and Phe:Tyr ratio in all patients, indicating protein deficiency. CONCLUSION At admission, protein deficiency is common in patients with a UCD with hyperammonaemia. These results challenge the current guideline of stopping protein intake during acute decompensation in UCDs. Supplementation with essential amino acids (particularly branched-chain amino acids) at these times should be considered.
Collapse
Affiliation(s)
- S Rodney
- Imperial College School of Medicine, London, UK
- Metabolic Genetics, Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Victoria, Melbourne, 3052, Australia
| | - A Boneh
- Metabolic Genetics, Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Victoria, Melbourne, 3052, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
8
|
Häberle J, Boddaert N, Burlina A, Chakrapani A, Dixon M, Huemer M, Karall D, Martinelli D, Crespo PS, Santer R, Servais A, Valayannopoulos V, Lindner M, Rubio V, Dionisi-Vici C. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis 2012; 7:32. [PMID: 22642880 PMCID: PMC3488504 DOI: 10.1186/1750-1172-7-32] [Citation(s) in RCA: 382] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 04/06/2012] [Indexed: 12/11/2022] Open
Abstract
Urea cycle disorders (UCDs) are inborn errors of ammonia detoxification/arginine synthesis due to defects affecting the catalysts of the Krebs-Henseleit cycle (five core enzymes, one activating enzyme and one mitochondrial ornithine/citrulline antiporter) with an estimated incidence of 1:8.000. Patients present with hyperammonemia either shortly after birth (~50%) or, later at any age, leading to death or to severe neurological handicap in many survivors. Despite the existence of effective therapy with alternative pathway therapy and liver transplantation, outcomes remain poor. This may be related to underrecognition and delayed diagnosis due to the nonspecific clinical presentation and insufficient awareness of health care professionals because of disease rarity. These guidelines aim at providing a trans-European consensus to: guide practitioners, set standards of care and help awareness campaigns. To achieve these goals, the guidelines were developed using a Delphi methodology, by having professionals on UCDs across seven European countries to gather all the existing evidence, score it according to the SIGN evidence level system and draw a series of statements supported by an associated level of evidence. The guidelines were revised by external specialist consultants, unrelated authorities in the field of UCDs and practicing pediatricians in training. Although the evidence degree did hardly ever exceed level C (evidence from non-analytical studies like case reports and series), it was sufficient to guide practice on both acute and chronic presentations, address diagnosis, management, monitoring, outcomes, and psychosocial and ethical issues. Also, it identified knowledge voids that must be filled by future research. We believe these guidelines will help to: harmonise practice, set common standards and spread good practices with a positive impact on the outcomes of UCD patients.
Collapse
Affiliation(s)
- Johannes Häberle
- University Children’s Hospital Zurich and Children’s Research Centre, Zurich, 8032, Switzerland
| | - Nathalie Boddaert
- Radiologie Hopital Necker, Service Radiologie Pediatrique, 149 Rue De Sevres, Paris 15, 75015, France
| | - Alberto Burlina
- Department of Pediatrics, Division of Inborn Metabolic Disease, University Hospital Padua, Via Giustiniani 3, Padova, 35128, Italy
| | - Anupam Chakrapani
- Birmingham Children’s Hospital NHS Foundation Trust, Steelhouse Lane, Birmingham, B4 6NH, United Kingdom
| | - Marjorie Dixon
- Dietetic Department, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, WC1N 3JH, United Kingdom
| | - Martina Huemer
- Kinderabteilung, LKH Bregenz, Carl-Pedenz-Strasse 2, Bregenz, A-6900, Austria
| | - Daniela Karall
- University Children’s Hospital, Medical University Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children’s Hospital, IRCCS, Piazza S. Onofrio 4, Rome, I-00165, Italy
| | | | - René Santer
- Universitätsklinikum Hamburg Eppendorf, Klinik für Kinder- und Jugendmedizin, Martinistr. 52, Hamburg, 20246, Germany
| | - Aude Servais
- Service de Néphrologie et maladies métaboliques adulte Hôpital Necker 149, rue de Sèvres, Paris, 75015, France
| | - Vassili Valayannopoulos
- Reference Center for Inherited Metabolic Disorders (MaMEA), Hopital Necker-Enfants Malades, 149 Rue de Sevres, Paris, 75015, France
| | - Martin Lindner
- University Children’s Hospital, Im Neuenheimer Feld 430, Heidelberg, 69120, Germany
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas (IBV-CSIC) and Centro de Investigación Biomédica en Red para Enfermedades Raras (CIBERER), C/ Jaume Roig 11, Valencia, 46010, Spain
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children’s Hospital, IRCCS, Piazza S. Onofrio 4, Rome, I-00165, Italy
| |
Collapse
|
9
|
Adam S, Champion H, Daly A, Dawson S, Dixon M, Dunlop C, Eardley J, Evans S, Ferguson C, Jankowski C, Lowry S, MacDonald A, Maritz C, Micciche A, Robertson L, Stafford J, Terry A, Thom R, van Wyk K, Webster D, White FJ, Wildgoose J. Dietary management of urea cycle disorders: UK practice. J Hum Nutr Diet 2012; 25:398-404. [PMID: 22594780 DOI: 10.1111/j.1365-277x.2012.01259.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND There is no published data describing UK dietary management of urea cycle disorders (UCD). The present study describes dietary practices in UK inherited metabolic disorder (IMD) centres. METHODS Cross-sectional data from 16 IMD centres were collected by a questionnaire describing the management of UCD patients on prescribed protein-restricted diets. RESULTS One hundred and seventy-five patients [N-acetylglutamate synthase deficiency, n = 3; carbamoyl phosphate synthase deficiency (CPS), n = 8; ornithine transcarbamoylase deficiency (OTC), n = 75; citrullinaemia, n = 41; argininosuccinic aciduria (ASA), n = 36; arginase deficiency, n = 12] were reported; 70% (n = 123) aged 0-16 years; 30% (n = 52) >16 years. Prescribed median protein intake decreased with age (0-6 months: 2 g kg(-1) day(-1); 7-12 months: 1.6 g kg(-1) day(-1); 1-10 years: 1.3 g kg(-1) day(-1); 11-16 years: 0.9 g kg(-1) day(-1) and >16 years: 0.8 g kg(-1) day(-1)) with little variation between disorders. Adult protein prescription ranged 0.4-1.2 g kg(-1) day(-1) (40-60 g day(-1)). In the previous 2 years, 30% (n = 53) were given essential amino acid supplements (EAAs) (CPS, n = 2; OTC, n = 20; citrullinaemia, n = 15; ASA, n = 7; arginase deficiency, n = 9). EAAs were prescribed for low plasma quantitative essential amino acids (n = 13 centres); inadequate natural protein intake (n = 11) and poor metabolic control (n = 9). From diagnosis, one centre prescribed EAAs for all patients and one centre for severe defects only. Only 3% (n = 6) were given branch chain amino acid supplements. Enteral feeding tubes were used by 25% (n = 44) for feeds and 3% (n = 6) for medications. Oral energy supplements were prescribed in 17% (n = 30) of cases. CONCLUSIONS In the UK, protein restriction based on World Health Organization 'safe intakes of protein', is the principle dietary treatment for UCD. EAA supplements are prescribed mainly on clinical need. Multicentre collaborative research is required to define optimal dietary treatments.
Collapse
Affiliation(s)
- S Adam
- Royal Hospital for Sick Children Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Shimbo K, Kubo S, Harada Y, Oonuki T, Yokokura T, Yoshida H, Amao M, Nakamura M, Kageyama N, Yamazaki J, Ozawa SI, Hirayama K, Ando T, Miura J, Miyano H. Automated precolumn derivatization system for analyzing physiological amino acids by liquid chromatography/mass spectrometry. Biomed Chromatogr 2010; 24:683-91. [PMID: 19830681 DOI: 10.1002/bmc.1346] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An automated method for high-throughput amino acid analysis, using precolumn derivatization high-performance liquid chromatography/electrospray mass spectrometry (HPLC/ESI-MS), was developed and evaluated. The precolumn derivatization step was performed in the reaction port of a home-built auto-sampler system. Amino acids were derivatized with 3-aminopyridyl-N-hydroxysuccinimidyl carbamate, and a 3 microm Wakosil-II 3C8-100HG column (100 x 2.1 mm i.d.) was used for separation. To achieve a 13 min cycle for each sample, the derivatization and separation steps were performed in parallel. The results of the method evaluation, including the linearity, and the intra- and inter-precision, were sufficient to measure physiological amino acids in human plasma samples. The relative standard deviations of typical amino acids in actual human plasma samples were below 10%.
Collapse
Affiliation(s)
- Kazutaka Shimbo
- Institute of Life Sciences, Ajinomoto Co., Inc., 1-1 Suzuki-cho Kawasaki-ku, Kawasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|