1
|
Grønbæk-Thygesen M, Hartmann-Petersen R. Cellular and molecular mechanisms of aspartoacylase and its role in Canavan disease. Cell Biosci 2024; 14:45. [PMID: 38582917 PMCID: PMC10998430 DOI: 10.1186/s13578-024-01224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/24/2024] [Indexed: 04/08/2024] Open
Abstract
Canavan disease is an autosomal recessive and lethal neurological disorder, characterized by the spongy degeneration of the white matter in the brain. The disease is caused by a deficiency of the cytosolic aspartoacylase (ASPA) enzyme, which catalyzes the hydrolysis of N-acetyl-aspartate (NAA), an abundant brain metabolite, into aspartate and acetate. On the physiological level, the mechanism of pathogenicity remains somewhat obscure, with multiple, not mutually exclusive, suggested hypotheses. At the molecular level, recent studies have shown that most disease linked ASPA gene variants lead to a structural destabilization and subsequent proteasomal degradation of the ASPA protein variants, and accordingly Canavan disease should in general be considered a protein misfolding disorder. Here, we comprehensively summarize the molecular and cell biology of ASPA, with a particular focus on disease-linked gene variants and the pathophysiology of Canavan disease. We highlight the importance of high-throughput technologies and computational prediction tools for making genotype-phenotype predictions as we await the results of ongoing trials with gene therapy for Canavan disease.
Collapse
Affiliation(s)
- Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| |
Collapse
|
2
|
Nagy A, Eichler F, Bley A, Bredow J, Fay A, Townsend EL, Leiro B, Shaywitz A, Laforet G, Crippen-Harmon D, Williams R. Urine N-Acetylaspartate Distinguishes Phenotypes in Canavan Disease. Hum Gene Ther 2024; 36:45-56. [PMID: 39628365 PMCID: PMC11807896 DOI: 10.1089/hum.2024.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/01/2024] [Indexed: 01/04/2025] Open
Abstract
Canavan disease (CD) is an ultra-rare autosomal recessive leukodystrophy caused by loss-of-function mutations in ASPA, which encodes aspartoacylase (ASPA), leading to accumulation of N-acetylaspartate (NAA). Patients with CD typically present with profound psychomotor deficits within the first 6 months of life and meet few motor milestones. Within CD a subset of patients exhibits a milder phenotype with more milestone acquisition, possibly related to greater residual ASPA activity. An ongoing CD natural history study and a literature search were leveraged to compare urine NAA levels and associated genotypes in patients classified with mild or typical CD, with the hypothesis that urine NAA levels reflect ASPA activity and therefore can distinguish between the two phenotypes. Urine NAA levels were lower, on average (p < 0.0001), in individuals with mild (mean 525.3, range 25.2-1,335 mmol/mol creatinine [Cr]) compared with typical CD (mean 1,369, range 391.7-2,420 mmol/mol Cr). Mutations R71H and Y288C, variants that may harbor residual ASPA activity, were unique to the mild phenotype population (56%, 14/25) and not found in individuals with a typical phenotype (0%, 0/39). In aggregate, urine NAA levels can distinguish between mild and typical CD phenotypes, suggesting the ability to reflect ASPA activity.
Collapse
Affiliation(s)
- Amanda Nagy
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Annette Bley
- University Medical Center Hamburg-Eppendorf, Leukodystrophy Clinic at University Children’s Hospital, Hamburg, Germany
| | - Janna Bredow
- University Medical Center Hamburg-Eppendorf, Leukodystrophy Clinic at University Children’s Hospital, Hamburg, Germany
| | - Alexander Fay
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Elise L. Townsend
- School of Health and Rehabilitation Sciences, MGH Institute of Health Professions, Boston, Massachusetts, USA
| | - Beth Leiro
- BridgeBio Gene Therapy, Palo Alto, California, USA
| | | | | | | | | |
Collapse
|
3
|
Pate T, Anthony DC, Radford-Smith DE. cFOS expression in the prefrontal cortex correlates with altered cerebral metabolism in developing germ-free mice. Front Mol Neurosci 2023; 16:1155620. [PMID: 37152431 PMCID: PMC10157641 DOI: 10.3389/fnmol.2023.1155620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction The microbiota plays a critical role in modulating various aspects of host physiology, particularly through the microbiota-gut-brain (MGB) axis. However, the mechanisms that transduce and affect gut-to-brain communication are still not well understood. Recent studies have demonstrated that dysbiosis of the microbiome is associated with anxiety and depressive symptoms, which are common complications of metabolic syndrome. Germ-free (GF) animal models offer a valuable tool for studying the causal effects of microbiota on the host. Methods We employed gene expression and nuclear magnetic resonance (NMR)-based metabolomic techniques to investigate the relationships between brain plasticity and immune gene expression, peripheral immunity, and cerebral and liver metabolism in GF and specific pathogen-free (SPF) mice. Results Our principal findings revealed that brain acetate (p = 0.012) was significantly reduced in GF relative to SPF mice, whereas glutamate (p = 0.0013), glutamine (p = 0.0006), and N-acetyl aspartate (p = 0.0046) metabolites were increased. Notably, cFOS mRNA expression, which was significantly decreased in the prefrontal cortex of GF mice relative to SPF mice (p = 0.044), correlated with the abundance of a number of key brain metabolites altered by the GF phenotype, including glutamate and glutamine. Discussion These results highlight the connection between the GF phenotype, altered brain metabolism, and immediate-early gene expression. The study provides insight into potential mechanisms by which microbiota can regulate neurotransmission through modulation of the host's brain and liver metabolome, which may have implications for stress-related psychiatric disorders such as anxiety.
Collapse
|
4
|
Glyceryl triacetate feeding in mice increases plasma acetate levels but has no anticonvulsant effects in acute electrical seizure models. Epilepsy Behav 2022; 137:108964. [PMID: 36343532 DOI: 10.1016/j.yebeh.2022.108964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Acetate has been shown to have neuroprotective and anti-inflammatory effects. It is oxidized by astrocytes and can thus provide auxiliary energy to the brain in addition to glucose. Therefore, we hypothesized that it may protect against seizures, which is investigated here by feeding glyceryl triacetate (GTA), to provide high amounts of acetate without raising sodium or acid levels. METHOD CD1 male mice were fed controlled diets with or without GTA for up to three weeks. Body weights, blood glucose levels, plasma short-chain fatty acid levels, and other hematological parameters were monitored. Seizure thresholds were determined in 6 Hz and maximal electroshock seizure threshold (MEST) tests. Antioxidant capacities were evaluated in the cerebral cortex and plasma using a ferric reducing antioxidant power (FRAP) assay and Trolox equivalent antioxidant capacity assay. RESULTS Body weight gain was similar with both diets with and without GTA in two experiments. Glyceryl triacetate-fed groups showed 2-3- and 1.6-fold increased acetate and propionate levels in plasma, respectively. Glucose levels were unaltered in blood collected from the tail tip but increased in trunk blood. No differences were found in the activity of cerebral cortex acetyl-CoA synthetase. In the 6 Hz threshold test, seizure thresholds were lower by 3 mA and 2.4 mA after 8 and 14 days, respectively, in the GTA compared to the control diet-fed group, but showed no difference on day 16, showing that GTA has small, but inconsistent proconvulsant effects in this model. In MEST tests, a slightly increased seizure threshold (1 mA) was found on day 19 in the GTA-fed group, but not in another experiment on day 21. There were no differences in antioxidant capacity in plasma or cortex between the two groups. CONCLUSION Glyceryl triacetate feeding showed no antioxidant effects nor beneficial changes in acute electrical seizure threshold mouse models, despite its ability to increase plasma acetate levels.
Collapse
|
5
|
Wei H, Moffett JR, Amanat M, Fatemi A, Tsukamoto T, Namboodiri AM, Slusher BS. The pathogenesis of, and pharmacological treatment for, Canavan disease. Drug Discov Today 2022; 27:2467-2483. [PMID: 35636725 PMCID: PMC11806932 DOI: 10.1016/j.drudis.2022.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
Abstract
Canavan disease (CD) is an inherited leukodystrophy resulting from mutations in the gene encoding aspartoacylase (ASPA). ASPA is highly expressed in oligodendrocytes and catalyzes the cleavage of N-acetylaspartate (NAA) to produce aspartate and acetate. In this review, we examine the pathologies and clinical presentation in CD, the metabolism and transportation of NAA in the brain, and the hypothetical mechanisms whereby ASPA deficiency results in dysmyelination and a failure of normal brain development. We also discuss therapeutic options that could be used for the treatment of CD.
Collapse
Affiliation(s)
- Huijun Wei
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA
| | - John R Moffett
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | - Man Amanat
- Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Ali Fatemi
- Department of Neurology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Behavioral Science, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Aryan M Namboodiri
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Chao J, Feng L, Ye P, Chen X, Cui Q, Sun G, Zhou T, Tian E, Li W, Hu W, Riggs AD, Matalon R, Shi Y. Therapeutic development for Canavan disease using patient iPSCs introduced with the wild-type ASPA gene. iScience 2022; 25:104391. [PMID: 35637731 PMCID: PMC9142666 DOI: 10.1016/j.isci.2022.104391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 03/03/2022] [Accepted: 05/06/2022] [Indexed: 12/04/2022] Open
Abstract
Canavan disease (CD) is a devastating neurological disease that lacks effective therapy. Because CD is caused by mutations of the aspartoacylase (ASPA) gene, we introduced the wild-type (WT) ASPA gene into patient iPSCs through lentiviral transduction or CRISPR/Cas9-mediated gene editing. We then differentiated the WT ASPA-expressing patient iPSCs (ASPA-CD iPSCs) into NPCs and showed that the resultant ASPA-CD NPCs exhibited potent ASPA enzymatic activity. The ASPA-CD NPCs were able to survive in brains of transplanted CD mice. The engrafted ASPA-CD NPCs reconstituted ASPA activity in CD mouse brains, reduced the abnormally elevated level of NAA in both brain tissues and cerebrospinal fluid (CSF), and rescued hallmark pathological phenotypes of the disease, including spongy degeneration, myelination defects, and motor function impairment in transplanted CD mice. These genetically modified patient iPSC-derived NPCs represent a promising cell therapy candidate for CD, a disease that has neither a cure nor a standard treatment. The wild-type ASPA gene was introduced into CD patient iPSCs to make ASPA-CD iPSCs ASPA-CD iPSCs were differentiated into ASPA-CD NPCs with potent ASPA activity Engrafted ASPA-CD NPCs could rescue major disease phenotypes in CD mice CSF NAA level can be used as a biomarker to monitor the treatment outcome for CD
Collapse
Affiliation(s)
- Jianfei Chao
- Division of Stem Cell Biology Research, Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Lizhao Feng
- Division of Stem Cell Biology Research, Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Peng Ye
- Division of Stem Cell Biology Research, Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Xianwei Chen
- Division of Stem Cell Biology Research, Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Qi Cui
- Division of Stem Cell Biology Research, Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Guihua Sun
- Division of Stem Cell Biology Research, Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA.,Diabetes and Metabolism Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Tao Zhou
- Division of Stem Cell Biology Research, Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - E Tian
- Division of Stem Cell Biology Research, Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Wendong Li
- Division of Stem Cell Biology Research, Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Weidong Hu
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Arthur D Riggs
- Diabetes and Metabolism Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Reuben Matalon
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-0359, USA
| | - Yanhong Shi
- Division of Stem Cell Biology Research, Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
7
|
Flotte TR, Gessler DJ. Gene Therapy for Rare Neurological Disorders. Clin Pharmacol Ther 2022; 111:743-757. [PMID: 35102556 DOI: 10.1002/cpt.2543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 01/23/2022] [Indexed: 11/10/2022]
Abstract
There are over 7 000 diseases that are individually rare, but collectively affect missions of people worldwide. They are very commonly neurologic single-gene disorders. Recent advances in recombinant adeno-associated virus (rAAV) vectors have enabled breakthroughs, including FDA-approved gene therapies for Inherited Retinal Dystrophy due to RPE65 mutation and spinal muscular atrophy. A range of other gene therapies for rare neurologic diseases are at various stages of development. Future development of gene editing technologies promises further to broaden the potential for more patients with these disorders to benefit from innovative therapies.
Collapse
Affiliation(s)
| | - Dominic J Gessler
- University of Massachusetts Chan Medical School.,University of Minnesota
| |
Collapse
|
8
|
Huang W, Hu W, Cai L, Zeng G, Fang W, Dai X, Ye Q, Chen X, Zhang J. Acetate supplementation produces antidepressant-like effect via enhanced histone acetylation. J Affect Disord 2021; 281:51-60. [PMID: 33290927 DOI: 10.1016/j.jad.2020.11.121] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Abnormal energy metabolism is often documented in the brain of patients and rodents with depression. In metabolic stress, acetate serves as an important source of acetyl coenzyme A (Ac-CoA). However, its exact role and underlying mechanism remain to be investigated. METHOD We used chronic social failure stress (CSDS) to induce depression-like phenotype of C57BL/6J mice. The drugs were administered by gavage. We evaluated the depressive symptoms by sucrose preference test, social interaction, tail suspension test and forced swimming test. The dendritic branches and spine density were detected by Golgi staining, mRNA level was analyzed by real-time quantitative RT-PCR, protein expression level was detected by western blot, and the content of Ac-CoA was detected by ELISA kit. RESULT The present study found that acetate supplementation significantly improved the depression-like behaviors of mice either in acute forced swimming test (FST) or in CSDS model and that acetate administration enhanced the dendritic branches and spine density of the CA1 pyramidal neurons. Moreover, the down-regulated levels of BDNF and TrkB were rescued in the acetate-treated mice. Of note, chronic acetate treatment obviously lowered the transcription level of HDAC2, HDAC5, HDAC7, HDAC8, increased the transcription level of HAT and P300, and boosted the content of Ac-CoA in the nucleus, which facilitated the acetylation levels of histone H3 and H4. LIMITATIONS The effect of acetate supplementation on other brain regions is not further elucidated. CONCLUSION These findings indicate that acetate supplementation can produce antidepressant-like effects by increasing histone acetylation and improving synaptic plasticity in hippocampus.
Collapse
Affiliation(s)
- Weibin Huang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Wenming Hu
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Lili Cai
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Guirong Zeng
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Wenting Fang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Xiaoman Dai
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Qinyong Ye
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China.
| | - Jing Zhang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian 350005, China.
| |
Collapse
|
9
|
Qu Y, Liu Y, Noor AF, Tran J, Li R. Characteristics and advantages of adeno-associated virus vector-mediated gene therapy for neurodegenerative diseases. Neural Regen Res 2019; 14:931-938. [PMID: 30761996 PMCID: PMC6404499 DOI: 10.4103/1673-5374.250570] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Common neurodegenerative diseases of the central nervous system are characterized by progressive damage to the function of neurons, even leading to the permanent loss of function. Gene therapy via gene replacement or gene correction provides the potential for transformative therapies to delay or possibly stop further progression of the neurodegenerative disease in affected patients. Adeno-associated virus has been the vector of choice in recent clinical trials of therapies for neurodegenerative diseases due to its safety and efficiency in mediating gene transfer to the central nervous system. This review aims to discuss and summarize the progress and clinical applications of adeno-associated virus in neurodegenerative disease in central nervous system. Results from some clinical trials and successful cases of central neurodegenerative diseases deserve further study and exploration.
Collapse
Affiliation(s)
- Yuan Qu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Ahmed Fayyaz Noor
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, USA
| | - Johnathan Tran
- Department of Premedical and Health Studies, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Rui Li
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
10
|
Chevalier AC, Rosenberger TA. Increasing acetyl-CoA metabolism attenuates injury and alters spinal cord lipid content in mice subjected to experimental autoimmune encephalomyelitis. J Neurochem 2017; 141:721-737. [PMID: 28369944 DOI: 10.1111/jnc.14032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 12/28/2022]
Abstract
Acetate supplementation increases brain acetyl-CoA metabolism, alters histone and non-histone protein acetylation, increases brain energy reserves, and is anti-inflammatory and neuroprotective in rat models of neuroinflammation and neuroborreliosis. To determine the impact acetate supplementation has on a mouse model of multiple sclerosis, we quantified the effect treatment had on injury progression, spinal cord lipid content, phospholipase levels, and myelin structure in mice subjected to experimental autoimmune encephalomyelitis (EAE). EAE was induced by inoculating mice with a myelin oligodendrocyte glycoprotein peptide fragment (MOG35-55 ), and acetate supplementation was maintained with 4 g/kg glyceryl triacetate by a daily oral gavage. Acetate supplementation prevented the onset of clinical signs in mice subject to EAE compared to control-treated mice. Furthermore, acetate supplementation prevented the loss of spinal cord ethanolamine and choline glycerophospholipid and phosphatidylserine in mice subjected to EAE compared to EAE animals treated with water. Treatment increased saturated and monounsaturated fatty acid levels in phosphatidylserine compared to controls suggesting that acetate was utilized to increase spinal cord fatty acid content. Also, acetate supplementation prevented the loss of spinal cord cholesterol in EAE animals but did not change cholesteryl esters. Treatment significantly increased GD3 and GD1a ganglioside levels in EAE mice when compared to EAE mice treated with water. Treatment returned levels of phosphorylated and non-phosphorylated cytosolic phospholipase A2 (cPLA2 ) levels back to baseline and based on FluoroMyelin™ histochemistry maintained myelin structural characteristics. Overall, these data suggest that acetate supplementation may modulate lipid metabolism in mice subjected to EAE.
Collapse
Affiliation(s)
- Amber C Chevalier
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Thad A Rosenberger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|
11
|
Ashrafi MR, Tavasoli AR. Childhood leukodystrophies: A literature review of updates on new definitions, classification, diagnostic approach and management. Brain Dev 2017; 39:369-385. [PMID: 28117190 DOI: 10.1016/j.braindev.2017.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 12/29/2022]
Abstract
Childhood leukodystrophies are a growing category of neurological disorders in pediatric neurology practice. With the help of new advanced genetic studies such as whole exome sequencing (WES) and whole genome sequencing (WGS), the list of childhood heritable white matter disorders has been increased to more than one hundred disorders. During the last three decades, the basic concepts and definitions, classification, diagnostic approach and medical management of these disorders much have changed. Pattern recognition based on brain magnetic resonance imaging (MRI), has played an important role in this process. We reviewed the last Global Leukodystrophy Initiative (GLIA) expert opinions in definition, new classification, diagnostic approach and medical management including emerging treatments for pediatric leukodystrophies.
Collapse
Affiliation(s)
- Mahmoud Reza Ashrafi
- Department of Child Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Reza Tavasoli
- Department of Child Neurology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Gessler DJ, Li D, Xu H, Su Q, Sanmiguel J, Tuncer S, Moore C, King J, Matalon R, Gao G. Redirecting N-acetylaspartate metabolism in the central nervous system normalizes myelination and rescues Canavan disease. JCI Insight 2017; 2:e90807. [PMID: 28194442 PMCID: PMC5291725 DOI: 10.1172/jci.insight.90807] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/21/2016] [Indexed: 02/05/2023] Open
Abstract
Canavan disease (CD) is a debilitating and lethal leukodystrophy caused by mutations in the aspartoacylase (ASPA) gene and the resulting defect in N-acetylaspartate (NAA) metabolism in the CNS and peripheral tissues. Recombinant adeno-associated virus (rAAV) has the ability to cross the blood-brain barrier and widely transduce the CNS. We developed a rAAV-based and optimized gene replacement therapy, which achieves early, complete, and sustained rescue of the lethal disease phenotype in CD mice. Our treatment results in a super-mouse phenotype, increasing motor performance of treated CD mice beyond that of WT control mice. We demonstrate that this rescue is oligodendrocyte independent, and that gene correction in astrocytes is sufficient, suggesting that the establishment of an astrocyte-based alternative metabolic sink for NAA is a key mechanism for efficacious disease rescue and the super-mouse phenotype. Importantly, the use of clinically translatable high-field imaging tools enables the noninvasive monitoring and prediction of therapeutic outcomes for CD and might enable further investigation of NAA-related cognitive function.
Collapse
Affiliation(s)
- Dominic J. Gessler
- Department of Microbiology and Physiological Systems
- Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
- University Hospital Heidelberg, Centre for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine
- Ruprecht-Karls University, Medical School, Heidelberg, Germany
| | - Danning Li
- Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| | - Hongxia Xu
- Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
- University of Science and Technology of Kunming, China
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| | - Julio Sanmiguel
- Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| | | | - Constance Moore
- Center for Comparative Neuroimaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jean King
- Center for Comparative Neuroimaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Guangping Gao
- Department of Microbiology and Physiological Systems
- Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Jurdáková H, Górová R, Addová G, Behúlová D, Ostrovský I. The state of treatment approach and diagnostics in Canavan disease with focus on the determination of N-acetylasparic acid. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-016-0033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Jaworski DM, Namboodiri AMA, Moffett JR. Acetate as a Metabolic and Epigenetic Modifier of Cancer Therapy. J Cell Biochem 2016; 117:574-88. [PMID: 26251955 DOI: 10.1002/jcb.25305] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 12/25/2022]
Abstract
Metabolic networks are significantly altered in neoplastic cells. This altered metabolic program leads to increased glycolysis and lipogenesis and decreased dependence on oxidative phosphorylation and oxygen consumption. Despite their limited mitochondrial respiration, cancer cells, nonetheless, derive sufficient energy from alternative carbon sources and metabolic pathways to maintain cell proliferation. They do so, in part, by utilizing fatty acids, amino acids, ketone bodies, and acetate, in addition to glucose. The alternative pathways used in the metabolism of these carbon sources provide opportunities for therapeutic manipulation. Acetate, in particular, has garnered increased attention in the context of cancer as both an epigenetic regulator of posttranslational protein modification, and as a carbon source for cancer cell biomass accumulation. However, to date, the data have not provided a clear understanding of the precise roles that protein acetylation and acetate oxidation play in carcinogenesis, cancer progression or treatment. This review highlights some of the major issues, discrepancies, and opportunities associated with the manipulation of acetate metabolism and acetylation-based signaling in cancer development and treatment.
Collapse
Affiliation(s)
- Diane M Jaworski
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| | - Aryan M A Namboodiri
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - John R Moffett
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
15
|
Roscoe RB, Elliott C, Zarros A, Baillie GS. Non-genetic therapeutic approaches to Canavan disease. J Neurol Sci 2016; 366:116-124. [DOI: 10.1016/j.jns.2016.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 01/30/2023]
|
16
|
Long PM, Tighe SW, Driscoll HE, Fortner KA, Viapiano MS, Jaworski DM. Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest. J Cell Physiol 2015; 230:1929-43. [PMID: 25573156 DOI: 10.1002/jcp.24927] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/07/2015] [Indexed: 12/29/2022]
Abstract
Glioblastoma (GBM), the most common primary adult malignant brain tumor, is associated with a poor prognosis due, in part, to tumor recurrence mediated by chemotherapy and radiation resistant glioma stem-like cells (GSCs). The metabolic and epigenetic state of GSCs differs from their non-GSC counterparts, with GSCs exhibiting greater glycolytic metabolism and global hypoacetylation. However, little attention has been focused on the potential use of acetate supplementation as a therapeutic approach. N-acetyl-l-aspartate (NAA), the primary storage form of brain acetate, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis, are significantly reduced in GBM tumors. We recently demonstrated that NAA supplementation is not an appropriate therapeutic approach since it increases GSC proliferation and pursued an alternative acetate source. The FDA approved food additive Triacetin (glyceryl triacetate, GTA) has been safely used for acetate supplementation therapy in Canavan disease, a leukodystrophy due to ASPA mutation. This study characterized the effects of GTA on the proliferation and differentiation of six primary GBM-derived GSCs relative to established U87 and U251 GBM cell lines, normal human cerebral cortical astrocytes, and murine neural stem cells. GTA reduced proliferation of GSCs greater than established GBM lines. Moreover, GTA reduced growth of the more aggressive mesenchymal GSCs greater than proneural GSCs. Although sodium acetate induced a dose-dependent reduction of GSC growth, it also reduced cell viability. GTA-mediated growth inhibition was not associated with differentiation, but increased protein acetylation. These data suggest that GTA-mediated acetate supplementation is a novel therapeutic strategy to inhibit GSC growth.
Collapse
Affiliation(s)
- Patrick M Long
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| | | | | | | | | | | |
Collapse
|
17
|
Kantor B, McCown T, Leone P, Gray SJ. Clinical applications involving CNS gene transfer. ADVANCES IN GENETICS 2015; 87:71-124. [PMID: 25311921 DOI: 10.1016/b978-0-12-800149-3.00002-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diseases of the central nervous system (CNS) have traditionally been the most difficult to treat by traditional pharmacological methods, due mostly to the blood-brain barrier and the difficulties associated with repeated drug administration targeting the CNS. Viral vector gene transfer represents a way to permanently provide a therapeutic protein within the nervous system after a single administration, whether this be a gene replacement strategy for an inherited disorder or a disease-modifying protein for a disease such as Parkinson's. Gene therapy approaches for CNS disorders has evolved considerably over the last two decades. Although a breakthrough treatment has remained elusive, current strategies are now considerably safer and potentially much more effective. This chapter will explore the past, current, and future status of CNS gene therapy, focusing on clinical trials utilizing adeno-associated virus and lentiviral vectors.
Collapse
Affiliation(s)
- Boris Kantor
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Thomas McCown
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paola Leone
- Department of Cell Biology, Rowan University, Camden, NJ, USA
| | - Steven J Gray
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Abstract
The autosomal recessive Canavan disease (CD) is a neurological disorder that begins in infancy. CD is caused by mutations in the gene encoding the ASPA enzyme. It has been reported with high frequency in patients with Jewish ancestry, and with low frequency in non-Jewish patients. This review will shed light on some updates regarding CD prevalence and causative mutations across the Arab World. CD was reported in several Arab countries such as Saudi Arabia, Egypt, Jordan, Yemen, Kuwait, and Tunisia. The population with the highest risk is in Saudi Arabia due the prevalent consanguineous marriage culture. In several studies, four novel mutations were found among Arabian CD patients, including two missense mutations (p.C152R, p.C152W), a 3346bp deletion leading to the removal of exon 3 of the ASPA gene, and an insertion mutation (698insC). Other previously reported mutations, which led to damage in the ASPA enzyme activities found among CD Arab patients are c.530 T>C (p.I177T), c.79G>A (p.G27R), IVS4+1G>T, and a 92kb deletion, which is 7.16kb upstream from the ASPA start site. This review will help in developing customized molecular diagnostic approaches and promoting CD carrier screening in the Arab world in areas where consanguineous marriage is common particularly within Saudi Arabia.
Collapse
|
19
|
Ahmed SS, Gao G. Making the White Matter Matters: Progress in Understanding Canavan's Disease and Therapeutic Interventions Through Eight Decades. JIMD Rep 2015; 19:11-22. [PMID: 25604619 DOI: 10.1007/8904_2014_356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/05/2014] [Accepted: 08/12/2014] [Indexed: 12/24/2022] Open
Abstract
Canavan's disease (CD) is a fatal autosomal recessive pediatric leukodystrophy in which patients show severe neurodegeneration and typically die by the age of 10, though life expectancy in patients can be highly variable. Currently, there is no effective treatment for CD; however, gene therapy seems to be a feasible approach to combat the disease. Being a monogenic defect, the disease provides an excellent model system to develop gene therapy approaches that can be extended to other monogenic leukodystrophies and neurodegenerative diseases. CD results from mutations in a single gene aspartoacylase which hydrolyses N-acetyl aspartic acid (NAA) which accumulates in its absences. Since CD is one of the few diseases that show high NAA levels, it can also be used to study the enigmatic biological role of NAA. The disease was first described in 1931, and this review traces the progress made in the past 8 decades to understand the disease by enumerating current hypotheses and ongoing palliative measures to alleviate patient symptoms in the context of the latest advances in the field.
Collapse
Affiliation(s)
- Seemin S Ahmed
- University of Massachusetts Medical School, 368 Plantation Street, ASC6, Worcester, MA, 01605, USA
| | | |
Collapse
|
20
|
Francis JS, Markov V, Leone P. Dietary triheptanoin rescues oligodendrocyte loss, dysmyelination and motor function in the nur7 mouse model of Canavan disease. J Inherit Metab Dis 2014; 37:369-81. [PMID: 24288037 DOI: 10.1007/s10545-013-9663-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/24/2013] [Accepted: 11/11/2013] [Indexed: 12/11/2022]
Abstract
The inherited pediatric leukodystrophy Canavan disease is characterized by dysmyelination and severe spongiform degeneration, and is currently refractory to treatment. A definitive understanding of core disease mechanisms is lacking, but pathology is believed to result at least in part compromised fatty acid synthesis during myelination. Recent evidence generated in an animal model suggests that the breakdown of N-acetylaspartate metabolism in CD results in a heightened coupling of fatty acid synthesis to oligodendrocyte oxidative metabolism during the early stages of myelination, thereby causing acute oxidative stress. We present here the results of a dietary intervention designed to support oxidative integrity during developmental myelination in the nur7 mouse model of Canavan disease. Provision of the odd carbon triglyceride triheptanoin to neonatal nur7 mice reduced oxidative stress, promoted long-term oligodendrocyte survival, and increased myelin in the brain. Improvements in oligodendrocyte survival and myelination were associated with a highly significant reduction in spongiform degeneration and improved motor function in triheptanoin treated mice. Initiation of triheptanoin treatment in older animals resulted in markedly more modest effects on these same pathological indices, indicating a window of therapeutic intervention that corresponds with developmental myelination. These results support the targeting of oxidative integrity at early stages of Canavan disease, and provide a foundation for the clinical development of a non-invasive dietary triheptanoin treatment regimen.
Collapse
Affiliation(s)
- Jeremy S Francis
- Cell and Gene Therapy Center, Department of Cell Biology, Rowan University School of Osteopathic Medicine, 40 East Laurel Rd, Stratford, NJ, USA,
| | | | | |
Collapse
|
21
|
Long PM, Tighe SW, Driscoll HE, Moffett JR, Namboodiri AMA, Viapiano MS, Lawler SE, Jaworski DM. Acetate supplementation induces growth arrest of NG2/PDGFRα-positive oligodendroglioma-derived tumor-initiating cells. PLoS One 2013; 8:e80714. [PMID: 24278309 PMCID: PMC3835562 DOI: 10.1371/journal.pone.0080714] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/07/2013] [Indexed: 12/28/2022] Open
Abstract
Cancer is associated with globally hypoacetylated chromatin and considerable attention has recently been focused on epigenetic therapies. N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate and ultimately acetyl-Coenzyme A for histone acetylation, are reduced in oligodendroglioma. The short chain triglyceride glyceryl triacetate (GTA), which increases histone acetylation and inhibits histone deacetylase expression, has been safely used for acetate supplementation in Canavan disease, a leukodystrophy due to ASPA mutation. We demonstrate that GTA induces cytostatic G0 growth arrest of oligodendroglioma-derived cells in vitro, without affecting normal cells. Sodium acetate, at doses comparable to that generated by complete GTA catalysis, but not glycerol also promoted growth arrest, whereas long chain triglycerides promoted cell growth. To begin to elucidate its mechanism of action, the effects of GTA on ASPA and acetyl-CoA synthetase protein levels and differentiation of established human oligodendroglioma cells (HOG and Hs683) and primary tumor-derived oligodendroglioma cells that exhibit some features of cancer stem cells (grade II OG33 and grade III OG35) relative to an oligodendrocyte progenitor line (Oli-Neu) were examined. The nuclear localization of ASPA and acetyl-CoA synthetase-1 in untreated cells was regulated during the cell cycle. GTA-mediated growth arrest was not associated with apoptosis or differentiation, but increased expression of acetylated proteins. Thus, GTA-mediated acetate supplementation may provide a safe, novel epigenetic therapy to reduce the growth of oligodendroglioma cells without affecting normal neural stem or oligodendrocyte progenitor cell proliferation or differentiation.
Collapse
Affiliation(s)
- Patrick M. Long
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Scott W. Tighe
- Vermont Cancer Center, Burlington, Vermont, United States of America
| | - Heather E. Driscoll
- Vermont Genetics Network, Norwich University, Northfield, Vermont, United States of America
| | - John R. Moffett
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Aryan M. A. Namboodiri
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Mariano S. Viapiano
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Sean E. Lawler
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Diane M. Jaworski
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
22
|
Glicksman S, Borgen C, Blackstein M, Gordon A, Hanon I, Kusin D, Leibowitz B, Halle J. A thematic review of scientific and family interests in Canavan Disease: where are the developmentalists? JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2013; 57:815-825. [PMID: 22676184 DOI: 10.1111/j.1365-2788.2012.01576.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND Canavan Disease is a degenerative neurological condition resulting in a spongy deterioration of the brain. Much research has been conducted by the medical community regarding this condition, but little research can be found in the psychological literature. METHOD A review of the scientific literature related to Canavan Disease using the Psychinfo and PubMed databases was conducted covering a 5-year span from 2006 through 2011. Concurrently, a review of parent initiated topics found on the most popular Canavan Disease Internet discussion board was conducted for comparison purposes. RESULTS When comparing the topics discussed and information sought among parents with the themes noted in the extant scientific literature, researchers found an exceedingly small overlap between the two communities of interest. In the scientific literature, published research on Canavan Disease focused on three areas: the biochemistry of Canavan Disease, diagnosis and genetic counselling, and clinical therapeutic approaches in Canavan Disease. Of the 42 unique topics raised on a popular Internet discussion board, however, only three (7%) fell into the category of diagnosis and genetic counselling, none (0%) fell into the category of the biochemistry of Canavan Disease, and four fell into the category of clinical therapeutic approaches in Canavan Disease (10%). Of the four posts addressing clinical therapeutic approaches to Canavan Disease, only one post truly overlapped with the topics addressed by the scientific community. Worded differently, while these three categories comprise 100% of the extant scientific literature regarding Canavan Disease, they comprise only 17% of the parent-raised topics. The remaining 83% of parent-raised topics addressed concerns not currently being focusing upon by the scientific community, namely, non-medical practical issues, information regarding specific characteristics of Canavan Disease, non-medical developmental and quality of life issues, and day-to-day developmental and medical concerns. CONCLUSION By comparing the extant literature on Canavan Disease with the topics of interest raised by parents and caregivers, it seems clear that there is a significant 'underlap' of topics raised by these two communities of interest, one that may reflect a lack of sensitivity on the part of the scientific community to meet the needs of this population of knowledge seekers. It is the suggestion of these authors that developmental psychology may be the appropriate scientific field within which to address this need and fill this gap in the current literature.
Collapse
|
23
|
Soliman ML, Combs CK, Rosenberger TA. Modulation of inflammatory cytokines and mitogen-activated protein kinases by acetate in primary astrocytes. J Neuroimmune Pharmacol 2012; 8:287-300. [PMID: 23233245 DOI: 10.1007/s11481-012-9426-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/29/2012] [Indexed: 02/06/2023]
Abstract
Acetate supplementation attenuates neuroglia activation in a rat model of neuroinflammation by a mechanism associated with an increase in brain acetyl-CoA, an alteration in histone acetylation, and reduction of interleukin (IL)-1β expression. We propose that reduced astroglial activation occurs by disrupting astrocyte-derived inflammatory signaling and cytokine release. Using primary astroglial cultures, we found that LPS (0-25 ng/ml, 4 h) increased tumor necrosis factor (TNF-α) and IL-1β in a concentration-dependent manner, which was reduced by treatment with sodium acetate (12 mM). LPS did not alter H3K9 acetylation or IL-6 levels, whereas acetate treatment increased H3K9 acetylation by 2-fold and decreased basal levels of IL-6 by 2-fold. Acetate treatment attenuated the LPS-induced increase in TNF-α mRNA, but did not reverse the mRNA levels of other pro-inflammatory cytokines. By contrast, LPS decreased TGF-β1 and IL-4 protein and TGF-β1 mRNA, all of which was reversed with acetate treatment. Further, we found that acetate treatment completely reversed LPS-induced phosphorylation of MAPK p38 and decreased basal levels of phosphorylated extracellular signal-regulated kinases1/2 (ERK1/2) by 2-fold. Acetate treatment also reversed LPS-elevated NF-κB p65, CCAAT/enhancer-binding protein beta protein levels, and reduced basal levels of phosphorylated NF-κB p65 at serine 536. These results suggest that acetate treatment has a net anti-inflammatory effect in LPS-stimulated astrocytes that is largely associated with a disruption in MAPK and NF-κB signaling.
Collapse
Affiliation(s)
- Mahmoud L Soliman
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Room 3742, Grand Forks, ND 58203, USA
| | | | | |
Collapse
|
24
|
Soliman ML, Smith MD, Houdek HM, Rosenberger TA. Acetate supplementation modulates brain histone acetylation and decreases interleukin-1β expression in a rat model of neuroinflammation. J Neuroinflammation 2012; 9:51. [PMID: 22413888 PMCID: PMC3317831 DOI: 10.1186/1742-2094-9-51] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 03/13/2012] [Indexed: 01/19/2023] Open
Abstract
Background Long-term acetate supplementation reduces neuroglial activation and cholinergic cell loss in a rat model of lipopolysaccharide-induced neuroinflammation. Additionally, a single dose of glyceryl triacetate, used to induce acetate supplementation, increases histone H3 and H4 acetylation and inhibits histone deacetylase activity and histone deacetylase-2 expression in normal rat brain. Here, we propose that the therapeutic effect of acetate in reducing neuroglial activation is due to a reversal of lipopolysaccharide-induced changes in histone acetylation and pro-inflammatory cytokine expression. Methods In this study, we examined the effect of a 28-day-dosing regimen of glyceryl triacetate, to induce acetate supplementation, on brain histone acetylation and interleukin-1β expression in a rat model of lipopolysaccharide-induced neuroinflammation. The effect was analyzed using Western blot analysis, quantitative real-time polymerase chain reaction and enzymic histone deacetylase and histone acetyltransferase assays. Statistical analysis was performed using one-way analysis of variance, parametric or nonparametric when appropriate, followed by Tukey's or Dunn's post-hoc test, respectively. Results We found that long-term acetate supplementation increased the proportion of brain histone H3 acetylated at lysine 9 (H3K9), histone H4 acetylated at lysine 8 and histone H4 acetylated at lysine 16. However, unlike a single dose of glyceryl triacetate, long-term treatment increased histone acetyltransferase activity and had no effect on histone deacetylase activity, with variable effects on brain histone deacetylase class I and II expression. In agreement with this hypothesis, neuroinflammation reduced the proportion of brain H3K9 acetylation by 50%, which was effectively reversed with acetate supplementation. Further, in rats subjected to lipopolysaccharide-induced neuroinflammation, the pro-inflammatory cytokine interleukin-1β protein and mRNA levels were increased by 1.3- and 10-fold, respectively, and acetate supplementation reduced this expression to control levels. Conclusion Based on these results, we conclude that dietary acetate supplementation attenuates neuroglial activation by effectively reducing pro-inflammatory cytokine expression by a mechanism that may involve a distinct site-specific pattern of histone acetylation and histone deacetylase expression in the brain.
Collapse
Affiliation(s)
- Mahmoud L Soliman
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203, USA
| | | | | | | |
Collapse
|
25
|
Segel R, Anikster Y, Zevin S, Steinberg A, Gahl WA, Fisher D, Staretz-Chacham O, Zimran A, Altarescu G. A safety trial of high dose glyceryl triacetate for Canavan disease. Mol Genet Metab 2011; 103:203-6. [PMID: 21474353 DOI: 10.1016/j.ymgme.2011.03.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/09/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
Abstract
Canavan disease (CD MIM#271900) is a rare autosomal recessive neurodegenerative disorder presenting in early infancy. The course of the disease is variable, but it is always fatal. CD is caused by mutations in the ASPA gene, which codes for the enzyme aspartoacylase (ASPA), which breaks down N-acetylaspartate (NAA) to acetate and aspartic acid. The lack of NAA-degrading enzyme activity leads to excess accumulation of NAA in the brain and deficiency of acetate, which is necessary for myelin lipid synthesis. Glyceryltriacetate (GTA) is a short-chain triglyceride with three acetate moieties on a glycerol backbone and has proven an effective acetate precursor. Intragastric administration of GTA to tremor mice results in greatly increased brain acetate levels, and improved motor functions. GTA given to infants with CD at a low dose (up to 0.25 g/kg/d) resulted in no improvement in their clinical status, but also no detectable toxicity. We present for the first time the safety profile of high dose GTA (4.5 g/kg/d) in 2 patients with CD. We treated 2 infants with CD at ages 8 months and 1 year with high dose GTA, for 4.5 and 6 months respectively. No significant side effects and no toxicity were observed. Although the treatment resulted in no motor improvement, it was well tolerated. The lack of clinical improvement might be explained mainly by the late onset of treatment, when significant brain damage was already present. Further larger studies of CD patients below age 3 months are required in order to test the long-term efficacy of this drug.
Collapse
Affiliation(s)
- Reeval Segel
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Acetate supplementation increases brain histone acetylation and inhibits histone deacetylase activity and expression. Mol Cell Biochem 2011; 352:173-80. [DOI: 10.1007/s11010-011-0751-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 02/17/2011] [Indexed: 11/27/2022]
|
27
|
Arun P, Madhavarao CN, Moffett JR, Hamilton K, Grunberg NE, Ariyannur PS, Gahl WA, Anikster Y, Mog S, Hallows WC, Denu JM, Namboodiri AMA. Metabolic acetate therapy improves phenotype in the tremor rat model of Canavan disease. J Inherit Metab Dis 2010; 33:195-210. [PMID: 20464498 PMCID: PMC2877317 DOI: 10.1007/s10545-010-9100-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 03/09/2010] [Accepted: 03/31/2010] [Indexed: 11/29/2022]
Abstract
Genetic mutations that severely diminish the activity of aspartoacylase (ASPA) result in the fatal brain dysmyelinating disorder, Canavan disease. There is no effective treatment. ASPA produces free acetate from the concentrated brain metabolite, N-acetylaspartate (NAA). Because acetyl coenzyme A is a key building block for lipid synthesis, we postulated that the inability to catabolize NAA leads to a brain acetate deficiency during a critical period of CNS development, impairing myelination and possibly other aspects of brain development. We tested the hypothesis that acetate supplementation during postnatal myelination would ameliorate the severe phenotype associated with ASPA deficiency using the tremor rat model of Canavan disease. Glyceryltriacetate (GTA) was administered orally to tremor rats starting 7 days after birth, and was continued in food and water after weaning. Motor function, myelin lipids, and brain vacuolation were analyzed in GTA-treated and untreated tremor rats. Significant improvements were observed in motor performance and myelin galactocerebroside content in tremor rats treated with GTA. Further, brain vacuolation was modestly reduced, and these reductions were positively correlated with improved motor performance. We also examined the expression of the acetyl coenzyme A synthesizing enzyme acetyl coenzyme A synthase 1 and found upregulation of expression in tremor rats, with a return to near normal expression levels in GTA-treated tremor rats. These results confirm the critical role played by NAA-derived acetate in brain myelination and development, and demonstrate the potential usefulness of acetate therapy for the treatment of Canavan disease.
Collapse
Affiliation(s)
- Peethambaran Arun
- Department of Anatomy, Physiology and Genetics, Neuroscience Program and Molecular and Cell Biology Program, Uniformed Services University of the Health Sciences, Building C, 4301 Jones Bridge Rd., Bethesda, MD 20814 USA
| | - Chikkathur N. Madhavarao
- Department of Anatomy, Physiology and Genetics, Neuroscience Program and Molecular and Cell Biology Program, Uniformed Services University of the Health Sciences, Building C, 4301 Jones Bridge Rd., Bethesda, MD 20814 USA
| | - John R. Moffett
- Department of Anatomy, Physiology and Genetics, Neuroscience Program and Molecular and Cell Biology Program, Uniformed Services University of the Health Sciences, Building C, 4301 Jones Bridge Rd., Bethesda, MD 20814 USA
| | - Kristen Hamilton
- Department of Medical and Clinical Psychology and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814 USA
| | - Neil E. Grunberg
- Department of Medical and Clinical Psychology and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814 USA
| | - Prasanth S. Ariyannur
- Department of Anatomy, Physiology and Genetics, Neuroscience Program and Molecular and Cell Biology Program, Uniformed Services University of the Health Sciences, Building C, 4301 Jones Bridge Rd., Bethesda, MD 20814 USA
| | - William A. Gahl
- National Human Genome Research Institute, NIH, Bethesda, MD 20892 USA
| | - Yair Anikster
- Metabolic Disease Unit, Sheba Medical Center, Tel Aviv, Israel
| | - Steven Mog
- Division of Comparative Pathology, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889 USA
| | - William C. Hallows
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706 USA
| | - John M. Denu
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706 USA
| | - Aryan M. A. Namboodiri
- Department of Anatomy, Physiology and Genetics, Neuroscience Program and Molecular and Cell Biology Program, Uniformed Services University of the Health Sciences, Building C, 4301 Jones Bridge Rd., Bethesda, MD 20814 USA
| |
Collapse
|
28
|
Arun P, Ariyannur PS, Moffett JR, Xing G, Hamilton K, Grunberg NE, Ives JA, Namboodiri AMA. Metabolic acetate therapy for the treatment of traumatic brain injury. J Neurotrauma 2010; 27:293-8. [PMID: 19803785 DOI: 10.1089/neu.2009.0994] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Patients suffering from traumatic brain injury (TBI) have decreased markers of energy metabolism, including N-acetylaspartate (NAA) and ATP. In the nervous system, NAA-derived acetate provides acetyl-CoA required for myelin lipid synthesis. Acetate can also be oxidized in mitochondria for the derivation of metabolic energy. In the current study, using the controlled cortical impact model of TBI in rats, we investigated the effects of the hydrophobic acetate precursor, glyceryltriacetate (GTA), as a method of delivering metabolizable acetate to the injured brain. We found that GTA administration significantly increased the levels of both NAA and ATP in the injured hemisphere 4 and 6 days after injury, and also resulted in significantly improved motor performance in rats 3 days after injury.
Collapse
Affiliation(s)
- Peethambaran Arun
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | | | | | | | | | |
Collapse
|