1
|
Hajji H, Imbard A, Spraul A, Taibi L, Barbier V, Habes D, Brassier A, Arnoux JB, Bouchereau J, Pichard S, Sissaoui S, Lacaille F, Girard M, Debray D, de Lonlay P, Schiff M. Initial presentation, management and follow-up data of 33 treated patients with hereditary tyrosinemia type 1 in the absence of newborn screening. Mol Genet Metab Rep 2022; 33:100933. [DOI: 10.1016/j.ymgmr.2022.100933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/30/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022] Open
|
2
|
Zöggeler T, Ramoser G, Höller A, Jörg-Streller M, Janzen N, Ramoni A, Scholl-Bürgi S, Karall D. Nitisinone treatment during two pregnancies and breastfeeding in a woman with tyrosinemia type 1 - a case report. J Pediatr Endocrinol Metab 2022; 35:259-265. [PMID: 34506697 DOI: 10.1515/jpem-2021-0465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/26/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Tyrosinaemia type 1, an inherited disorder of tyrosine metabolism, is usually treated with a tyrosine-defined diet and since 2000 with nitisinone. So far, data about effects of nitisone during pregnancy and breastfeeding are rare. This is the first report of two pregnancies in a patient with tyrosinaemia type 1 while under treatment with nitisinone. CASE PRESENTATION We here present a 20-year-old female patient with tyrisonemia type 1 receiving treatment with nitisinone and a tyrosine-defined diet since she was diagnosed with tyrosinaemia type 1 at the age of 18 months. During two pregnancies blood concentrations of tyrosine, succinylacetone and nitisinone were measured regularly. Neither infant has tyrosinaemia type 1 and both showed an initial increase in concentrations of tyrosine, succinylacetone and nitisinone. All three metabolites dropped within two weeks after birth. Both were exclusively breastfed for about two weeks. Both children show age-appropriate physical and mental development. CONCLUSIONS Nitisinone therapy during pregnancy and the short breastfeeding period did not result in adverse events in our patient or her children. Regular assessments of tyrosine, succinylacetone and nitisinone should be made during pregnancy and the breastfeeding period in both the mother and the infant. For better understanding, in principle, all cases of pregnancy and breastfeeding with tyrosinemia type 1 should be assessed and followed to further evaluate the implications of tyrosinaemia type 1 and its treatment during pregnancy. Additionally, even though experience with breastfeeding is limited, medication with nitisinone is safe and there is no reason to consider breastfeeding unsafe or to not recommend it.
Collapse
Affiliation(s)
- Thomas Zöggeler
- Department of Pediatrics I (Inherited Metabolic Disorders), Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriele Ramoser
- Department of Pediatrics I (Inherited Metabolic Disorders), Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Höller
- Department of Pediatrics I (Inherited Metabolic Disorders), Medical University of Innsbruck, Innsbruck, Austria
| | - Monika Jörg-Streller
- Department of Pediatrics I (Inherited Metabolic Disorders), Medical University of Innsbruck, Innsbruck, Austria
| | - Nils Janzen
- Screening Laboratory Hanover, Hanover, Germany.,Department of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Angela Ramoni
- Department of Gynaecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sabine Scholl-Bürgi
- Department of Pediatrics I (Inherited Metabolic Disorders), Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Karall
- Department of Pediatrics I (Inherited Metabolic Disorders), Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Spiekerkoetter U, Couce ML, Das AM, de Laet C, Dionisi-Vici C, Lund AM, Schiff M, Spada M, Sparve E, Szamosi J, Vara R, Rudebeck M. Long-term safety and outcomes in hereditary tyrosinaemia type 1 with nitisinone treatment: a 15-year non-interventional, multicentre study. Lancet Diabetes Endocrinol 2021; 9:427-435. [PMID: 34023005 DOI: 10.1016/s2213-8587(21)00092-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Since the EU approval of nitisinone in 2005, prognosis for patients with hereditary tyrosinaemia type 1 has changed dramatically, with patients living with the disease now reaching adulthood for the first time in history. This study aimed to assess the long-term safety and outcomes of nitisinone treatment in patients with hereditary tyrosinaemia type 1. METHODS We did a non-interventional, non-comparative, multicentre study in 77 sites across 17 countries in Europe and collected retrospective and prospective longitudinal data in patients with hereditary tyrosinaemia type 1 who were treated with oral nitisinone during the study period (Feb 21, 2005, to Sept 30, 2019). There were no specific exclusion criteria. Patients were followed-up with an investigator at least annually for as long as they were treated, or until the end of the study. The primary endpoints, occurrence of adverse events related to hepatic, renal, ophthalmic, haematological, or cognitive or developmental function, were assessed in the complete set (all patients already receiving treatment at the index date [Feb 21, 2005] or starting treatment thereafter) and the index set (the subset of patients who had their first dose on the index date or later only). FINDINGS 315 patients were enrolled during the study period (complete set). Additionally, data from 24 patients who had liver transplantation or died during the post-marketing surveillance programme were retrieved (extended analysis set; 339 patients). Median treatment duration was 11·2 years (range 0·7-28·4); cumulative nitisinone exposure was 3172·7 patient-years. Patients who were diagnosed by neonatal screening started nitisinone treatment at median age 0·8 months versus 8·5 months in those who presented clinically. Incidences of hepatic, renal, ophthalmic, haematological, or cognitive or developmental adverse events were low. Occurrence of liver transplantation or death was more frequent the later that treatment was initiated (none of 70 patients who started treatment at age <28 days vs 35 [13%] of 268 patients who started treatment at age ≥28 days). 279 (89%) of 315 patients were assessed as having either very good or good nitisinone treatment compliance. Treatment and diet compliance declined as patients aged. Suboptimal plasma phenylalanine and tyrosine levels were observed. The majority of patients were reported to have good overall clinical condition throughout treatment; 176 (87%) of 203 during the entire study, 98% following 1 year of treatment. INTERPRETATION Long-term nitisinone treatment was well tolerated and no new safety signals were revealed. Life-limiting hepatic disease appears to have been prevented by early treatment start. Neonatal screening was the most effective way of ensuring early treatment. Standardised monitoring of blood tyrosine, phenylalanine, and nitisinone levels has potential to guide individualised therapy. FUNDING Swedish Orphan Biovitrum (Sobi).
Collapse
Affiliation(s)
- Ute Spiekerkoetter
- Department of Paediatrics and Adolescent Medicine, University Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Maria L Couce
- Hospital Clínico Universitario de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), MetabERN, Santiago de Compostela, Spain
| | - Anibh M Das
- Department of Paediatrics, Hannover Medical School, Hannover, Germany
| | - Corinne de Laet
- Nutrition and Metabolism Unit, Department of Paediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Allan M Lund
- Centre for Inherited Metabolic Diseases, Departments of Paediatrics and Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark
| | - Manuel Schiff
- Necker Hospital, AP-HP, Reference Centre for Inborn Error of Metabolism (Filière G2M), Paediatrics Department, University of Paris, Paris, France; Inserm UMR_S1163, Institut Imagine, Paris, France
| | - Marco Spada
- Department of Paediatrics, Regina Margherita Children Hospital, University of Torino, Torino, Italy
| | - Erik Sparve
- Swedish Orphan Biovitrum (Sobi), Stockholm, Sweden
| | | | - Roshni Vara
- Department of Paediatric Inherited Metabolic Disease, Evelina London Children's Hospital, London, UK
| | | |
Collapse
|
4
|
Ranganath LR, Milan AM, Bay-Jensen AC, Thudium CS. A case report of pregnancy in untreated alkaptonuria - Focus on urinary tissue remodelling markers. Mol Genet Metab Rep 2021; 27:100766. [PMID: 33996493 PMCID: PMC8102796 DOI: 10.1016/j.ymgmr.2021.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 11/13/2022] Open
Abstract
A 34-year old woman with alkaptonuria had an elective pregnancy, during which she collected urine samples over the duration of her pregnancy until parturition. She had been attending the National Alkaptonuria Centre from the age of 31 years and continued to attend after delivery for a further three annual visits. Data from her NAC visits as well as urine samples collected during pregnancy were analysed. Urine CTX-1/urine creatinine, urine αCTX-I/ urine creatinine, urine CTX-II/ urine creatinine, and urine C3M/urine creatinine all showed a rapid increase early in pregnancy, returning to baseline before increasing in late pregnancy, indicating significant remodelling of bone, subchondral bone, cartilage and other organs and connective tissue rich in collagens I, II and III. The pattern of tissue remodelling in AKU pregnancy has been described for the very first time. Further research is needed to understand pregnancy in AKU.
Collapse
Affiliation(s)
- L R Ranganath
- Departments of Clinical Biochemistry and Metabolic Medicine, Herlev, Denmark
| | - A M Milan
- Departments of Clinical Biochemistry and Metabolic Medicine, Herlev, Denmark
| | | | | |
Collapse
|
5
|
Levkovich SA, Rencus-Lazar S, Gazit E, Laor Bar-Yosef D. Microbial Prions: Dawn of a New Era. Trends Biochem Sci 2021; 46:391-405. [PMID: 33423939 DOI: 10.1016/j.tibs.2020.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/22/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Protein misfolding and aggregation are associated with human diseases and aging. However, microorganisms widely exploit the self-propagating properties of misfolded infectious protein particles, prions, as epigenetic information carriers that drive various phenotypic adaptations and encode molecular information. Microbial prion research has faced a paradigm shift in recent years, with breakthroughs that demonstrate the great functional and structural diversity of these agents. Here, we outline unorthodox examples of microbial prions in yeast and other microorganisms, focusing on their noncanonical functions. We discuss novel molecular mechanisms for the inheritance of conformationally-encoded epigenetic information and the evolutionary advantages they confer. Lastly, in light of recent advancements in the field of molecular self-assembly, we present a hypothesis regarding the existence of non-proteinaceous prion-like entities.
Collapse
Affiliation(s)
- Shon A Levkovich
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sigal Rencus-Lazar
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Sagol Interdisciplinary School of Neurosciences, Tel Aviv University, Tel Aviv, Israel.
| | - Dana Laor Bar-Yosef
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
6
|
Äärelä L, Nevalainen PI, Kurppa K, Hiltunen P. First Scandinavian case of successful pregnancy during nitisinone treatment for type 1 tyrosinemia. J Pediatr Endocrinol Metab 2020; 33:661-664. [PMID: 32238608 DOI: 10.1515/jpem-2019-0540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/24/2020] [Indexed: 01/09/2023]
Abstract
Background Type 1 tyrosinemia is a hereditary metabolic disease in which tyrosine metabolites damage the liver and kidneys. Nitisinone medication revolutionized the treatment, but the effects of the drug during human pregnancy are unknown. Case presentation A 17-year-old tyrosinemia patient became pregnant. Nitisinone was continued throughout pregnancy with a varying serum concentration and dose ranging from 0.8 to 1.4 mg/kg/day. Blood tyrosine remained stable until it increased in late pregnancy. α-fetoprotein increased to 284 μg/L without new changes in liver. Urine succinylacetone remained undetectable, but there were signs of possibly reoccurring kidney tubulopathy. Fetal ultrasound monitoring was normal throughout the pregnancy and the newborn healthy. After the delivery, α-fetoprotein normalized, but tyrosine continued to rise for up to 1 year. The child is developing normally. Conclusions Pregnancy during nitisinone was successful, but tailoring of the drug dose and possibly reappearing complications, as also increasing serum tyrosine concentration after delivery warranted intensified surveillance.
Collapse
Affiliation(s)
- Linnea Äärelä
- Tampere Center for Child Health Research, Tampere University and Department of Paediatrics, Tampere University Hospital, Tampere, Finland
| | - Pasi I Nevalainen
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Kalle Kurppa
- Tampere Center for Child Health Research, Tampere University and Department of Paediatrics, Tampere University Hospital, Tampere, Finland.,University Consortium of Seinäjoki and Department of Paediatrics, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Pauliina Hiltunen
- Tampere Center for Child Health Research, Tampere University and Department of Paediatrics, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
7
|
Abstract
Newborn screening (NBS) is the largest public health program in the United States, affecting every newborn. The purpose of newborn screening is to identify newborns at risk for selected disorders during the presymptomatic phase, with the hope that early intervention can prevent disease progression. NBS began in the early 1960s following the pioneering work of Robert Guthrie with phenylketonuria. Since then, NBS has expanded, with testing available for more than 50 disorders in most states. Screening tests need to be highly automated, with high sensitivity and specificity to avoid missing patients with disease, and ensuring manageable false-positive rates. Current initiatives in NBS include timeliness to ensure that results of the screen are available by 5 days after birth for a core set of critical conditions. This has resulted in the current recommendation for NBS specimens to be collected at 24 to 48 hours after birth. False-positive rates are higher in the NICU, because of the metabolic instability of sick neonates and the immaturity of premature enzyme systems. The recommended uniform screen panel (RUSP) contains the current list of disorders screened for by most states. Additional disorders continue to be added to the RUSP as medical progress allows previously untreatable disorders to be managed successfully, and thus the need to screen emerges. The costs associated with NBS continue to climb, because despite state-mandated screening, the diagnostic evaluation and treatment of these conditions has no such mandate. This is a particular concern for disorders with annual treatment costs of several hundred thousand dollars.
Collapse
Affiliation(s)
- David Kronn
- Department of Pathology and Pediatrics, New York Medical College, Valhalla, NY
| |
Collapse
|
8
|
van Ginkel WG, Rodenburg IL, Harding CO, Hollak CEM, Heiner-Fokkema MR, van Spronsen FJ. Long-Term Outcomes and Practical Considerations in the Pharmacological Management of Tyrosinemia Type 1. Paediatr Drugs 2019; 21:413-426. [PMID: 31667718 PMCID: PMC6885500 DOI: 10.1007/s40272-019-00364-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tyrosinemia type 1 (TT1) is a rare metabolic disease caused by a defect in tyrosine catabolism. TT1 is clinically characterized by acute liver failure, development of hepatocellular carcinoma, renal and neurological problems, and consequently an extremely poor outcome. This review showed that the introduction of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) in 1992 has revolutionized the outcome of TT1 patients, especially when started pre-clinically. If started early, NTBC can prevent liver failure, renal problems, and neurological attacks and decrease the risk for hepatocellular carcinoma. NTBC has been shown to be safe and well tolerated, although the long-term effectiveness of treatment with NTBC needs to be awaited. The high tyrosine concentrations caused by treatment with NTBC could result in ophthalmological and skin problems and requires life-long dietary restriction of tyrosine and its precursor phenylalanine, which could be strenuous to adhere to. In addition, neurocognitive problems have been reported since the introduction of NTBC, with hypothesized but as yet unproven pathophysiological mechanisms. Further research should be done to investigate the possible relationship between important clinical outcomes and blood concentrations of biochemical parameters such as phenylalanine, tyrosine, succinylacetone, and NTBC, and to develop clear guidelines for treatment and follow-up with reliable measurements. This all in order to ultimately improve the combined NTBC and dietary treatment and limit possible complications such as hepatocellular carcinoma development, neurocognitive problems, and impaired quality of life.
Collapse
Affiliation(s)
- Willem G van Ginkel
- Department of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Iris L Rodenburg
- Department of Dietetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cary O Harding
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, USA
| | - Carla E M Hollak
- Deparment of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Francjan J van Spronsen
- Department of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
9
|
Bower A, Imbard A, Benoist JF, Pichard S, Rigal O, Baud O, Schiff M. Diagnostic contribution of metabolic workup for neonatal inherited metabolic disorders in the absence of expanded newborn screening. Sci Rep 2019; 9:14098. [PMID: 31575911 PMCID: PMC6773867 DOI: 10.1038/s41598-019-50518-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Inherited metabolic disorders (IMDs) in neonates are a diagnostic and therapeutic challenge for the neonatologist, with the priority being to rapidly flag the treatable diseases. The objective of this study was to evaluate the contribution of targeted metabolic testing for diagnosing suspected IMDs on the basis of suggestive clinical setting or family history in neonates. We conducted an observational study over five years, from January 1st, 2010 to December 31, 2014 in the neonatal intensive care unit (NICU) at Robert Debré University Hospital, Paris, France. We assessed the number of neonates for whom a metabolic testing was performed, the indication for each metabolic test and the diagnostic yield of this selected metabolic workup for diagnosing an IMD. Metabolic testing comprised at least one of the following testings: plasma, urine or cerebrospinal fluid amino acids, urine organic acids, plasma acylcarnitine profile, and urine mucopolysaccharides and oligosaccharides. 11,301 neonates were admitted at the neonatal ICU during the study period. One hundred and ninety six neonates underwent metabolic testing. Eleven cases of IMDs were diagnosed. This diagnostic approach allowed the diagnosis, treatment and survival of 4 neonates (maple syrup urine disease, propionic acidemia, carnitine-acylcarnitine translocase deficiency and type 1 tyrosinemia). In total, metabolic testing was performed for 1.7% of the total number of neonates admitted in the NICU over the study period. These included 23% finally unaffected neonates with transient abnormalities, 5.6% neonates suffering from an identified IMD, 45.4% neonates suffering from a non-metabolic identified disease and 26% neonates with chronic abnormalities but for whom no final causal diagnosis could be made. In conclusion, as expected, such a metabolic targeted workup allowed the diagnosis of classical neonatal onset IMDs in symptomatic newborns. However, this workup remained normal or unspecific for 94.4% of the tested patients. It allowed excluding an IMD in 68.4% of the tested neonates. In spite of the high rate of normal results, such a strategy seems acceptable due to the severity of the symptoms and the need for immediate treatment when available in neonatal IMDs. However, its cost-effectiveness remains low especially in a clinically targeted population in a country where newborn screening is still unavailable for IMDs except for phenylketonuria in 2019.
Collapse
Affiliation(s)
- Alexandra Bower
- Neonatal intensive care department, Robert Debré University Hospital, APHP, Paris, 75019, France
- Reference Center for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, Paris, 75019, France
| | - Apolline Imbard
- Biochemistry Laboratory, Robert Debré University Hospital, APHP, Paris, France
- Paris Sud University, Chatenay Malabry, France
| | - Jean-François Benoist
- Biochemistry Laboratory, Robert Debré University Hospital, APHP, Paris, France
- Paris Sud University, Chatenay Malabry, France
| | - Samia Pichard
- Reference Center for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, Paris, 75019, France
| | - Odile Rigal
- Biochemistry Laboratory, Robert Debré University Hospital, APHP, Paris, France
| | - Olivier Baud
- Neonatal intensive care department, Robert Debré University Hospital, APHP, Paris, 75019, France
- UMR1141, PROTECT, INSERM, Université de Paris, Paris, 75019, France
| | - Manuel Schiff
- Reference Center for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, Paris, 75019, France.
- UMR1141, PROTECT, INSERM, Université de Paris, Paris, 75019, France.
| |
Collapse
|
10
|
Sloboda N, Wiedemann A, Merten M, Alqahtani A, Jeannesson E, Blum A, Henn-Ménétré S, Guéant JL, Renard E, Feillet F. Efficacy of low dose nitisinone in the management of alkaptonuria. Mol Genet Metab 2019; 127:184-190. [PMID: 31235217 DOI: 10.1016/j.ymgme.2019.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
AIM To study the efficacy of low dosage of nitisinone in alkaptonuria. BACKGROUND Alkaptonuria (AKU) is a rare genetic disease which induces deposition of homogentisic acid (HGA) in connective inducing premature arthritis, lithiasis, cardiac valve disease, fractures, muscle and tendon ruptures and osteopenia. Recent studies showed that nitisinone decreases HGA and is a beneficial therapy in AKU. This treatment induces an increase in tyrosine levels which can induces adverse effects as keratopathy. METHODS We described the evolution HGA excretion and tyrosine evolution in 3 AKU patients treated by very low dosage of nitisinone with regards to their daily protein intakes. We also described the first pregnancy in an AKU patient treated by nitisinone. RESULTS We found mild clinical signs of alkaptonuria on vertebra MRI in two young adults and homogentisate deposition in teeth of a 5 years old girl. Very low dose of nitisinone (10% of present recommended dose: 0.2 mg/day) allowed to decrease homogentisic acid by >90% without increasing tyrosine levels above 500 μmol/ in these three patients. INTERPRETATIONS The analysis of the follow-up data shows that, in our three patients, a low-dosage of nitisinone is sufficient to decrease urinary HGA without increasing plasma tyrosine levels above the threshold of 500 μmol/L.
Collapse
Affiliation(s)
- Natacha Sloboda
- Pediatric Unit, Reference center for Inborn Errors of Metabolism of Nancy, University Children's Hospital, CHU Brabois, Vandoeuvre les Nancy, France
| | - Arnaud Wiedemann
- Pediatric Unit, Reference center for Inborn Errors of Metabolism of Nancy, University Children's Hospital, CHU Brabois, Vandoeuvre les Nancy, France; INSERM UMRS 1256 NGERE, Nutrition, Genetics, and Environmental Risk Exposure, National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-les-Nancy F-54000, France
| | - Marc Merten
- INSERM UMRS 1256 NGERE, Nutrition, Genetics, and Environmental Risk Exposure, National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-les-Nancy F-54000, France; Biochemistry and Molecular Biology Laboratory (Nutrition, Metabolism), CHRU de Nancy, Nancy, France
| | - Amerh Alqahtani
- Pediatric Unit, Reference center for Inborn Errors of Metabolism of Nancy, University Children's Hospital, CHU Brabois, Vandoeuvre les Nancy, France
| | - Elise Jeannesson
- INSERM UMRS 1256 NGERE, Nutrition, Genetics, and Environmental Risk Exposure, National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-les-Nancy F-54000, France; Biochemistry and Molecular Biology Laboratory (Nutrition, Metabolism), CHRU de Nancy, Nancy, France
| | - Alain Blum
- Pediatric Unit, Reference center for Inborn Errors of Metabolism of Nancy, University Children's Hospital, CHU Brabois, Vandoeuvre les Nancy, France; Radiology Unit Guilloz, University Hospital, Hôpital Central, Nancy, France
| | - Sophie Henn-Ménétré
- Pediatric Unit, Reference center for Inborn Errors of Metabolism of Nancy, University Children's Hospital, CHU Brabois, Vandoeuvre les Nancy, France; Pharmacy Unit, University Hospital, CHU Brabois, Vandoeuvre les Nancy, France
| | - Jean-Louis Guéant
- INSERM UMRS 1256 NGERE, Nutrition, Genetics, and Environmental Risk Exposure, National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-les-Nancy F-54000, France; Biochemistry and Molecular Biology Laboratory (Nutrition, Metabolism), CHRU de Nancy, Nancy, France
| | - Emeline Renard
- Pediatric Unit, Reference center for Inborn Errors of Metabolism of Nancy, University Children's Hospital, CHU Brabois, Vandoeuvre les Nancy, France; INSERM UMRS 1256 NGERE, Nutrition, Genetics, and Environmental Risk Exposure, National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-les-Nancy F-54000, France
| | - François Feillet
- Pediatric Unit, Reference center for Inborn Errors of Metabolism of Nancy, University Children's Hospital, CHU Brabois, Vandoeuvre les Nancy, France; INSERM UMRS 1256 NGERE, Nutrition, Genetics, and Environmental Risk Exposure, National Center of Inborn Errors of Metabolism, Faculty of Medicine of Nancy, University of Lorraine and University Regional Hospital Center of Nancy, Vandoeuvre-les-Nancy F-54000, France.
| |
Collapse
|
11
|
Yu Q, Xue L, Hiblot J, Griss R, Fabritz S, Roux C, Binz PA, Haas D, Okun JG, Johnsson K. Semisynthetic sensor proteins enable metabolic assays at the point of care. Science 2018; 361:1122-1126. [PMID: 30213915 DOI: 10.1126/science.aat7992] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
Abstract
Monitoring metabolites at the point of care could improve the diagnosis and management of numerous diseases. Yet for most metabolites, such assays are not available. We introduce semisynthetic, light-emitting sensor proteins for use in paper-based metabolic assays. The metabolite is oxidized by nicotinamide adenine dinucleotide phosphate, and the sensor changes color in the presence of the reduced cofactor, enabling metabolite quantification with the use of a digital camera. The approach makes any metabolite that can be oxidized by the cofactor a candidate for quantitative point-of-care assays, as shown for phenylalanine, glucose, and glutamate. Phenylalanine blood levels of phenylketonuria patients were analyzed at the point of care within minutes with only 0.5 microliters of blood. Results were within 15% of those obtained with standard testing methods.
Collapse
Affiliation(s)
- Qiuliyang Yu
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany.,École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, NCCR in Chemical Biology, 1015 Lausanne, Switzerland
| | - Lin Xue
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Julien Hiblot
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Rudolf Griss
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, NCCR in Chemical Biology, 1015 Lausanne, Switzerland
| | - Sebastian Fabritz
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Clothilde Roux
- University Hospital of Lausanne, Service of Biomedicine, Clinical Chemistry Laboratory, 1011 Lausanne, Switzerland
| | - Pierre-Alain Binz
- University Hospital of Lausanne, Service of Biomedicine, Clinical Chemistry Laboratory, 1011 Lausanne, Switzerland
| | - Dorothea Haas
- University Children's Hospital Heidelberg, Center for Metabolic Diseases, Metabolic Laboratory, 69120 Heidelberg, Germany
| | - Jürgen G Okun
- University Children's Hospital Heidelberg, Center for Metabolic Diseases, Metabolic Laboratory, 69120 Heidelberg, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany. .,École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, NCCR in Chemical Biology, 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Diagnosis and treatment of tyrosinemia type I: a US and Canadian consensus group review and recommendations. Genet Med 2017; 19:S1098-3600(21)04765-1. [PMID: 28771246 PMCID: PMC5729346 DOI: 10.1038/gim.2017.101] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/28/2017] [Indexed: 12/19/2022] Open
Abstract
Tyrosinemia type I (hepatorenal tyrosinemia, HT-1) is an autosomal recessive condition resulting in hepatic failure with comorbidities involving the renal and neurologic systems and long term risks for hepatocellular carcinoma. An effective medical treatment with 2-[2-nitro-4-trifluoromethylbenzoyl]-1,3-cyclohexanedione (NTBC) exists but requires early identification of affected children for optimal long-term results. Newborn screening (NBS) utilizing blood succinylacetone as the NBS marker is superior to observing tyrosine levels as a way of identifying neonates with HT-1. If identified early and treated appropriately, the majority of affected infants can remain asymptomatic. A clinical management scheme is needed for infants with HT-1 identified by NBS or clinical symptoms. To this end, a group of 11 clinical practitioners, including eight biochemical genetics physicians, two metabolic dietitian nutritionists, and a clinical psychologist, from the United States and Canada, with experience in providing care for patients with HT-1, initiated an evidence- and consensus-based process to establish uniform recommendations for identification and treatment of HT-1. Recommendations were developed from a literature review, practitioner management survey, and nominal group process involving two face-to-face meetings. There was strong consensus in favor of NBS for HT-1, using blood succinylacetone as a marker, followed by diagnostic confirmation and early treatment with NTBC and diet. Consensus recommendations for both immediate and long-term clinical follow-up of positive diagnoses via both newborn screening and clinical symptomatic presentation are provided.
Collapse
|
13
|
Remaining Challenges in the Treatment of Tyrosinemia from the Clinician's Viewpoint. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 959:205-213. [PMID: 28755198 DOI: 10.1007/978-3-319-55780-9_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter provides a clinical perspective on the challenges that stand between current clinical practice and a cure for hepatorenal tyrosinemia (HT1). HT1 has been transformed in the last 50 years from an aggressive often undiagnosed childhood disease causing liver failure or liver cancer, with infant death in most patients, to a condition that is detectable at birth, and for which treatment with nitisinone (NTBC) and diet can prevent detectable liver or kidney abnormalities. What challenges remain? The properties of the affected metabolic pathway and the broad spectrum of severity seen in untreated patients are incompletely understood but potentially important for patients. Available treatments have potential complications, including liver transplantation (risks of surgery and of immunosuppression to prevent rejection), nitisinone and diet therapy (hypertyrosinemia, corneal opacities, nutritional imbalances and possibly developmental delay). The detection of liver cancer is imperfect and laborious. The effects of tyrosinemia during pregnancy are little-known. Although animal models of HT1 are becoming standard research tools in cell replacement and gene modification therapy, these techniques are not currently applicable to HT1 itself. Treatment adherence is variable, causing concern about long term outcome for some patients. Around the world, there are great disparities in the diagnosis and treatment of HT1. Most affected individuals are born in places where newborn screening for HT1 is not performed and where appropriate treatment is not available. We hope that this list will help to focus on some of these remaining obstacles to a cure for HT1.
Collapse
|
14
|
Fumarylacetoacetate hydrolase deficient pigs are a novel large animal model of metabolic liver disease. Stem Cell Res 2014; 13:144-53. [PMID: 24879068 DOI: 10.1016/j.scr.2014.05.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 12/20/2022] Open
Abstract
Hereditary tyrosinemia type I (HT1) is caused by deficiency in fumarylacetoacetate hydrolase (FAH), an enzyme that catalyzes the last step of tyrosine metabolism. The most severe form of the disease presents acutely during infancy, and is characterized by severe liver involvement, most commonly resulting in death if untreated. Generation of FAH(+/-) pigs was previously accomplished by adeno-associated virus-mediated gene knockout in fibroblasts and somatic cell nuclear transfer. Subsequently, these animals were outbred and crossed to produce the first FAH(-/-) pigs. FAH-deficiency produced a lethal defect in utero that was corrected by administration of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3 cyclohexanedione (NTBC) throughout pregnancy. Animals on NTBC were phenotypically normal at birth; however, the animals were euthanized approximately four weeks after withdrawal of NTBC due to clinical decline and physical examination findings of severe liver injury and encephalopathy consistent with acute liver failure. Biochemical and histological analyses, characterized by diffuse and severe hepatocellular damage, confirmed the diagnosis of severe liver injury. FAH(-/-) pigs provide the first genetically engineered large animal model of a metabolic liver disorder. Future applications of FAH(-/-) pigs include discovery research as a large animal model of HT1 and spontaneous acute liver failure, and preclinical testing of the efficacy of liver cell therapies, including transplantation of hepatocytes, liver stem cells, and pluripotent stem cell-derived hepatocytes.
Collapse
|