1
|
Kim JH, Kim D, Hwang S, Kim GH, Lee BH, Yoo HW, Choi JH. Endocrine manifestations and long-term outcomes of patients with mitochondrial diseases. Orphanet J Rare Dis 2025; 20:235. [PMID: 40382647 DOI: 10.1186/s13023-025-03773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Endocrine dysfunctions are commonly associated with mitochondrial diseases. This study aimed to investigate clinical characteristics and outcomes of endocrine manifestations in patients with mitochondrial diseases. METHODS This study included 54 patients from 47 families with mitochondrial diseases who were genetically confirmed; 49 patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), four with Pearson syndrome, and one with Kearns-Sayre syndrome (KSS). Clinical and endocrine findings were retrospectively reviewed. RESULTS The median age at diagnosis was 18.5 years (range, 0.1 - 49 years). In 49 patients with MELAS, the mean height and weight standard deviation scores were - 2.0 ± 1.3 and - 2.6 ± 1.6, respectively, with 44.9% (n = 22) of the patients exhibiting short stature at diagnosis. Twenty-three (46.9%) patients with MELAS were diagnosed with diabetes mellitus (DM) at a median age of 26 years (range, 12 - 50 years). Interestingly, papillary thyroid cancer was observed in 10.2% of patients (n = 5) with MELAS at a mean age of 34.1 ± 6.9 years. One patient with MELAS and one with KSS exhibited hypoparathyroidism. Patients with Pearson syndrome and KSS exhibited more severe short stature. Adrenal insufficiency was noted in 50% of the patients with Pearson syndrome. CONCLUSIONS In 20% of patients with MELAS, endocrine dysfunctions including having a short stature, DM, and hypoparathyroidism preceded the onset of neurological manifestations. Papillary thyroid cancer occurred in 10% of patients with MELAS. Patients with Pearson syndrome and KSS showed profound growth retardation and multisystem dysfunctions, such as chronic kidney disease and neurological defects, which contributed to increased mortality.
Collapse
Affiliation(s)
- Ja Hye Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dohyung Kim
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soojin Hwang
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Cente, University of Ulsan College of Medicine, Seoul, Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Medical Genetics Center, Asan Medical Cente, University of Ulsan College of Medicine, Seoul, Korea
| | - Han-Wook Yoo
- Department of Pediatrics, Bundang CHA Medical Center, CHA University, Seongnam, Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Varughese R, Rahman S. Endocrine Dysfunction in Primary Mitochondrial Diseases. Endocr Rev 2025; 46:376-396. [PMID: 39891580 PMCID: PMC12063101 DOI: 10.1210/endrev/bnaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/30/2024] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Primary mitochondrial disorders (PMD) are genetic disorders affecting the structure or function of the mitochondrion. Mitochondrial functions are diverse, including energy production, ion homeostasis, reactive oxygen species regulation, antioxidant defense, and biosynthetic responsibilities, notably including steroidogenesis. Mitochondria provide the energy to drive intracellular production and extracellular secretion of all hormones. The understanding of the endocrine consequences of PMD is key to timely identification of both endocrine complications in PMD patients, and PMD presenting primarily with endocrine disease. This is a narrative review on the endocrine manifestations of PMD, underlying disease mechanisms, and current and emerging approaches to diagnosing and treating these complex disorders. Diabetes is the most frequent endocrine manifestation of PMD, but growth hormone deficiency, adrenal insufficiency, hypogonadism, and parathyroid dysfunction may occur. Despite the intricate involvement of the thyroid gland in metabolic regulation, there is little evidence for a causal relationship between thyroid dysfunction and PMD. In conclusion, endocrine dysfunction is observed in PMD with varying incidence depending on the specific mitochondrial disorder and the endocrine organ in question. Diagnosis of PMD in a patient with endocrine-presenting features requires a high level of clinical suspicion, particularly when apparently unrelated comorbidities co-exist. Similarly, endocrine pathology may be subtle in patients with known PMD, and thorough consideration must be given to ensure timely diagnosis and treatment. The scope for novel therapeutics for this group of devastating conditions is enormous; however, several challenges remain to be overcome before hopes of curative treatments can be brought into clinical practice.
Collapse
Affiliation(s)
- Rachel Varughese
- Department of Endocrinology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Shamima Rahman
- Mitochondrial Research Group, Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Metabolic Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
3
|
Starosta RT, Shinawi M. Primary Mitochondrial Disorders in the Neonate. Neoreviews 2022; 23:e796-e812. [PMID: 36450643 DOI: 10.1542/neo.23-12-e796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Primary mitochondrial disorders (PMDs) are a heterogeneous group of disorders characterized by functional or structural abnormalities in the mitochondria that lead to a disturbance of cellular energy, reactive oxygen species, and free radical production, as well as impairment of other intracellular metabolic functions, causing single- or multiorgan dysfunction. PMDs are caused by pathogenic variants in nuclear and mitochondrial genes, resulting in distinct modes of inheritance. Onset of disease is variable and can occur in the neonatal period, with a high morbidity and mortality. In this article, we review the most common methods used for the diagnosis of PMDs, as well as their prenatal and neonatal presentations. We highlight the shift in the diagnostic approach for PMDs since the introduction of nontargeted molecular tests into clinical practice, which has significantly reduced the use of invasive studies. We discuss common PMDs that can present in the neonate, including general, nonsyndromic presentations as well as specific syndromic disorders. We also review current treatment advances, including the use of mitochondrial "cocktails" based on limited scientific evidence and theoretical reasoning, as well as the impending arrival of personalized mitochondrial-specific treatments.
Collapse
Affiliation(s)
| | - Marwan Shinawi
- Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
4
|
Ng YS, Lim AZ, Panagiotou G, Turnbull DM, Walker M. Endocrine Manifestations and New Developments in Mitochondrial Disease. Endocr Rev 2022; 43:583-609. [PMID: 35552684 PMCID: PMC9113134 DOI: 10.1210/endrev/bnab036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 11/19/2022]
Abstract
Mitochondrial diseases are a group of common inherited diseases causing disruption of oxidative phosphorylation. Some patients with mitochondrial disease have endocrine manifestations, with diabetes mellitus being predominant but also include hypogonadism, hypoadrenalism, and hypoparathyroidism. There have been major developments in mitochondrial disease over the past decade that have major implications for all patients. The collection of large cohorts of patients has better defined the phenotype of mitochondrial diseases and the majority of patients with endocrine abnormalities have involvement of several other systems. This means that patients with mitochondrial disease and endocrine manifestations need specialist follow-up because some of the other manifestations, such as stroke-like episodes and cardiomyopathy, are potentially life threatening. Also, the development and follow-up of large cohorts of patients means that there are clinical guidelines for the management of patients with mitochondrial disease. There is also considerable research activity to identify novel therapies for the treatment of mitochondrial disease. The revolution in genetics, with the introduction of next-generation sequencing, has made genetic testing more available and establishing a precise genetic diagnosis is important because it will affect the risk for involvement for different organ systems. Establishing a genetic diagnosis is also crucial because important reproductive options have been developed that will prevent the transmission of mitochondrial disease because of mitochondrial DNA variants to the next generation.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Albert Zishen Lim
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Grigorios Panagiotou
- Department of Diabetes and Endocrinology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Mark Walker
- Department of Diabetes and Endocrinology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
5
|
Extremely Rare Case of Fetal Anemia Due to Mitochondrial Disease Managed with Intrauterine Transfusion. Medicina (B Aires) 2022; 58:medicina58030328. [PMID: 35334505 PMCID: PMC8954106 DOI: 10.3390/medicina58030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022] Open
Abstract
This report describes a rare case of fetal anemia, confirmed as a mitochondrial disease after birth, treated with intrauterine transfusion (IUT). Although mitochondrial diseases have been described in newborns, research on their prenatal features is lacking. A patient was referred to our institution at 32 gestational weeks owing to fetal hydrops. Fetal anemia was confirmed by cordocentesis. After IUT had been performed three times, the anemia and associated fetal hydrops showed improvement. However, after birth, the neonate had recurrent pancytopenia and lactic acidosis. He was eventually diagnosed with Pearson syndrome and died 2 months after birth. This is the first case report of fetal anemia associated with mitochondrial disease managed with IUT.
Collapse
|
6
|
Shimura M, Onuki T, Sugiyama Y, Matsuhashi T, Ebihara T, Fushimi T, Tajika M, Ichimoto K, Matsunaga A, Tsuruoka T, Nitta KR, Imai-Okazaki A, Yatsuka Y, Kishita Y, Ohtake A, Okazaki Y, Murayama K. Development of Leigh syndrome with a high probability of cardiac manifestations in infantile-onset patients with m.14453G > A. Mitochondrion 2021; 63:1-8. [PMID: 34933128 DOI: 10.1016/j.mito.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
The m.14453G > A mutation in MT-ND6 has been described in a few patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes or Leigh syndrome.However, the clinical spectrum and molecular characteristics are unclear.Here, we present four infantile-onset patients with m.14453G > A-associated Leigh syndrome. All four patients had brainstem lesions with basal ganglia lesions, and two patients had cardiac manifestations. Decreased ND6 protein expression and immunoreactivity were observed in patient-derived samples. There was no clear correlation between heteroplasmy levels and onset age or between heteroplasmy levels and phenotype; however, infantile onset was associated with Leigh syndrome.
Collapse
Affiliation(s)
- Masaru Shimura
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Takanori Onuki
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Yohei Sugiyama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Tetsuro Matsuhashi
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Tomohiro Ebihara
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Takuya Fushimi
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Makiko Tajika
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Keiko Ichimoto
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Ayako Matsunaga
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Tomoko Tsuruoka
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan
| | - Kazuhiro R Nitta
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan
| | - Atsuko Imai-Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yukiko Yatsuka
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshihito Kishita
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan; Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Akira Ohtake
- Department of Pediatrics & Clinical Genomics, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama, Saitama 350-0495, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho Midori-ku, Chiba 266-0007, Japan; Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Hongo 2-1-1 Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
7
|
Boal RL, Ng YS, Pickett SJ, Schaefer AM, Feeney C, Bright A, Taylor RW, Turnbull DM, Gorman GS, Cheetham T, McFarland R. Height as a Clinical Biomarker of Disease Burden in Adult Mitochondrial Disease. J Clin Endocrinol Metab 2019; 104:2057-2066. [PMID: 30423112 PMCID: PMC6469958 DOI: 10.1210/jc.2018-00957] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
CONTEXT Abnormal growth and short stature are observed in patients with mitochondrial disease, but it is unclear whether there is a relationship between final adult height and disease severity. OBJECTIVE To determine whether patients with genetically confirmed mitochondrial disease are shorter than their peers and whether stature is related to disease severity. DESIGN Analysis of final adult height in relation to disease severity as determined by the Newcastle Mitochondrial Disease Adult Scale (NMDAS). SETTING UK Mitochondrial Disease Patient Cohort (Mito Cohort). PATIENTS 575 patients were identified with recorded height, weight, and molecular genetic diagnosis of mitochondrial disease within the Mito Cohort. MAIN OUTCOME MEASURES Adult height, body mass index (BMI), and their association with genetic subgroup and disease severity. RESULTS Adults with mitochondrial disease were short, with a mean height of -0.49 SD (95% CI, -0.58 to -0.39; n = 575) compared with UK reference data. Patients were overweight, with a BMI SD of 0.52 (95% CI, 0.37 to 0.67; n = 472). The most common genetic subgroup (m.3243A>G mutation) had a height SD of -0.70 (95% CI, -0.85 to -0.54; n = 234) and a BMI SD of 0.12 (95% CI, -0.10 to 0.34; n = 212). NMDAS scores were negatively correlated with height SD (r = -0.25; 95% CI, -0.33 to -0.17; P < 0.001, n = 533). Rate of disease progression also correlated negatively with adult height (P < 0.001). CONCLUSION Final height in mitochondrial disease reflects disease severity and rate of disease progression. Mitochondrial dysfunction and associated subclinical comorbidities affect growth plate physiology.
Collapse
Affiliation(s)
- Rachel L Boal
- Department of Pediatric Endocrinology, Great North Children’s Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Sarah J Pickett
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Andrew M Schaefer
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Catherine Feeney
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Alexandra Bright
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Grainne S Gorman
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Tim Cheetham
- Department of Pediatric Endocrinology, Great North Children’s Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
- Institute of Genetic Medicine, Newcastle University, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
- Correspondence and Reprint Requests: Tim Cheetham, MD, Institute of Genetic Medicine, Newcastle University, c/o Office Block 1, Floor 3, Royal Victoria Infirmary, Newcastle-Upon-Tyne NE1 4LP, United Kingdom. E-mail:
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
8
|
Guibaud L, Collardeau-Frachon S, Lacalm A, Massoud M, Rossi M, Cordier MP, Vianey-Saban C. Antenatal manifestations of inborn errors of metabolism: prenatal imaging findings. J Inherit Metab Dis 2017; 40:103-112. [PMID: 27853988 DOI: 10.1007/s10545-016-9992-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 12/12/2022]
Abstract
Prenatal manifestations of inborn errors of metabolism (IEM) are related to severe disorders involving metabolic pathways active in the fetal period and not compensated by maternal or placental metabolism. Some prenatal imaging findings can be suggestive of such conditions-especially in cases of consanguinity and/or recurrence of symptoms-after exclusion of the most frequent nonmetabolic etiologies. Most of these prenatal imaging findings are nonspecific. They include mainly ascites and hydrops fetalis, intrauterine growth restriction (IUGR), central nervous system (CNS) anomalies, echogenic kidneys, epiphyseal stippling, craniosynostosis, and a wide spectrum of dysostoses. These anomalies can be isolated, but in most cases, an IEM is suggested by an association of features. It must be stressed that the diagnosis of an IEM in the prenatal period is based on a close collaboration between specialists in fetal imaging, medicine, genetics, biology, and pathology.
Collapse
Affiliation(s)
- Laurent Guibaud
- Département d'Imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant, Lyon Bron, France.
- Centre Pluridisciplinaire de Diagnostic Prénatal, Hôpital Femme Mère Enfant, Lyon Bron, France.
- Université Claude Bernard Lyon I, Imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant, 59, Boulevard Pinel, 69677, Lyon-Bron, France.
| | | | - Audrey Lacalm
- Département d'Imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant, Lyon Bron, France
| | - Mona Massoud
- Centre Pluridisciplinaire de Diagnostic Prénatal, Hôpital Femme Mère Enfant, Lyon Bron, France
| | - Massimiliano Rossi
- Service de Génétique, Centre de Référence des Anomalies de Développement, Hôpital Femme Mère Enfant, Lyon Bron, France
| | - Marie Pierre Cordier
- Service de Génétique, Centre de Référence des Anomalies de Développement, Hôpital Femme Mère Enfant, Lyon Bron, France
| | - Christine Vianey-Saban
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et Pathologie, Groupement Hospitalier Est, Lyon Bron, France
| |
Collapse
|
9
|
Vianey-Saban C, Acquaviva C, Cheillan D, Collardeau-Frachon S, Guibaud L, Pagan C, Pettazzoni M, Piraud M, Lamazière A, Froissart R. Antenatal manifestations of inborn errors of metabolism: biological diagnosis. J Inherit Metab Dis 2016; 39:611-624. [PMID: 27393412 DOI: 10.1007/s10545-016-9947-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022]
Abstract
Inborn errors of metabolism (IEMs) that present with abnormal imaging findings in the second half of pregnancy are mainly lysosomal storage disorders (LSDs), cholesterol synthesis disorders (CSDs), glycogen storage disorder type IV (GSD IV), peroxisomal disorders, mitochondrial fatty acid oxidation defects (FAODs), organic acidurias, aminoacidopathies, congenital disorders of glycosylation (CDGs), and transaldolase deficiency. Their biological investigation requires fetal material. The supernatant of amniotic fluid (AF) is useful for the analysis of mucopolysaccharides, oligosaccharides, sialic acid, lysosphingolipids and some enzyme activities for LSDs, 7- and 8-dehydrocholesterol, desmosterol and lathosterol for CSDs, acylcarnitines for FAODs, organic acids for organic acidurias, and polyols for transaldolase deficiency. Cultured AF or fetal cells allow the measurement of enzyme activities for most IEMs, whole-cell assays, or metabolite measurements. The cultured cells or tissue samples taken after fetal death can be used for metabolic profiling, enzyme activities, and DNA extraction. Fetal blood can also be helpful. The identification of vacuolated cells orients toward an LSD, and plasma is useful for diagnosing peroxisomal disorders, FAODs, CSDs, some LSDs, and possibly CDGs and aminoacidopathies. We investigated AF of 1700 pregnancies after exclusion of frequent etiologies of nonimmune hydrops fetalis and identified 108 fetuses affected with LSDs (6.3 %), 29 of them with mucopolysaccharidosis type VII (MPS VII), and six with GSD IV (0.3 %). In the AF of 873 pregnancies, investigated because of intrauterine growth restriction and/or abnormal genitalia, we diagnosed 32 fetuses affected with Smith-Lemli-Opitz syndrome (3.7 %).
Collapse
Affiliation(s)
- Christine Vianey-Saban
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France.
- Unité INSERM U1060 CarMeN Laboratory, University Lyon-1, Lyon, France.
| | - Cécile Acquaviva
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
- UMR 5305 CNRS/UCBL, Lyon, France
| | - David Cheillan
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
- Unité INSERM U1060 CarMeN Laboratory, University Lyon-1, Lyon, France
| | - Sophie Collardeau-Frachon
- Unité INSERM U1060 CarMeN Laboratory, University Lyon-1, Lyon, France
- Département de Pathologie, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
| | - Laurent Guibaud
- Département d'Imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant CHU de Lyon, Lyon, France
| | - Cécile Pagan
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
- Lyon Neuroscience Research Center, CNRS UMR5292; INSERM U1028, Université Claude Bernard Lyon 1, Lyon, France
| | - Magali Pettazzoni
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
| | - Monique Piraud
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
| | - Antonin Lamazière
- Département PM2, Plateforme de Métabolomique, Peptidomique et dosage de Médicaments, APHP, Hôpital Saint Antoine, Paris, France, Laboratoire de spectrométrie de masse, INSERM ERL 1157, CNRS UMR 7203 LBM, Sorbonne Universités-UPMC, Paris, France
| | - Roseline Froissart
- Service Maladies Héréditaires du Métabolisme et Dépistage Néonatal, Centre de Biologie et de Pathologie Est CHU de Lyon, Lyon, France
- UMR 5305 CNRS/UCBL, Lyon, France
| |
Collapse
|
10
|
Kölker S, Garcia-Cazorla A, Valayannopoulos V, Lund AM, Burlina AB, Sykut-Cegielska J, Wijburg FA, Teles EL, Zeman J, Dionisi-Vici C, Barić I, Karall D, Augoustides-Savvopoulou P, Aksglaede L, Arnoux JB, Avram P, Baumgartner MR, Blasco-Alonso J, Chabrol B, Chakrapani A, Chapman K, I Saladelafont EC, Couce ML, de Meirleir L, Dobbelaere D, Dvorakova V, Furlan F, Gleich F, Gradowska W, Grünewald S, Jalan A, Häberle J, Haege G, Lachmann R, Laemmle A, Langereis E, de Lonlay P, Martinelli D, Matsumoto S, Mühlhausen C, de Baulny HO, Ortez C, Peña-Quintana L, Ramadža DP, Rodrigues E, Scholl-Bürgi S, Sokal E, Staufner C, Summar ML, Thompson N, Vara R, Pinera IV, Walter JH, Williams M, Burgard P. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 1: the initial presentation. J Inherit Metab Dis 2015; 38:1041-57. [PMID: 25875215 DOI: 10.1007/s10545-015-9839-3] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND The clinical presentation of patients with organic acidurias (OAD) and urea cycle disorders (UCD) is variable; symptoms are often non-specific. AIMS/METHODS To improve the knowledge about OAD and UCD the E-IMD consortium established a web-based patient registry. RESULTS We registered 795 patients with OAD (n = 452) and UCD (n = 343), with ornithine transcarbamylase (OTC) deficiency (n = 196), glutaric aciduria type 1 (GA1; n = 150) and methylmalonic aciduria (MMA; n = 149) being the most frequent diseases. Overall, 548 patients (69 %) were symptomatic. The majority of them (n = 463) presented with acute metabolic crisis during (n = 220) or after the newborn period (n = 243) frequently demonstrating impaired consciousness, vomiting and/or muscular hypotonia. Neonatal onset of symptoms was most frequent in argininosuccinic synthetase and lyase deficiency and carbamylphosphate 1 synthetase deficiency, unexpectedly low in male OTC deficiency, and least frequently in GA1 and female OTC deficiency. For patients with MMA, propionic aciduria (PA) and OTC deficiency (male and female), hyperammonemia was more severe in metabolic crises during than after the newborn period, whereas metabolic acidosis tended to be more severe in MMA and PA patients with late onset of symptoms. Symptomatic patients without metabolic crises (n = 94) often presented with a movement disorder, mental retardation, epilepsy and psychiatric disorders (the latter in UCD only). CONCLUSIONS The initial presentation varies widely in OAD and UCD patients. This is a challenge for rapid diagnosis and early start of treatment. Patients with a sepsis-like neonatal crisis and those with late-onset of symptoms are both at risk of delayed or missed diagnosis.
Collapse
Affiliation(s)
- Stefan Kölker
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | | | - Vassili Valayannopoulos
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Inherited Metabolic Disease, Necker-Enfants Malades University Hospital and IMAGINE Institute, Paris, France
| | - Allan M Lund
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Alberto B Burlina
- U.O.C. Malattie Metaboliche Ereditarie, Azienda Ospedaliera di Padova, Padova, Italy
| | | | - Frits A Wijburg
- Department of Pediatrics, Academisch Medisch Centrum, Amsterdam, Netherlands
| | - Elisa Leão Teles
- Unidade de Doenças Metabólicas, Serviço de Pediatria, Hospital de S. João, EPE, Porto, Portugal
| | - Jiri Zeman
- First Faculty of Medicine, Charles University and General University of Prague, Prague, Czech Republic
| | - Carlo Dionisi-Vici
- U.O.C. Patologia Metabolica, Ospedale Pediatrico Bambino Gésu, Rome, Italy
| | - Ivo Barić
- School of Medicine, University Hospital Center Zagreb and University of Zagreb, Zagreb, Croatia
| | - Daniela Karall
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Lise Aksglaede
- Centre for Inherited Metabolic Diseases, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jean-Baptiste Arnoux
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Inherited Metabolic Disease, Necker-Enfants Malades University Hospital and IMAGINE Institute, Paris, France
| | - Paula Avram
- Institute of Mother and Child Care "Alfred Rusescu", Bucharest, Romania
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Steinwiesstraße 75, CH-8032, Zurich, Switzerland
| | | | - Brigitte Chabrol
- Centre de Référence des Maladies Héréditaires du Métabolisme, Service de Neurologie, Hôpital d'Enfants, CHU Timone, Marseilles, France
| | - Anupam Chakrapani
- Birmingham Children's Hospital NHS Foundation Trust, Steelhouse Lane, Birmingham, B4 6NH, UK
| | - Kimberly Chapman
- Children's National Medical Center, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | | | - Maria L Couce
- Metabolic Unit, Department of Pediatrics, Hospital Clinico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Dries Dobbelaere
- Centre de Référence des Maladies Héréditaires du Métabolisme de l'Enfant et de l'Adulte, Hôpital Jeanne de Flandre, Lille, France
| | - Veronika Dvorakova
- First Faculty of Medicine, Charles University and General University of Prague, Prague, Czech Republic
| | - Francesca Furlan
- U.O.C. Malattie Metaboliche Ereditarie, Azienda Ospedaliera di Padova, Padova, Italy
| | - Florian Gleich
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Wanda Gradowska
- Department of Laboratory Diagnostics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Stephanie Grünewald
- Metabolic Unit Great Ormond Street Hospital and Institute for Child Health, University College London, London, UK
| | - Anil Jalan
- N.I.R.M.A.N., Om Rachna Society, Vashi, Navi Mumbai, Mumbai, India
| | - Johannes Häberle
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Steinwiesstraße 75, CH-8032, Zurich, Switzerland
| | - Gisela Haege
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Robin Lachmann
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Alexander Laemmle
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Steinwiesstraße 75, CH-8032, Zurich, Switzerland
| | - Eveline Langereis
- Department of Pediatrics, Academisch Medisch Centrum, Amsterdam, Netherlands
| | - Pascale de Lonlay
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Reference Center for Inherited Metabolic Disease, Necker-Enfants Malades University Hospital and IMAGINE Institute, Paris, France
| | - Diego Martinelli
- U.O.C. Patologia Metabolica, Ospedale Pediatrico Bambino Gésu, Rome, Italy
| | - Shirou Matsumoto
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto City, Japan
| | - Chris Mühlhausen
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | - Carlos Ortez
- Servicio de Neurologia and CIBERER, ISCIII, Hospital San Joan de Deu, Barcelona, Spain
| | - Luis Peña-Quintana
- Hospital Universitario Materno-Infantil de Canarias, Unit of Pediatric Gastroenterology, Hepatology and Nutrition, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | | | - Esmeralda Rodrigues
- Unidade de Doenças Metabólicas, Serviço de Pediatria, Hospital de S. João, EPE, Porto, Portugal
| | - Sabine Scholl-Bürgi
- Clinic for Pediatrics I, Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Etienne Sokal
- Service Gastroentérologie and Hépatologie Pédiatrique, Cliniques Universitaires St Luc, Université Catholique de Louvain, Bruxelles, Belgium
| | - Christian Staufner
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Marshall L Summar
- Children's National Medical Center, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | - Nicholas Thompson
- Metabolic Unit Great Ormond Street Hospital and Institute for Child Health, University College London, London, UK
| | - Roshni Vara
- Evelina Children's Hospital, St Thomas' Hospital, London, UK
| | | | - John H Walter
- Manchester Academic Health Science Centre, Willink Biochemical Genetics Unit, Genetic Medicine, University of Manchester, Manchester, UK
| | - Monique Williams
- Erasmus MC-Sophia Kinderziekenhuis, Erasmus Universiteit Rotterdam, Rotterdam, Netherlands
| | - Peter Burgard
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| |
Collapse
|
11
|
Involvement of estrogen-related receptor-γ and mitochondrial content in intrauterine growth restriction and preeclampsia. Fertil Steril 2015; 104:483-90. [DOI: 10.1016/j.fertnstert.2015.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 12/28/2022]
|
12
|
|
13
|
Montero R, Grazina M, López-Gallardo E, Montoya J, Briones P, Navarro-Sastre A, Land JM, Hargreaves IP, Artuch R, del Mar O'Callaghan M, Jou C, Jimenez C, Buján N, Pineda M, García-Cazorla A, Nascimento A, Perez-Dueñas B, Ruiz-Pesini E, Fratter C, Salviati L, Simões M, Mendes C, Santos MJ, Diogo L, Garcia P, Navas P. Coenzyme Q10 deficiency in mitochondrial DNA depletion syndromes. Mitochondrion 2013; 13:337-41. [DOI: 10.1016/j.mito.2013.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 04/01/2013] [Accepted: 04/03/2013] [Indexed: 10/27/2022]
|