1
|
Farjallah A, Maranda B, Giugliani R, Auray-Blais C. Exploratory metabolomic profiling of plasma and urine in patients with mucopolysaccharidosis type II (Hunter syndrome): A pilot study. Mol Genet Metab 2025; 144:109022. [PMID: 39842066 DOI: 10.1016/j.ymgme.2025.109022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/24/2025]
Abstract
Mucopolysaccharidosis type II (MPS II), also known as Hunter syndrome, is an X-linked lysosomal storage disorder. It results from a deficiency of the enzyme iduronate-2-sulfatase (I2S), leading to the accumulation of glycosaminoglycans (GAGs) in various tissues and organs. Clinical manifestations include skeletal abnormalities, facial coarsening, organ enlargement, and developmental delays. The main objective of this study was to identify neuronopathic MPS II-specific biomarkers for early detection, diagnosis, monitoring, and follow up of affected patients. We thus applied liquid chromatography-high-resolution mass spectrometry (LC-HRMS) based untargeted metabolomic approaches to identify these potential biomarkers which could discriminate patients with the neuronopathic form of MPS II from healthy controls. Secondary aims focused on a better understanding of how the disease may affect the metabolome of patients. Urine and plasma samples from 21 untreated neuronopathic MPS II patients characterized by severe clinical manifestations were compared to 23 age- and gender-matched healthy control samples using a Xevo G2-XS Qtof MS (Waters Corp.). A comprehensive metabolomic workflow and multivariate statistical analyses revealed metabolites consistently elevated in MPS II patients. These include acylaminosugars, dipeptides, amino acids and their derivatives, lipid structures, and various compounds indicating disruptions in metabolic pathways. Development and validation of quantitative methods will be done using tandem mass spectrometry. Furthermore, identifying biomarkers associated with the central nervous system (CNS) in MPS II patients would help detect the neuronopathic form of the disease early, and enable the evaluation of the effectiveness of novel therapeutic strategies.
Collapse
Affiliation(s)
- Asma Farjallah
- Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Bruno Maranda
- Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Roberto Giugliani
- UFRGS, HCPA, INAGEMP, DASA and Casa dos Raros, Porto Alegre, RS, Brazil
| | - Christiane Auray-Blais
- Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
2
|
Collardeau-Frachon S. [Adult and pediatric thesaurismosis: Lysosomal, lipid and glycogen storage diseases]. Ann Pathol 2024; 44:432-452. [PMID: 39358197 DOI: 10.1016/j.annpat.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Thesaurismosis or storage diseases are rare genetic disorders due to an abnormal accumulation of an organic compound or its metabolite within cells. These conditions are either secondary to a defect in catabolism caused by enzymatic dysfunction or to a deficiency in transport proteins. They encompass lysosomal storage diseases, lipid storage diseases or dyslipidemias, and glycogen storage disorders or glycogenoses. Diagnosis is typically based on clinical and biological anomalies but may be made or suggested by the pathologist when symptoms are atypical or when biochemical or genetic tests are challenging to interpret. For accurate diagnosis, it is crucial to freeze a portion of the samples. Special staining and electronic microscopy can also aid in the diagnostic process. As the diagnosis is multidisciplinary, collaboration with clinicians, biochemists and geneticists is essential.
Collapse
Affiliation(s)
- Sophie Collardeau-Frachon
- Institut de pathologie des hospices civils de Lyon, groupement hospitalier Est, 59, boulevard Pinel, 69677 Bron cedex, France.
| |
Collapse
|
3
|
Andreou T, Ishikawa-Learmonth Y, Bigger BW. Phenotypic characterisation of the Mucopolysaccharidosis Type I (MPSI) Idua-W392X mouse model reveals increased anxiety-related traits in female mice. Mol Genet Metab 2023; 139:107651. [PMID: 37473537 DOI: 10.1016/j.ymgme.2023.107651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Mucopolysaccharidosis Type I (MPSI) is a rare inherited lysosomal storage disease that arises due to mutations in the IDUA gene. Defective alpha-L-iduronidase (IDUA) enzyme is unable to break down glucosaminoglycans (GAGs) within the lysosomes and, as a result, there is systemic accumulation of undegraded products in lysosomes throughout the body leading to multi-system disease. Here, we characterised the skeletal/craniofacial, neuromuscular and behavioural outcomes of the MPSI Idua-W392X mouse model. We demonstrate that Idua-W392X mice have gross craniofacial abnormalities, showed signs of kyphosis, and show signs of hypoactivity compared to wild-type mice. X-ray imaging analysis revealed significantly shorter and wider tibias and femurs, significantly wider snouts, increased skull width and significantly thicker zygomatic arch bones in Idua-W392X female mice compared to wild-type mice at 9 and 10.5 months of age. Idua-W392X mice display decreased muscle strength, especially in the forelimbs, which is already apparent from 3 months of age. Female Idua-W392X mice display hypoactivity in the open-field test from 9 months of age and anxiety-like behaviour at 10 months of age. As these behaviours have been identified in Hurler children, the MPSI Idua-W392X mouse model may be important for the investigation of new therapeutic approaches for MPSI-Hurler.
Collapse
Affiliation(s)
- Tereza Andreou
- Stem Cell and Neurotherapies Group, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
| | - Yuko Ishikawa-Learmonth
- Stem Cell and Neurotherapies Group, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom
| | - Brian W Bigger
- Stem Cell and Neurotherapies Group, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom.
| |
Collapse
|
4
|
Sabitha KR, Chandran D, Shetty AK, Upadhya D. Delineating the neuropathology of lysosomal storage diseases using patient-derived induced pluripotent stem cells. Stem Cells Dev 2022; 31:221-238. [PMID: 35316126 DOI: 10.1089/scd.2021.0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lysosomal storage diseases (LSD) are inherited metabolic diseases caused due to deficiency of lysosomal enzymes, essential for the normal development of the brain and other organs. Approximately two-thirds of the patients suffering from LSD exhibit neurological deficits and impose an escalating challenge to the medical and scientific field. The advent of iPSC technology has aided researchers in efficiently generating functional neuronal and non-neuronal cells through directed differentiation protocols, as well as in decoding the cellular, subcellular and molecular defects associated with LSDs using two-dimensional cultures and cerebral organoid models. This review highlights the information assembled from patient-derived iPSCs on neurodevelopmental and neuropathological defects identified in LSDs. Multiple studies have identified neural progenitor cell migration and differentiation defects, substrate accumulation, axon growth and myelination defects, impaired calcium homeostasis and altered electrophysiological properties, using patient-derived iPSCs. In addition, these studies have also uncovered defective lysosomes, mitochondria, endoplasmic reticulum, Golgi complex, autophagy and vesicle trafficking and signaling pathways, oxidative stress, neuroinflammation, blood brain barrier dysfunction, neurodegeneration, gliosis, altered transcriptomes in LSDs. The review also discusses the therapeutic applications such as drug discovery, repurposing of drugs, synergistic effects of drugs, targeted molecular therapies, gene therapy, and transplantation applications of mutation corrected lines identified using patient-derived iPSCs for different LSDs.
Collapse
Affiliation(s)
- K R Sabitha
- Kasturba Medical College Manipal, 29224, Centre for Molecular Neurosciences, Manipal, Karnataka, India;
| | - Divya Chandran
- Kasturba Medical College Manipal, 29224, Centre for Molecular Neurosciences, Manipal, Karnataka, India;
| | - Ashok K Shetty
- Texas A&M University College Station, 14736, College of Medicine, Institute for Regenerative Medicine, College Station, Texas, United States;
| | - Dinesh Upadhya
- Kasturba Medical College Manipal, 29224, Centre for Molecular Neurosciences, Manipal, Karnataka, India;
| |
Collapse
|
5
|
Bravar G, Luchesa Smith A, Siddiqui A, Lim M. Acute Myelopathy in Childhood. CHILDREN (BASEL, SWITZERLAND) 2021; 8:1055. [PMID: 34828768 PMCID: PMC8618498 DOI: 10.3390/children8111055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Acute myelopathy presenting in childhood can be clinically classified based on the location of injury (with resulting spinal syndrome) or the cause (broadly traumatic or non-traumatic). Types of nontraumatic myelopathy include ischaemic, infectious, inflammatory, nutritional, and metabolic causes, some of which may be part of a systemic illness such as systemic lupus erythematosus or a demyelinating disease such as multiple sclerosis. Nonaccidental injury is an important consideration in cases of traumatic myelopathy, which may often be associated with other injuries. Assessment should include neuroimaging of the brain and spinal cord, with further investigations targeted based on the most likely differential diagnoses; for example, a child with suspected demyelinating disease may require specialist cerebrospinal fluid and serological testing. Management also will differ based on the cause of the myelopathy, with several of these treatments more efficacious with earlier initiation, necessitating prompt recognition, diagnosis, and treatment of children presenting with symptoms of a myelopathy. Important components of holistic care may include physiotherapy and occupational therapy, with multidisciplinary team involvement as required (for example psychological support or specialist bowel and bladder teams).
Collapse
Affiliation(s)
- Giulia Bravar
- Department of Paediatrics, Hospital Santa Maria della Misericordia, 33100 Udine, Italy;
| | | | - Ata Siddiqui
- Children’s Neurosciences, Evelina London Children’s Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London SE1 7EH, UK;
- Department of Neuroradiology, King’s College Hospital, London SE5 9RS, UK
| | - Ming Lim
- Children’s Neurosciences, Evelina London Children’s Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London SE1 7EH, UK;
- Department of Women and Children’s Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE5 9NU, UK
| |
Collapse
|
6
|
Sevin C, Deiva K. Clinical Trials for Gene Therapy in Lysosomal Diseases With CNS Involvement. Front Mol Biosci 2021; 8:624988. [PMID: 34604300 PMCID: PMC8481654 DOI: 10.3389/fmolb.2021.624988] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
There are over 70 known lysosomal storage disorders (LSDs), most caused by mutations in genes encoding lysosomal hydrolases. Central nervous system involvement is a hallmark of the majority of LSDs and, if present, generally determines the prognosis of the disease. Nonetheless, brain disease is currently poorly targeted by available therapies, including systemic enzyme replacement therapy, mostly (but not only) due to the presence of the blood–brain barrier that restricts the access of orally or parenterally administered large molecules into the brain. Thus, one of the greatest and most exciting challenges over coming years will be to succeed in developing effective therapies for the treatment of central nervous system manifestations in LSDs. Over recent years, gene therapy (GT) has emerged as a promising therapeutic strategy for a variety of inherited neurodegenerative diseases. In LSDs, the ability of genetically corrected cells to cross-correct adjacent lysosomal enzyme-deficient cells in the brain after gene transfer might enhance the diffusion of the recombinant enzyme, making this group of diseases a strong candidate for such an approach. Both in vivo (using the administration of recombinant adeno-associated viral vectors) and ex vivo (auto-transplantation of lentiviral vector-modified hematopoietic stem cells-HSCs) strategies are feasible. Promising results have been obtained in an ever-increasing number of preclinical studies in rodents and large animal models of LSDs, and these give great hope of GT successfully correcting neurological defects, once translated to clinical practice. We are now at the stage of treating patients, and various clinical trials are underway, to assess the safety and efficacy of in vivo and ex vivo GT in several neuropathic LSDs. In this review, we summarize different approaches being developed and review the current clinical trials related to neuropathic LSDs, their results (if any), and their limitations. We will also discuss the pitfalls and the remaining challenges.
Collapse
Affiliation(s)
- Caroline Sevin
- Pediatric Neurology Department, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Kumaran Deiva
- Pediatric Neurology Department, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| |
Collapse
|
7
|
Neuropathophysiology of Lysosomal Storage Diseases: Synaptic Dysfunction as a Starting Point for Disease Progression. J Clin Med 2020; 9:jcm9030616. [PMID: 32106459 PMCID: PMC7141115 DOI: 10.3390/jcm9030616] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
About two thirds of the patients affected with lysosomal storage diseases (LSD) experience neurological manifestations, such as developmental delay, seizures, or psychiatric problems. In order to develop efficient therapies, it is crucial to understand the neuropathophysiology underlying these symptoms. How exactly lysosomal storage affects biogenesis and function of neurons is still under investigation however recent research highlights a substantial role played by synaptic defects, such as alterations in synaptic spines, synaptic proteins, postsynaptic densities, and synaptic vesicles that might lead to functional impairments in synaptic transmission and neurodegeneration, finally culminating in massive neuronal death and manifestation of cognitive symptoms. Unveiling how the synaptic components are affected in neurological LSD will thus enable a better understanding of the complexity of disease progression as well as identify crucial targets of therapeutic relevance and optimal time windows for targeted intervention.
Collapse
|
8
|
Sato Y, Okuyama T. Novel Enzyme Replacement Therapies for Neuropathic Mucopolysaccharidoses. Int J Mol Sci 2020; 21:ijms21020400. [PMID: 31936354 PMCID: PMC7014430 DOI: 10.3390/ijms21020400] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/26/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Although the advent of enzyme replacement therapy (ERT) for mucopolysaccharidoses (MPS) has paved the way for the treatment for these hereditary disorders, the blood brain barrier (BBB) has prevented patients with MPS involving the central nervous system (CNS) from benefitting from ERT. Therefore, finding ways to increase drug delivery into the brain across the BBB remains a crucial challenge for researchers and clinicians in the field. Attempts have been made to boost brain uptake of enzymes by targeting various receptors (e.g., insulin and transferrin), and several other administration routes have also been tested. This review summarizes the available information on clinical trials (completed, ongoing, and planned) of novel therapeutic agents with efficacy against CNS symptoms in neuropathic MPS and also discusses the common associated challenges and pitfalls, some of which may help elucidate the pathogenesis of the neurodegeneration leading to the manifold CNS symptoms. A summary of current knowledge pertaining to the neuropathological progression and resultant neuropsychiatric manifestations is also provided, because it should be useful to ERT researchers looking for better approaches to treating CNS lesions in MPS.
Collapse
Affiliation(s)
- Yuji Sato
- Research and Development, JCR Pharmaceuticals, Hyogo 659-0021, Japan
- Correspondence:
| | - Torayuki Okuyama
- Centre for Lysosomal Storage Diseases, National Centre for Child Health and Development, Tokyo 157-8535, Japan;
| |
Collapse
|
9
|
Pavićević A, Lakočević M, Popović M, Popović-Bijelić A, Daković M, Mojović M. Changes of the peripheral blood mononuclear cells membrane fluidity from type 1 Gaucher disease patients: an electron paramagnetic resonance study. Biol Chem 2018; 399:447-452. [PMID: 29272250 DOI: 10.1515/hsz-2017-0241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/10/2017] [Indexed: 01/18/2023]
Abstract
Gaucher disease (GD) is a lysosomal storage disorder, caused by an impaired function of β-glucocerebrosidase, which results in accumulation of glucocerebroside in cells, and altered membrane ordering. Using electron paramagnetic resonance spin labeling, a statistically significant difference in the order parameter between the peripheral blood mononuclear cell membranes of GD patients and healthy controls was observed. Moreover, the results show that the introduction of the enzyme replacement therapy leads to the restoration of the physiological membrane fluidity. Accordingly, this simple method could serve as a preliminary test for GD diagnosis and therapy efficiency.
Collapse
Affiliation(s)
- Aleksandra Pavićević
- EPR Laboratory, Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Milan Lakočević
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Serbia, Dr Subotića 13, 11000 Belgrade, Serbia
| | - Milan Popović
- EPR Laboratory, Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Ana Popović-Bijelić
- EPR Laboratory, Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Marko Daković
- EPR Laboratory, Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Miloš Mojović
- EPR Laboratory, Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
10
|
Ricca A, Gritti A. Perspective on innovative therapies for globoid cell leukodystrophy. J Neurosci Res 2017; 94:1304-17. [PMID: 27638612 DOI: 10.1002/jnr.23752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/25/2016] [Accepted: 03/30/2016] [Indexed: 12/24/2022]
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe's disease, is a lysosomal storage disorder resulting from deficiency of the lysosomal hydrolase galactosylceramidase. The infantile forms are characterized by a unique relentless and aggressive progression with a wide range of neurological symptoms and complications. Here we review and discuss the basic concepts and the novel mechanisms identified as key contributors to the peculiar GLD pathology, highlighting their therapeutic implications. Then, we evaluate evidence from extensive experimental studies on GLD animal models that have highlighted fundamental requirements to obtain substantial therapeutic benefit, including early and timely intervention, high levels of enzymatic reconstitution, and global targeting of affected tissues. Continuous efforts in understanding GLD pathophysiology, the interplay between various therapies, and the mechanisms of disease correction upon intervention may allow advancing research with innovative approaches and prioritizing treatment strategies to develop more efficacious treatments. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alessandra Ricca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
11
|
Giugliani R, Vairo F, Kubaski F, Poswar F, Riegel M, Baldo G, Saute JA. Neurological manifestations of lysosomal disorders and emerging therapies targeting the CNS. THE LANCET CHILD & ADOLESCENT HEALTH 2017; 2:56-68. [PMID: 30169196 DOI: 10.1016/s2352-4642(17)30087-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022]
Abstract
Lysosomal disorders have been an area of interest since intravenous enzyme replacement therapy was successfully introduced for the treatment of Gaucher's disease in the early 1990s. This treatment approach has also been developed for several other lysosomal disorders, including Fabry's disease, Pompe's disease, lysosomal acid lipase deficiency, and five types of mucopolysaccharidosis. Despite the benefits of enzyme replacement therapy, it has limitations-most importantly, its ineffectiveness in treating the neurological components of lysosomal disorders, as only a small proportion of recombinant enzymes can cross the blood-brain barrier. Development of strategies to improve drug delivery to the CNS is now the primary focus in lysosomal disorder research. This Review discusses the neurological manifestations and emerging therapies for the CNS component of these diseases. The therapies in development (which are now in phase 1 or phase 2 clinical trials) might be for specific lysosomal disorders (enzyme replacement therapy via intrathecal or intracerebroventricular routes or with fusion proteins, or gene therapy) or applicable to more than one lysosomal disorder (haemopoietic stem cell transplantation, pharmacological chaperones, substrate reduction therapy, or stop codon readthrough). The combination of early diagnosis with effective therapies should change the outlook for patients with lysosomal disorders with neurological involvement in the next 5-10 years.
Collapse
Affiliation(s)
- Roberto Giugliani
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | - Fabiano Poswar
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariluce Riegel
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilherme Baldo
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jonas Alex Saute
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Postgraduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
12
|
Saute JAM, Souza CFMD, Poswar FDO, Donis KC, Campos LG, Deyl AVS, Burin MG, Vargas CR, Matte UDS, Giugliani R, Saraiva-Pereira ML, Vedolin LM, Gregianin LJ, Jardim LB. Neurological outcomes after hematopoietic stem cell transplantation for cerebral X-linked adrenoleukodystrophy, late onset metachromatic leukodystrophy and Hurler syndrome. ARQUIVOS DE NEURO-PSIQUIATRIA 2017; 74:953-966. [PMID: 27991992 DOI: 10.1590/0004-282x20160155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/24/2016] [Indexed: 01/12/2023]
Abstract
Objective To describe survival and neurological outcomes after HSCT for these disorders. Methods Seven CALD, 2 MLD and 2 MPS-IH patients underwent HSCT between 2007 and 2014. Neurological examinations, magnetic resonance imaging, molecular and biochemical studies were obtained at baseline and repeated when appropriated. Results Favorable outcomes were obtained with 4/5 related and 3/6 unrelated donors. Two patients died from procedure-related complications. Nine transplanted patients were alive after a median of 3.7 years: neurological stabilization was obtained in 5/6 CALD, 1/2 MLD, and one MPS-IH patient. Brain lesions of the MPS-IH patient were reduced four years after HSCT. Conclusion Good outcomes were obtained when HSCT was performed before adulthood, early in the clinical course, and/or from a related donor.
Collapse
Affiliation(s)
- Jonas Alex Morales Saute
- Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Porto Alegre RS, Brasil.,Hospital de Clínicas de Porto Alegre, Laboratório de Identificação Genética, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre RS, Brasil
| | | | - Fabiano de Oliveira Poswar
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular; Porto Alegre RS, Brasil
| | - Karina Carvalho Donis
- Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Porto Alegre RS, Brasil
| | - Lillian Gonçalves Campos
- Hospital de Clínicas de Porto Alegre, Serviço de Radiologia, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre RS, Brasil
| | | | - Maira Graeff Burin
- Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Porto Alegre RS, Brasil
| | - Carmen Regla Vargas
- Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Faculdade de Farmacia, Porto Alegre, Brasil
| | - Ursula da Silveira Matte
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular; Porto Alegre RS, Brasil.,Hospital de Clínicas de Porto Alegre, Laboratório de Terapia Gênica, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Departamento de Genética e Biologia Molecular, Porto Alegre RS, Brasil
| | - Roberto Giugliani
- Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular; Porto Alegre RS, Brasil.,Hospital de Clínicas de Porto Alegre, Laboratório de Terapia Gênica, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Departamento de Genética e Biologia Molecular, Porto Alegre RS, Brasil
| | - Maria Luiza Saraiva-Pereira
- Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Porto Alegre RS, Brasil.,Hospital de Clínicas de Porto Alegre, Laboratório de Identificação Genética, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular; Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Departamento de Bioquímica, Porto Alegre RS, Brasil
| | - Leonardo Modesti Vedolin
- Hospital de Clínicas de Porto Alegre, Serviço de Radiologia, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre RS, Brasil
| | - Lauro José Gregianin
- Hospital de Clínicas de Porto Alegre, Serviço de Oncologia Pediátrica, Porto Alegre, Brasil.,Universidade Federal do Rio Grande do Sul, Departamento de Pediatria, Porto Alegre RS, Brasil
| | - Laura Bannach Jardim
- Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Porto Alegre RS, Brasil.,Hospital de Clínicas de Porto Alegre, Laboratório de Identificação Genética, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Médicas, Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular; Porto Alegre RS, Brasil.,Universidade Federal do Rio Grande do Sul, Departamento de Medicina Interna, Porto Alegre RS, Brasil
| |
Collapse
|
13
|
Hindle SJ, Hebbar S, Schwudke D, Elliott CJH, Sweeney ST. A saposin deficiency model in Drosophila: Lysosomal storage, progressive neurodegeneration and sensory physiological decline. Neurobiol Dis 2016; 98:77-87. [PMID: 27913291 PMCID: PMC5319729 DOI: 10.1016/j.nbd.2016.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/10/2016] [Accepted: 11/25/2016] [Indexed: 02/06/2023] Open
Abstract
Saposin deficiency is a childhood neurodegenerative lysosomal storage disorder (LSD) that can cause premature death within three months of life. Saposins are activator proteins that promote the function of lysosomal hydrolases that mediate the degradation of sphingolipids. There are four saposin proteins in humans, which are encoded by the prosaposin gene. Mutations causing an absence or impaired function of individual saposins or the whole prosaposin gene lead to distinct LSDs due to the storage of different classes of sphingolipids. The pathological events leading to neuronal dysfunction induced by lysosomal storage of sphingolipids are as yet poorly defined. We have generated and characterised a Drosophila model of saposin deficiency that shows striking similarities to the human diseases. Drosophila saposin-related (dSap-r) mutants show a reduced longevity, progressive neurodegeneration, lysosomal storage, dramatic swelling of neuronal soma, perturbations in sphingolipid catabolism, and sensory physiological deterioration. Our data suggests a genetic interaction with a calcium exchanger (Calx) pointing to a possible calcium homeostasis deficit in dSap-r mutants. Together these findings support the use of dSap-r mutants in advancing our understanding of the cellular pathology implicated in saposin deficiency and related LSDs. Drosophila model of PSD recapitulates neurodegenerative phenotype of human PSD. Preferential degeneration of sensory regions correlates with loss of sensory function. Sphingosine levels rise with age with an imbalance in sphingosine/ceramide ratios. Genetic interaction with the Na +/Ca + exchanger points to a calcium regulation deficit.
Collapse
Affiliation(s)
| | - Sarita Hebbar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | - Dominik Schwudke
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India
| | | | - Sean T Sweeney
- Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
14
|
Fraldi A, Klein AD, Medina DL, Settembre C. Brain Disorders Due to Lysosomal Dysfunction. Annu Rev Neurosci 2016; 39:277-95. [DOI: 10.1146/annurev-neuro-070815-014031] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alessandro Fraldi
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Andrés D. Klein
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Diego L. Medina
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
- Dulbecco Telethon Institute, 80078 Pozzuoli, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, 80131 Naples, Italy; ,
| |
Collapse
|
15
|
Jakóbkiewicz-Banecka J, Gabig-Cimińska M, Banecka-Majkutewicz Z, Banecki B, Węgrzyn A, Węgrzyn G. Factors and processes modulating phenotypes in neuronopathic lysosomal storage diseases. Metab Brain Dis 2014; 29:1-8. [PMID: 24307179 PMCID: PMC3930848 DOI: 10.1007/s11011-013-9455-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/21/2013] [Indexed: 11/30/2022]
Abstract
Lysosomal storage diseases are inherited metabolic disorders caused by genetic defects causing deficiency of various lysosomal proteins, and resultant accumulation of non-degraded compounds. They are multisystemic diseases, and in most of them (>70%) severe brain dysfunctions are evident. However, expression of various phenotypes in particular diseases is extremely variable, from non-neuronopathic to severely neurodegenerative in the deficiency of the same enzyme. Although all lysosomal storage diseases are monogenic, clear genotype-phenotype correlations occur only in some cases. In this article, we present an overview on various factors and processes, both general and specific for certain disorders, that can significantly modulate expression of phenotypes in these diseases. On the basis of recent reports describing studies on both animal models and clinical data, we propose a hypothesis that efficiency of production of compounds that cannot be degraded due to enzyme deficiency might be especially important in modulation of phenotypes of patients suffering from lysosomal storage diseases.
Collapse
Affiliation(s)
| | - Magdalena Gabig-Cimińska
- Laboratory of Molecular Biology, Gdańsk University, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | | | - Bogdan Banecki
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | - Alicja Węgrzyn
- Department of Microbiology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
16
|
Boustany RMN. Lysosomal storage diseases--the horizon expands. NATURE REVIEWS. NEUROLOGY 2013. [PMID: 23938739 DOI: 10.1038/nrneurol.2013.163]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Since the discovery of the lysosome in 1955, advances have been made in understanding the key roles and functions of this organelle. The concept of lysosomal storage diseases (LSDs)--disorders characterized by aberrant, excessive storage of cellular material in lysosomes--developed following the discovery of α-glucosidase deficiency as the cause of Pompe disease in 1963. Great strides have since been made in understanding the pathobiology of LSDs and the neuronal ceroid lipofuscinoses (NCLs). The NCLs are neurodegenerative disorders that display symptoms of cognitive and motor decline, seizures, blindness, early death, and accumulation of lipofuscin in various cell types, and also show some similarities to 'classic' LSDs. Defective lysosomal storage can occur in many cell types, but the CNS and PNS are particularly vulnerable to LSDs and NCLs, being affected in two-thirds of these disorders. Most LSDs are inherited in an autosomal recessive manner, with the exception of X-linked Hunter disease, Fabry disease and Danon disease, and a variant type of adult NCL (Kuf disease). This Review provides a summary of known LSDs, and the pathways affected in these disorders. Existing therapies and barriers to development of novel and improved treatments for LSDs and NCLs are also discussed.
Collapse
Affiliation(s)
- Rose-Mary Naaman Boustany
- Department of Paediatrics and Adolescent Medicine, Biochemistry and Molecular Genetics, American University of Beirut, PO Box 11-0236, Riad El-Solh, 1107 2020, Beirut, Lebanon.
| |
Collapse
|
17
|
Abstract
Since the discovery of the lysosome in 1955, advances have been made in understanding the key roles and functions of this organelle. The concept of lysosomal storage diseases (LSDs)--disorders characterized by aberrant, excessive storage of cellular material in lysosomes--developed following the discovery of α-glucosidase deficiency as the cause of Pompe disease in 1963. Great strides have since been made in understanding the pathobiology of LSDs and the neuronal ceroid lipofuscinoses (NCLs). The NCLs are neurodegenerative disorders that display symptoms of cognitive and motor decline, seizures, blindness, early death, and accumulation of lipofuscin in various cell types, and also show some similarities to 'classic' LSDs. Defective lysosomal storage can occur in many cell types, but the CNS and PNS are particularly vulnerable to LSDs and NCLs, being affected in two-thirds of these disorders. Most LSDs are inherited in an autosomal recessive manner, with the exception of X-linked Hunter disease, Fabry disease and Danon disease, and a variant type of adult NCL (Kuf disease). This Review provides a summary of known LSDs, and the pathways affected in these disorders. Existing therapies and barriers to development of novel and improved treatments for LSDs and NCLs are also discussed.
Collapse
Affiliation(s)
- Rose-Mary Naaman Boustany
- Department of Paediatrics and Adolescent Medicine, Biochemistry and Molecular Genetics, American University of Beirut, PO Box 11-0236, Riad El-Solh, 1107 2020, Beirut, Lebanon.
| |
Collapse
|
18
|
Baldo G, Mayer FQ, Martinelli B, Dilda A, Meyer F, Ponder KP, Giugliani R, Matte U. Evidence of a progressive motor dysfunction in Mucopolysaccharidosis type I mice. Behav Brain Res 2012; 233:169-75. [PMID: 22580166 DOI: 10.1016/j.bbr.2012.04.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 04/24/2012] [Accepted: 04/28/2012] [Indexed: 10/28/2022]
Abstract
Mucopolysaccharidosis (MPS) type I (Hurler syndrome) is a lysosomal storage disorder characterized by deficiency of alpha-L-iduronidase (IDUA), intracellular storage of glycosaminoglycans (GAGs) and progressive neurological pathology. The MPS I mouse model provides an opportunity to study the pathophysiology of this disorder and to determine the efficacy of novel therapies. Previous work has demonstrated a series of abnormalities in MPS I mice behavior, but so far some important brain functions have not been addressed. Therefore, in the present study we aimed to determine if MPS I mice have motor abnormalities, and at what age they become detectable. MPS I and normal male mice from 2 to 8 months of age were tested in open-field for locomotor activity, hindlimb gait analysis and hang wire performance. We were able to detect a progressive reduction in the crossings and rearings in the open field test and in the hang wire test in MPS I mice from 4 months, as well as a reduction in the gait length at 8 months. Histological examination of 8-month old mice cortex and cerebellum revealed storage of GAGs in Purkinje cells and neuroinflammation, evidenced by GFAP immunostaining. However TUNEL staining was negative, suggesting that death does not occur. Our findings suggest that MPS I mice have a progressive motor dysfunction, which is not caused by loss of neuron cells but might be related to a neuroinflammatory process.
Collapse
Affiliation(s)
- Guilherme Baldo
- Gene Therapy Center - Research Center - Hospital de Clinicas de Porto Alegre, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Current world literature. Curr Opin Pediatr 2011; 23:700-7. [PMID: 22068136 DOI: 10.1097/mop.0b013e32834dda34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Invertebrate models of lysosomal storage disease: what have we learned so far? INVERTEBRATE NEUROSCIENCE 2011; 11:59-71. [PMID: 22038288 DOI: 10.1007/s10158-011-0125-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 10/08/2011] [Indexed: 01/17/2023]
Abstract
The lysosomal storage diseases (LSDs) collectively account for death in 1 in 8,000 children. Although some forms are treatable, they are essentially incurable and usually are lethal in the first decade of life. The most intractable forms of LSD are those with neuronal involvement. In an effort to identify the pathological signaling driving pathology in the LSDs, invertebrate models have been developed. In this review, we outline our current understanding of LSDs and recent findings using invertebrate models. We outline strategies and pitfalls for the development of such models. Available models of LSD in Drosophila and Caenorhabditis elegans are uncovering roles for LSD-related proteins with previously unknown function using both gain-of-function and loss-of-function strategies. These models of LSD in Drosophila and C. elegans have identified potential pathogenic signaling cascades that are proving critical to our understanding of these lethal diseases.
Collapse
|
21
|
Abstract
The lysosomal storage disorders (LSDs) comprise a heterogeneous group of inborn errors of metabolism characterized by tissue substrate deposits, most often caused by a deficiency of the enzyme normally responsible for catabolism of various byproducts of cellular turnover. Individual entities are typified by involvement of multiple body organs, in a pattern reflecting the sites of substrate storage. It is increasingly recognized that one or more processes, such as aberrant inflammation, dysregulation of apoptosis and/or defects of autophagy, may mediate organ dysfunction or failure. Several therapeutic options for various LSDs have been introduced, including hematopoietic stem cell transplantation, enzyme replacement therapy and substrate reduction therapy. Additional strategies are being explored, including the use of pharmacological chaperones and gene therapy. Most LSDs include a variant characterized by primary central nervous system (CNS) involvement. At present, therapy of the CNS manifestations remains a major challenge because of the inability to deliver therapeutic agents across the intact blood-brain barrier. With improved understanding of underlying disease mechanisms, additional therapeutic options may be developed, complemented by various strategies to deliver the therapeutic agent(s) to recalcitrant sites of pathology such as brain, bones and lungs.
Collapse
Affiliation(s)
- Gregory M. Pastores
- Correspondence to: Gregory M. Pastores, MD Department of Neurology and Pediatrics, NYU School of Medicine, 403 East 34th Street, New York, NY 10016, USA
| |
Collapse
|