1
|
Sikirica V, Banerjee G, Perera S, Simpson RB, Shen J, Zhen T, Madsen A, Sheridan P. Metabolic decompensation events among patients with propionic acidemia across the US: A large electronic medical record data study. Mol Genet Metab 2025; 145:109111. [PMID: 40311502 DOI: 10.1016/j.ymgme.2025.109111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 05/03/2025]
Abstract
Propionic acidemia (PA) is a rare, inherited, metabolic disorder affecting amino acid metabolism. PA is characterized by periods of catabolism, which can lead to metabolic decompensation events (MDEs), commonly defined by metabolic acidosis and/or hyperammonemia. This retrospective study used TriNetX (1/1/2015-4/24/2022), a large longitudinal, electronic medical record database, to describe the clinical profile and burden of MDEs for patients with PA in the United States (US). Patients with known age were indexed on their first observed PA diagnosis on or after January 2015. Rates of MDEs, MDE-related clinical parameters, and healthcare resource utilization (HCRU) were assessed during the follow-up period (from index to death, end of data, or a 183-day gap in encounters). Among 269 patients with PA (55.0% adults, 51.3% male), 79 patients (29.4%) experienced ≥1 MDE in an inpatient (IP) or emergency room (ER) setting, and 128 patients (47.6%) experienced ≥1 MDE in any setting including the ambulatory setting. The rate of IP/ER MDEs was 0.53 per patient-year (PPY; 95% confidence interval: 0.36, 0.78); visually, rates followed a U-shaped distribution being higher in patients aged 0 to <2 years (0.58 PPY) and adults ≥18 years (0.72 PPY) compared to patients aged 2 to 18 years (0.22-0.34 PPY). Adults' MDEs commonly involved metabolic acidosis (86.7%) while pediatrics' MDEs commonly involved hyperammonemia (43.4-55.6%). Infection was the most common MDE trigger (63.3%); vomiting (45.6%) and seizure activity (41.8%) the most common MDE symptoms. A higher proportion of patients with MDEs died (21.5%) than those without MDEs (14.7%) during the entire study period; patients with MDEs also had a higher proportion of comorbidities and treatment usage than those without MDEs. This study provides the largest assessment of patients with PA across the US and documents the substantial morbidity with a focus on MDE burden, as well as mortality, highlighting clear unmet need.
Collapse
Affiliation(s)
- Vanja Sikirica
- Moderna Therapeutics, Inc., Princeton, NJ, United States of America.
| | | | - Sue Perera
- Moderna Therapeutics, Inc., Cambridge, MA, United States of America
| | - Ryan B Simpson
- Analysis Group, Inc., Boston, MA, United States of America
| | - John Shen
- Aetion, Inc., New York, NY, United States of America
| | - Thomas Zhen
- Aetion, Inc., New York, NY, United States of America
| | - Ann Madsen
- Aetion, Inc., New York, NY, United States of America
| | | |
Collapse
|
2
|
Wang S, Li L, Ma Y, Yang H, Sang Y, Tang Y, Gong L, Zhao J, Gu L, Kong Y, Mao X. Six Chinese patients with propionic acidemia: from asymptomatic to death in the neonatal period. Orphanet J Rare Dis 2025; 20:122. [PMID: 40075390 PMCID: PMC11905712 DOI: 10.1186/s13023-025-03622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Propionic acidemia (PA) is a severe organic acidemia that can result in multi-organ damage and is potentially fatal. The rarity of this disease and the limited number of reported cases contribute to a lack of comprehensive knowledge, particularly concerning the genotype-phenotype correlation. This study aims to report on PA cases in Beijing and Ningxia, China, identify the pathogenic genetic factors involved, and explore the relationship between genotype and phenotype. METHODS We calculated the positive screening rates of PA in Beijing and Ningxia and summarized data from six Chinese patients with PA identified at the Beijing Newborn Screening Center and Ningxia Newborn Screening Center. Clinical examinations included blood tandem mass spectrometry, urine gas chromatography-mass spectrometry, and the next-generation sequencing (NGS) technology. Candidate mutations were validated using polymerase chain reaction and Sanger sequencing technology. Bioinformatics software was used to analyze the pathogenicity of the variants, and Swiss PDB Viewer software was employed to predict the effect of mutations on PCCA and PCCB proteins. RESULTS The updated incidence of PA was 1 in 114,820 in Beijing and 1 in 189,671 in Ningxia. We reported five patients diagnosed with PA through newborn screening (NBS) and one additional patient diagnosed clinically. Among the five patients diagnosed by NBS, the two late-onset patients exhibited normal neurodevelopment, while all three early-onset patients succumbed between 4 days and 18 months of age. The patient diagnosed clinically passed away at 20 days of age. NGS showed one patient carries compound mutations in the PCCA gene and three patients carry compound heterozygous or homozygous mutations in the PCCB gene. A total of two mutations in PCCA (c.985T > A and c.1195 C > T) and five mutations in PCCB (c.1076 C > T, c.1087T > C, c.224 A > C, c.1339 C> T, and c.1033G > C)were identified, including one novel PCCA mutation (c.985T > A) and four novel PCCB mutations (c.1076 C > T, c.224 A > C, c.1339 C> T, and c.1033G > C). Bioinformatics analysis indicated these mutations are pathogenic, and Swiss PDB Viewer predictions suggest that these variations affect protein conformation. CONCLUSIONS The updated incidence rates of PA in Beijing and Ningxia provide new epidemiological insights. We reported six patients with PA, and identified one novel mutation (c.985T > A) in PCCA and four novel mutations (c.1076 C > T, c.224 A > C, c.1339 C> T, and c.1033G > C) in PCCB, which expands the spectrum of clinical features and genetic mutations associated with PA. The c.985T > A mutation in PCCA and the c.1076 C > T mutation in PCCB may be associated with late-onset PA, while the c.224 A > C, c.1339 C > T, and c.1033G > C mutations in PCCB are related to early-onset PA.
Collapse
Affiliation(s)
- Shunan Wang
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Healthcare Hospital, Beijing, China
| | - Lulu Li
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Healthcare Hospital, Beijing, China
| | - Yulan Ma
- Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan, China
| | - Haihe Yang
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Healthcare Hospital, Beijing, China
| | - Yuting Sang
- Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan, China
| | - Yue Tang
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Healthcare Hospital, Beijing, China
| | - Lifei Gong
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Healthcare Hospital, Beijing, China
| | - Jinqi Zhao
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Healthcare Hospital, Beijing, China
| | - Lijin Gu
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Healthcare Hospital, Beijing, China
| | - Yuanyuan Kong
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Healthcare Hospital, Beijing, China.
| | - Xinmei Mao
- Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan, China.
| |
Collapse
|
3
|
Zaunseder E, Teinert J, Boy N, Garbade SF, Haupt S, Feyh P, Hoffmann GF, Kölker S, Mütze U, Heuveline V. Digital-Tier Strategy Improves Newborn Screening for Glutaric Aciduria Type 1. Int J Neonatal Screen 2024; 10:83. [PMID: 39728403 DOI: 10.3390/ijns10040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Glutaric aciduria type 1 (GA1) is a rare inherited metabolic disease increasingly included in newborn screening (NBS) programs worldwide. Because of the broad biochemical spectrum of individuals with GA1 and the lack of reliable second-tier strategies, NBS for GA1 is still confronted with a high rate of false positives. In this study, we aim to increase the specificity of NBS for GA1 and, hence, to reduce the rate of false positives through machine learning methods. Therefore, we studied NBS profiles from 1,025,953 newborns screened between 2014 and 2023 at the Heidelberg NBS Laboratory, Germany. We identified a significant sex difference, resulting in twice as many false-positives male than female newborns. Moreover, the proposed digital-tier strategy based on logistic regression analysis, ridge regression, and support vector machine reduced the false-positive rate by over 90% compared to regular NBS while identifying all confirmed individuals with GA1 correctly. An in-depth analysis of the profiles revealed that in particular false-positive results with high associated follow-up costs could be reduced significantly. In conclusion, understanding the origin of false-positive NBS and implementing a digital-tier strategy to enhance the specificity of GA1 testing may significantly reduce the burden on newborns and their families from false-positive NBS results.
Collapse
Affiliation(s)
- Elaine Zaunseder
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany
| | - Julian Teinert
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Center for Pediatric and Adolescent Medicine, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Nikolas Boy
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Center for Pediatric and Adolescent Medicine, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Sven F Garbade
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Center for Pediatric and Adolescent Medicine, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Saskia Haupt
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany
| | - Patrik Feyh
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Center for Pediatric and Adolescent Medicine, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Center for Pediatric and Adolescent Medicine, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Stefan Kölker
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Center for Pediatric and Adolescent Medicine, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Ulrike Mütze
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Center for Pediatric and Adolescent Medicine, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Vincent Heuveline
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany
| |
Collapse
|
4
|
Fernández-Lainez C, Vela-Amieva M, Reyna-Fabián M, Fernández-Hernández L, Guillén-López S, López-Mejía L, Alcántara-Ortigoza MÁ, González-del Angel A, Carrillo-Nieto RI, Ortega-Valdez E, Rojas-Maruri M, Ridaura-Sanz C. Isolated methylmalonic acidemia in Mexico: Genotypic spectrum, report of two novel MMUT variants and a possible synergistic heterozygosity effect. Mol Genet Metab Rep 2024; 41:101155. [PMID: 39494389 PMCID: PMC11530693 DOI: 10.1016/j.ymgmr.2024.101155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Isolated methylmalonic acidemia (iMMA) is a group of monogenic metabolic disorders affecting methylmalonate and cobalamin metabolism. Five iMMA-responsible genes have been described to date: MMUT (MIM *609058), MMAA (MIM *607481, MMAB (MIM *607568), MMADHC (MIM *611935), and MCEE (MIM *608419). Although iMMA is the most common form of organic acidemia reported in Mexico, its genotypic spectrum is still largely unknown. We performed a clinical exome analysis on 42 unrelated Mexican patients with iMMA. MMUT deficiency accounted for 73.8 % of all cases, followed by MMAA (14.2 %), MMAB (7.2 %), and MMADHC (2.4 %) deficiencies. One patient presented MMUT and MMAA double heterozygosity, which should be further experimentally confirmed to prove that synergistic heterozygosity could be another inheritance mechanism in iMMA. The most frequent MMUT genotype involved the Hispanic variant NM_000255.4:c. [322C > T];[322C > T] or p.[Arg108Cys];[Arg108Cys] (14.3 %). Two novel MMUT variants, NM_000255.4:c.589G > A or p.(Ala197Thr) and c.1476C > A or p.(Tyr492*), were identified in a deceased newborn presenting the neonatal-onset severe form of the disease. In silico protein modeling of the p.(Arg108Cys) and novel p.(Ala197Thr) MMUT variants suggested disruption of the substrate-binding and catalytic domains of the protein, respectively. This study expands the current knowledge on the molecular spectrum of iMMA in the Mexican population and reinforces the importance of genetic analysis in guiding clinical management.
Collapse
Affiliation(s)
| | - Marcela Vela-Amieva
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Mexico
| | | | | | - Sara Guillén-López
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Mexico
| | - Lizbeth López-Mejía
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Mexico
| | | | | | | | - Enrique Ortega-Valdez
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Mexico
- Facultad de Ciencias, UNAM, Mexico
| | | | | |
Collapse
|
5
|
Schnabel-Besson E, Mütze U, Dikow N, Hörster F, Morath MA, Alex K, Brennenstuhl H, Settegast S, Okun JG, Schaaf CP, Winkler EC, Kölker S. Wilson and Jungner Revisited: Are Screening Criteria Fit for the 21st Century? Int J Neonatal Screen 2024; 10:62. [PMID: 39311364 PMCID: PMC11417796 DOI: 10.3390/ijns10030062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Driven by technological innovations, newborn screening (NBS) panels have been expanded and the development of genomic NBS pilot programs is rapidly progressing. Decisions on disease selection for NBS are still based on the Wilson and Jungner (WJ) criteria published in 1968. Despite this uniform reference, interpretation of the WJ criteria and actual disease selection for NBS programs are highly variable. A systematic literature search [PubMED search "Wilson" AND "Jungner"; last search 16.07.22] was performed to evaluate the applicability of the WJ criteria for current and future NBS programs and the need for adaptation. By at least two reviewers, 105 publications (systematic literature search, N = 77; manual search, N = 28) were screened for relevant content and, finally, 38 publications were evaluated. Limited by the study design of qualitative text analysis, no statistical evaluation was performed, but a structured collection of reported aspects of criticism and proposed improvements was instead collated. This revealed a set of general limitations of the WJ criteria, such as imprecise terminology, lack of measurability and objectivity, missing pediatric focus, and absent guidance on program management. Furthermore, it unraveled specific aspects of criticism on clinical, diagnostic, therapeutic, and economical aspects. A major obstacle was found to be the incompletely understood natural history and phenotypic diversity of rare diseases prior to NBS implementation, resulting in uncertainty about case definition, risk stratification, and indications for treatment. This gap could be closed through the systematic collection and evaluation of real-world evidence on the quality, safety, and (cost-)effectiveness of NBS, as well as the long-term benefits experienced by screened individuals. An integrated NBS public health program that is designed to continuously learn would fulfil these requirements, and a multi-dimensional framework for future NBS programs integrating medical, ethical, legal, and societal perspectives is overdue.
Collapse
Affiliation(s)
- Elena Schnabel-Besson
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Ulrike Mütze
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Nicola Dikow
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Friederike Hörster
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Marina A. Morath
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Karla Alex
- Section Translational Medical Ethics, Department of Medical Oncology, National Center for Tumor Diseases (NCT), Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Heiko Brennenstuhl
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Sascha Settegast
- Section Translational Medical Ethics, Department of Medical Oncology, National Center for Tumor Diseases (NCT), Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Jürgen G. Okun
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Christian P. Schaaf
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Eva C. Winkler
- Section Translational Medical Ethics, Department of Medical Oncology, National Center for Tumor Diseases (NCT), Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Stefan Kölker
- Division of Pediatric Neurology and Metabolic Medicine, Department of Pediatrics I, Medical Faculty of Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Ling S, Wu S, Shuai R, Yu Y, Qiu W, Wei H, Yang C, Xu P, Zou H, Feng J, Niu T, Hu H, Zhang H, Liang L, Wang Y, Chen T, Xu F, Gu X, Han L. Clinical outcomes of patients with mut-type methylmalonic acidemia identified through expanded newborn screening in China. Hum Genomics 2024; 18:84. [PMID: 39075538 PMCID: PMC11288086 DOI: 10.1186/s40246-024-00646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Isolated methylmalonic acidemia, an autosomal recessive disorder of propionate metabolism, is usually caused by mutations in the methylmalonyl-CoA mutase gene (mut-type). Because no universal consensus was made on whether mut-type methylmalonic acidemia should be included in newborn screening (NBS), we aimed to compare the outcome of this disorder detected by NBS with that detected clinically and investigate the influence of NBS on the disease course. DESIGN & METHODS In this study, 168 patients with mut-type methylmalonic acidemia diagnosed by NBS were compared to 210 patients diagnosed after disease onset while NBS was not performed. Clinical data of these patients from 7 metabolic centers in China were analyzed retrospectively, including initial manifestations, biochemical metabolites, the responsiveness of vitamin B12 therapy, and gene variation, to explore different factors on the long-term outcome. RESULTS By comparison of the clinically-diagnosed patients, NBS-detected patients showed younger age at diagnosis, less incidence of disease onset, better responsiveness of vitamin B12, younger age at start of treatment, lower levels of biochemical features before and after treatment, and better long-term prognosis (P < 0.01). Onset of disease, blood C3/C2 ratio and unresponsiveness of vitamin B12 were more positively associated with poor outcomes of patients whether identified by NBS. Moreover, the factors above as well as older age at start of treatment were positively associated with mortality. CONCLUSIONS This research highly demonstrated NBS could prevent major disease-related events and allow an earlier treatment initiation. As a key prognostic factor, NBS is beneficial for improving the overall survival of infants with mut-type methylmalonic acidemia.
Collapse
Affiliation(s)
- Shiying Ling
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengnan Wu
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Ruixue Shuai
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Yu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Wei
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Chiju Yang
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Peng Xu
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Hui Zou
- Center of Neonatal Disease Screening, Jinan Maternal and Child Health Care Hospital, Jinan, China
| | - Jizhen Feng
- Center of Neonatal Disease Screening, Shijiazhuang Maternal and Child Health Care Hospital, Shijiazhuang, China
| | - Tingting Niu
- Center of Neonatal Disease Screening, Shandong Maternal and Child Health Care Hospital, Jinan, China
| | - Haili Hu
- Center of Neonatal Disease Screening, Hefei Maternal and Child Health Care Hospital, Hefei, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lili Liang
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Wang
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Chen
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Xu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lianshu Han
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
7
|
Reischl-Hajiabadi AT, Schnabel E, Gleich F, Mengler K, Lindner M, Burgard P, Posset R, Lommer-Steinhoff S, Grünert SC, Thimm E, Freisinger P, Hennermann JB, Krämer J, Gramer G, Lenz D, Christ S, Hörster F, Hoffmann GF, Garbade SF, Kölker S, Mütze U. Outcomes after newborn screening for propionic and methylmalonic acidemia and homocystinurias. J Inherit Metab Dis 2024; 47:674-689. [PMID: 38563533 DOI: 10.1002/jimd.12731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
The current German newborn screening (NBS) panel includes 13 inherited metabolic diseases (IMDs). In addition, a NBS pilot study in Southwest Germany identifies individuals with propionic acidemia (PA), methylmalonic acidemia (MMA), combined and isolated remethylation disorders (e.g., cobalamin [cbl] C and methylenetetrahydrofolate reductase [MTHFR] deficiency), cystathionine β-synthase (CBS) deficiency, and neonatal cbl deficiency through one multiple-tier algorithm. The long-term health benefits of screened individuals are evaluated in a multicenter observational study. Twenty seven screened individuals with IMDs (PA [N = 13], MMA [N = 6], cblC deficiency [N = 5], MTHFR deficiency [N = 2] and CBS deficiency [N = 1]), and 42 with neonatal cbl deficiency were followed for a median of 3.6 years. Seventeen screened IMD patients (63%) experienced at least one metabolic decompensation, 14 of them neonatally and six even before the NBS report (PA, cbl-nonresponsive MMA). Three PA patients died despite NBS and immediate treatment. Fifteen individuals (79%) with PA or MMA and all with cblC deficiency developed permanent, mostly neurological symptoms, while individuals with MTHFR, CBS, and neonatal cbl deficiency had a favorable clinical outcome. Utilizing a combined multiple-tier algorithm, we demonstrate that NBS and specialized metabolic care result in substantial benefits for individuals with MTHFR deficiency, CBS deficiency, neonatal cbl deficiency, and to some extent, cbl-responsive MMA and cblC deficiency. However, its advantage is less evident for individuals with PA and cbl-nonresponsive MMA. SYNOPSIS: Early detection through newborn screening and subsequent specialized metabolic care improve clinical outcomes and survival in individuals with MTHFR deficiency and cystathionine-β-synthase deficiency, and to some extent in cobalamin-responsive methylmalonic acidemia (MMA) and cblC deficiency while the benefit for individuals with propionic acidemia and cobalamin-nonresponsive MMA is less evident due to the high (neonatal) decompensation rate, mortality, and long-term complications.
Collapse
Affiliation(s)
- Anna T Reischl-Hajiabadi
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Elena Schnabel
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Florian Gleich
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Katharina Mengler
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | | | - Peter Burgard
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Roland Posset
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Svenja Lommer-Steinhoff
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Sarah C Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Eva Thimm
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Freisinger
- Children's Hospital Reutlingen, Klinikum am Steinenberg Reutlingen, Reutlingen, Germany
| | - Julia B Hennermann
- Villa Metabolica, Department of Pediatric and Adolescent Medicine, University Medical Center Mainz, Mainz, Germany
| | - Johannes Krämer
- Department of Pediatric and Adolescent Medicine, Medical School, Ulm University, Ulm, Germany
| | - Gwendolyn Gramer
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
- Department for Inborn Metabolic Diseases, University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominic Lenz
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Stine Christ
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Friederike Hörster
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Georg F Hoffmann
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Sven F Garbade
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Stefan Kölker
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Ulrike Mütze
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| |
Collapse
|
8
|
Gupta N, Endrakanti M, Bhat M, Rao N, Kaur R, Kabra M. Clinical and Molecular Spectrum of Patients with Methylmalonic Acidemia. Indian J Pediatr 2024; 91:675-681. [PMID: 37420116 DOI: 10.1007/s12098-023-04651-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/17/2023] [Indexed: 07/09/2023]
Abstract
OBJECTIVES To study the clinical and molecular spectrum of Methylmalonic acidemia (MMA). METHODS In this retrospective study, the records of 30 MMA patients were evaluated for their phenotype, biochemical abnormalities, genotype, and outcomes. RESULTS Thirty patients with MMA (age range 0-21 y) from 27 unrelated families were enrolled. Family history and consanguinity were noted in 10/27 (37%) and 11/27 (41%) families respectively. Acute metabolic decompensation was more common (57%) than chronic presentation. Biochemical work-up was suggestive of isolated MMA (n = 18) and MMA with homocystinuria (n = 9) respectively. Molecular testing in 24 families showed 21 pathogenic or likely pathogenic variants with MMA cblC as the commonest molecular subtype (n = 8). B12 responsiveness, an important determinant of long-term outcome, was observed in eight patients [MMAA (n = 3) and MMACHC (n = 5)]. Mortality was 30% (n = 9/30) with a high proportion of early-onset severe disease and fatal outcome in isolated MMA mut0 (4/4) and MMA cblB (3/3), as compared to MMA cblA (1/5) and MMA cblC (1/10). CONCLUSIONS This study cohort had MMA cblC subtype as the most common type of MMA followed by the MMA mutase defect. Outcomes in MMA are influenced by the type of molecular defect, age, and severity of presentation. Early detection and management is likely to result in better outcomes.
Collapse
Affiliation(s)
- Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, Room 840, 8th floor, Mother and Child Block, Ansari Nagar, New Delhi, 110029, India.
| | - Mounika Endrakanti
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, Room 840, 8th floor, Mother and Child Block, Ansari Nagar, New Delhi, 110029, India
| | - Meenakshi Bhat
- Centre for Human Genetics, Bangalore, Karnataka, 560100, India
| | - Nivedita Rao
- Centre for Human Genetics, Bangalore, Karnataka, 560100, India
| | - Ravneet Kaur
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, Room 840, 8th floor, Mother and Child Block, Ansari Nagar, New Delhi, 110029, India
| | - Madhulika Kabra
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, Room 840, 8th floor, Mother and Child Block, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
9
|
Passantino S, Chiellino S, Girolami F, Zampieri M, Calabri GB, Spaziani G, Bennati E, Porcedda G, Procopio E, Olivotto I, Favilli S. Cardiac Involvement in Classical Organic Acidurias: Clinical Profile and Outcome in a Pediatric Cohort. Diagnostics (Basel) 2023; 13:3674. [PMID: 38132258 PMCID: PMC10742676 DOI: 10.3390/diagnostics13243674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Cardiac involvement is reported in a significant proportion of patients with classical organic acidurias (OAs), contributing to disability and premature death. Different cardiac phenotypes have been described, among which dilated cardiomyopathy (DCM) is predominant. Despite recent progress in diagnosis and treatment, the natural history of patients with OAs remains unresolved, specifically with regard to the impact of cardiac complications. We therefore performed a retrospective study to address this issue at our Referral Center for Pediatric Inherited Errors of Metabolism. METHODS Sixty patients with OAs (propionic (PA), methylmalonic (MMA) and isovaleric acidemias and maple syrup urine disease) diagnosed from 2000 to 2022 were systematically assessed at baseline and at follow-up. RESULTS Cardiac anomalies were found in 23/60 OA patients, all with PA or MMA, represented by DCM (17/23 patients) and/or acquired long QT syndrome (3/23 patients). The presence of DCM was associated with the worst prognosis. The rate of occurrence of major adverse cardiac events (MACEs) at 5 years was 55% in PA with cardiomyopathy; 35% in MMA with cardiomyopathy; and 23% in MMA without cardiomyopathy. Liver transplantation was performed in seven patients (12%), all with PA or MMA, due to worsening cardiac impairment, and led to the stabilization of metabolic status and cardiac function. CONCLUSIONS Cardiac involvement was documented in about one third of children diagnosed with classical OAs, confined to PA and MMA, and was often associated with poor outcome in over 50%. Etiological diagnosis of OAs is essential in guiding management and risk stratification.
Collapse
Affiliation(s)
- Silvia Passantino
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Serena Chiellino
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Francesca Girolami
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Mattia Zampieri
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Giovanni Battista Calabri
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Gaia Spaziani
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Elena Bennati
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Giulio Porcedda
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Elena Procopio
- Inborn Metabolic and Muscular Disorders Unit, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy;
| | - Iacopo Olivotto
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| | - Silvia Favilli
- Department of Paediatric Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (S.C.); (F.G.); (G.B.C.); (G.S.); (E.B.); (G.P.); (I.O.); (S.F.)
| |
Collapse
|
10
|
Mütze U, Kölker S. [Evaluation and optimization of newborn screening by structured long-term follow-up-using the example of inherited metabolic diseases]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2023; 66:1249-1258. [PMID: 37815612 PMCID: PMC10622349 DOI: 10.1007/s00103-023-03772-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/04/2023] [Indexed: 10/11/2023]
Abstract
Newborn screening (NBS) is a highly successful secondary prevention program with the goal of preventing severe sequelae of congenital, mostly genetic, diseases by identifying them as early as possible, ideally in the pre-symptomatic period. Studies to date have shown the important achievements of NBS programs but also reveal a number of relevant weaknesses. These include the often incompletely understood natural history and phenotypic diversity of rare diseases as well as the inadequate ability to accurately predict individual disease severity at an early stage and thus the uncertainties in case definition, risk stratification, and treatment indication.In light of the rapid developments in high-throughput genetic technologies and the associated opportunities for substantial future expansion of NBS programs, it seems overdue to make structured long-term follow-up and the subsequent evaluation of the long-term health benefits mandatory for individuals with rare diseases identified through NBS. This article explains the importance of long-term follow-up for the evaluation and continuous optimization of the screening. Long-term clinical outcomes of people with inherited metabolic diseases identified by NBS are presented as examples.
Collapse
Affiliation(s)
- Ulrike Mütze
- Sektion Neuropädiatrie und Stoffwechselmedizin, Zentrum für Kinder- und Jugendmedizin, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Deutschland.
| | - Stefan Kölker
- Sektion Neuropädiatrie und Stoffwechselmedizin, Zentrum für Kinder- und Jugendmedizin, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Deutschland
| |
Collapse
|
11
|
Posset R, Zielonka M, Gleich F, Garbade SF, Hoffmann GF, Kölker S. The challenge of understanding and predicting phenotypic diversity in urea cycle disorders. J Inherit Metab Dis 2023; 46:1007-1016. [PMID: 37702610 DOI: 10.1002/jimd.12678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
The Urea Cycle Disorders Consortium (UCDC) and the European registry and network for Intoxication type Metabolic Diseases (E-IMD) are the worldwide largest databases for individuals with urea cycle disorders (UCDs) comprising longitudinal data from more than 1100 individuals with an overall long-term follow-up of approximately 25 years. However, heterogeneity of the clinical phenotype as well as different diagnostic and therapeutic strategies hamper our understanding on the predictors of phenotypic diversity and the impact of disease-immanent and interventional variables (e.g., diagnostic and therapeutic interventions) on the long-term outcome. A new strategy using combined and comparative data analyses helped overcome this challenge. This review presents the mechanisms and relevant principles that are necessary for the identification of meaningful clinical associations by combining data from different data sources, and serves as a blueprint for future analyses of rare disease registries.
Collapse
Affiliation(s)
- Roland Posset
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Zielonka
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
- Heidelberg Research Center for Molecular Medicine (HRCMM), Heidelberg, Germany
| | - Florian Gleich
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sven F Garbade
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Maier EM, Mütze U, Janzen N, Steuerwald U, Nennstiel U, Odenwald B, Schuhmann E, Lotz-Havla AS, Weiss KJ, Hammersen J, Weigel C, Thimm E, Grünert SC, Hennermann JB, Freisinger P, Krämer J, Das AM, Illsinger S, Gramer G, Fang-Hoffmann J, Garbade SF, Okun JG, Hoffmann GF, Kölker S, Röschinger W. Collaborative evaluation study on 18 candidate diseases for newborn screening in 1.77 million samples. J Inherit Metab Dis 2023; 46:1043-1062. [PMID: 37603033 DOI: 10.1002/jimd.12671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Analytical and therapeutic innovations led to a continuous but variable extension of newborn screening (NBS) programmes worldwide. Every extension requires a careful evaluation of feasibility, diagnostic (process) quality and possible health benefits to balance benefits and limitations. The aim of this study was to evaluate the suitability of 18 candidate diseases for inclusion in NBS programmes. Utilising tandem mass spectrometry as well as establishing specific diagnostic pathways with second-tier analyses, three German NBS centres designed and conducted an evaluation study for 18 candidate diseases, all of them inherited metabolic diseases. In total, 1 777 264 NBS samples were analysed. Overall, 441 positive NBS results were reported resulting in 68 confirmed diagnoses, 373 false-positive cases and an estimated cumulative prevalence of approximately 1 in 26 000 newborns. The positive predictive value ranged from 0.07 (carnitine transporter defect) to 0.67 (HMG-CoA lyase deficiency). Three individuals were missed and 14 individuals (21%) developed symptoms before the positive NBS results were reported. The majority of tested candidate diseases were found to be suitable for inclusion in NBS programmes, while multiple acyl-CoA dehydrogenase deficiency, isolated methylmalonic acidurias, propionic acidemia and malonyl-CoA decarboxylase deficiency showed some and carnitine transporter defect significant limitations. Evaluation studies are an important tool to assess the potential benefits and limitations of expanding NBS programmes to new diseases.
Collapse
Affiliation(s)
- Esther M Maier
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Ulrike Mütze
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Nils Janzen
- Screening-Labor Hanover, Hanover, Germany
- Department of Clinical Chemistry, Hanover Medical School, Hanover, Germany
- Division of Laboratory Medicine, Centre for Children and Adolescents, Kinder- und Jugendkrankenhaus Auf der Bult, Hanover, Germany
| | | | - Uta Nennstiel
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Birgit Odenwald
- Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | | | - Amelie S Lotz-Havla
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Katharina J Weiss
- Department of Inborn Errors of Metabolism, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Johanna Hammersen
- Department of Pediatrics, Division of Inborn Errors of Metabolism, University Hospital Erlangen, Erlangen, Germany
| | - Corina Weigel
- Department of Pediatrics, Division of Inborn Errors of Metabolism, University Hospital Erlangen, Erlangen, Germany
| | - Eva Thimm
- Department of General Pediatrics, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah C Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Centre-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Julia B Hennermann
- Villa Metabolica, Center for Pediatric and Adolescent Medicine, Mainz University Medical Center, Mainz, Germany
| | - Peter Freisinger
- Children's Hospital Reutlingen, Klinikum am Steinenberg, Reutlingen, Germany
| | - Johannes Krämer
- Department of Pediatric and Adolescent Medicine, Ulm University Medical School, Ulm, Germany
| | - Anibh M Das
- Hanover Medical School, Clinic for Pediatric Kidney-Liver- and Metabolic Diseases, Hanover, Germany
| | - Sabine Illsinger
- Hanover Medical School, Clinic for Pediatric Kidney-Liver- and Metabolic Diseases, Hanover, Germany
| | - Gwendolyn Gramer
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
- University Medical Center Hamburg-Eppendorf, University Children's Hospital, Hamburg, Germany
| | - Junmin Fang-Hoffmann
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sven F Garbade
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen G Okun
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Wulf Röschinger
- Laboratory Becker MVZ GbR, Newborn Screening Unit, Munich, Germany
| |
Collapse
|
13
|
Mütze U, Henze L, Schröter J, Gleich F, Lindner M, Grünert SC, Spiekerkoetter U, Santer R, Thimm E, Ensenauer R, Weigel J, Beblo S, Arélin M, Hennermann JB, Marquardt I, Freisinger P, Krämer J, Dieckmann A, Weinhold N, Schiergens KA, Maier EM, Hoffmann GF, Garbade SF, Kölker S. Isovaleric aciduria identified by newborn screening: Strategies to predict disease severity and stratify treatment. J Inherit Metab Dis 2023; 46:1063-1077. [PMID: 37429829 DOI: 10.1002/jimd.12653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Newborn screening (NBS) allows early identification of individuals with rare disease, such as isovaleric aciduria (IVA). Reliable early prediction of disease severity of positively screened individuals with IVA is needed to guide therapeutic decision, prevent life-threatening neonatal disease manifestation in classic IVA and over-medicalization in attenuated IVA that may remain asymptomatic. We analyzed 84 individuals (median age at last study visit 8.5 years) with confirmed IVA identified by NBS between 1998 and 2018 who participated in the national, observational, multicenter study. Screening results, additional metabolic parameters, genotypes, and clinical phenotypic data were included. Individuals with metabolic decompensation showed a higher median isovalerylcarnitine (C5) concentration in the first NBS sample (10.6 vs. 2.7 μmol/L; p < 0.0001) and initial urinary isovalerylglycine concentration (1750 vs. 180 mmol/mol creatinine; p = 0.0003) than those who remained asymptomatic. C5 was in trend inversely correlated with full IQ (R = -0.255; slope = -0.869; p = 0.0870) and was lower for the "attenuated" variants compared to classic genotypes [median (IQR; range): 2.6 μmol/L (2.1-4.0; 0.7-6.4) versus 10.3 μmol/L (7.4-13.1; 4.3-21.7); N = 73]. In-silico prediction scores (M-CAP, MetaSVM, and MetaLR) correlated highly with isovalerylglycine and ratios of C5 to free carnitine and acetylcarnitine, but not sufficiently with clinical endpoints. The results of the first NBS sample and biochemical confirmatory testing are reliable early predictors of the clinical course of IVA, facilitating case definition (attenuated versus classic IVA). Prediction of attenuated IVA is supported by the genotype. On this basis, a reasonable algorithm has been established for neonates with a positive NBS result for IVA, with the aim of providing the necessary treatment immediately, but whenever possible, adjusting the treatment to the individual severity of the disease.
Collapse
Affiliation(s)
- Ulrike Mütze
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Lucy Henze
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Julian Schröter
- Division of Pediatric Epileptology, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Florian Gleich
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Lindner
- Division of Pediatric Neurology, University Children's Hospital Frankfurt, Frankfurt, Germany
| | - Sarah C Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - René Santer
- Department of Pediatrics, University Medical Centre Eppendorf, Hamburg, Germany
| | - Eva Thimm
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Regina Ensenauer
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Child Nutrition, Max-Rubner-Institut, Karlsruhe, Germany
| | - Johannes Weigel
- Praxis für Kinder- und Jugendmedizin, Endokrinologie und Stoffwechsel, Augsburg, Germany
| | - Skadi Beblo
- Department of Women and Child Health, Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), University Hospitals, University of Leipzig, Leipzig, Germany
| | - Maria Arélin
- Department of Women and Child Health, Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), University Hospitals, University of Leipzig, Leipzig, Germany
| | - Julia B Hennermann
- Villa Metabolica, Center for Pediatric and Adolescent Medicine, Mainz University Medical Center, Mainz, Germany
| | - Iris Marquardt
- Department of Child Neurology, Children's Hospital Oldenburg, Oldenburg, Germany
| | - Peter Freisinger
- Children's Hospital Reutlingen, Klinikum am Steinenberg, Reutlingen, Germany
| | - Johannes Krämer
- Department of Pediatric and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Andrea Dieckmann
- Center for Inborn Metabolic Disorders, Department of Neuropediatrics, Jena University Hospital, Jena, Germany
| | - Natalie Weinhold
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Center of Chronically Sick Children, Berlin, Germany
| | | | - Esther M Maier
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Georg F Hoffmann
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sven F Garbade
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
14
|
Ding S, Ling S, Liang L, Qiu W, Zhang H, Chen T, Zhan X, Xu F, Gu X, Han L. Late-onset cblC defect: clinical, biochemical and molecular analysis. Orphanet J Rare Dis 2023; 18:306. [PMID: 37770946 PMCID: PMC10536707 DOI: 10.1186/s13023-023-02890-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND cblC defect is the most common type of methylmalonic acidemia in China. Patients with late-onset form (>1 year) are often misdiagnosed due to heterogeneous symptoms. This study aimed to describe clinical characteristics and evaluate long-term outcomes of Chinese patients with late-onset cblC defect. METHODS A total of 85 patients with late-onset cblC defect were enrolled. Clinical data, including manifestations, metabolites, molecular diagnosis, treatment and outcome, were summarized and analyzed. RESULTS The age of onset ranged from 2 to 32.8 years old (median age 8.6 years, mean age 9.4 years). The time between first symptoms and diagnosis ranged from a few days to 20 years (median time 2 months, mean time 20.7 months). Neuropsychiatric symptoms were presented as first symptoms in 68.2% of cases, which were observed frequently in schoolchildren or adolescents. Renal involvement and cardiovascular disease were observed in 20% and 8.2% of cases, respectively, which occurred with the highest prevalence in preschool children. Besides the initial symptoms, the disease progressed in most patients and cognitive decline became the most frequent symptom overall. The levels of propionylcarnitine, propionylcarnitine / acetylcarnitine ratio, methylmalonic acid, methylcitric acid and homocysteine, were decreased remarkably after treatment (P<0.001). Twenty-four different mutations of MMACHC were identified in 78 patients, two of which were novel. The c.482G>A variant was the most frequent mutated allele in this cohort (25%). Except for 16 patients who recovered completely, the remaining patients were still left with varying degrees of sequelae in a long-term follow-up. The available data from 76 cases were analyzed by univariate analysis and multivariate logistic regression analysis, and the results showed that the time from onset to diagnosis (OR = 1.025, P = 0. 024) was independent risk factors for poor outcomes. CONCLUSIONS The diagnosis of late-onset cblC defect is often delayed due to poor awareness of its various and nonspecific symptoms, thus having an adverse effect on the prognosis. It should be considered in patients with unexplained neuropsychiatric and other conditions such as renal involvement, cardiovascular diseases or even multiple organ damage. The c.482G>A variant shows the highest frequency in these patients. Prompt treatment appears to be beneficial.
Collapse
Affiliation(s)
- Si Ding
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Shiying Ling
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Lili Liang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Ting Chen
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Xia Zhan
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Feng Xu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric Research, Shanghai Jiao Tong University School of Medicine, 1665 KongJiang Road, Shanghai, 200092, China.
| |
Collapse
|
15
|
Schnabel E, Kölker S, Gleich F, Feyh P, Hörster F, Haas D, Fang-Hoffmann J, Morath M, Gramer G, Röschinger W, Garbade SF, Hoffmann GF, Okun JG, Mütze U. Combined Newborn Screening Allows Comprehensive Identification also of Attenuated Phenotypes for Methylmalonic Acidurias and Homocystinuria. Nutrients 2023; 15:3355. [PMID: 37571294 PMCID: PMC10420807 DOI: 10.3390/nu15153355] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Newborn screening (NBS) programs are effective measures of secondary prevention and have been successively extended. We aimed to evaluate NBS for methylmalonic acidurias, propionic acidemia, homocystinuria, remethylation disorders and neonatal vitamin B12 deficiency, and report on the identification of cofactor-responsive disease variants. This evaluation of the previously established combined multiple-tier NBS algorithm is part of the prospective pilot study "NGS2025" from August 2016 to September 2022. In 548,707 newborns, the combined algorithm was applied and led to positive NBS results in 458 of them. Overall, 166 newborns (prevalence 1: 3305) were confirmed (positive predictive value: 0.36); specifically, methylmalonic acidurias (N = 5), propionic acidemia (N = 4), remethylation disorders (N = 4), cystathionine beta-synthase (CBS) deficiency (N = 1) and neonatal vitamin B12 deficiency (N = 153). The majority of the identified newborns were asymptomatic at the time of the first NBS report (total: 161/166, inherited metabolic diseases: 9/14, vitamin B12 deficiency: 153/153). Three individuals were cofactor-responsive (methylmalonic acidurias: 2, CBS deficiency: 1), and could be treated by vitamin B12, vitamin B6 respectively, only. In conclusion, the combined NBS algorithm is technically feasible, allows the identification of attenuated and severe disease courses and can be considered to be evaluated for inclusion in national NBS panels.
Collapse
Affiliation(s)
- Elena Schnabel
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Florian Gleich
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Patrik Feyh
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Friederike Hörster
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Dorothea Haas
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Junmin Fang-Hoffmann
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Marina Morath
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Gwendolyn Gramer
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
- Department for Inborn Metabolic Diseases, University Children’s Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wulf Röschinger
- Labor Becker MVZ GbR, Newborn Screening Unit, 81671 Munich, Germany
| | - Sven F. Garbade
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Georg F. Hoffmann
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Jürgen G. Okun
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| | - Ulrike Mütze
- Division of Child Neurology and Metabolic Medicine, Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany; (E.S.); (J.G.O.)
| |
Collapse
|
16
|
Sen K, Burrage LC, Chapman KA, Ginevic I, Mazariegos GV, Graham BH. Solid organ transplantation in methylmalonic acidemia and propionic acidemia: A points to consider statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2023; 25:100337. [PMID: 36534118 DOI: 10.1016/j.gim.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Washington, DC
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX
| | - Kimberly A Chapman
- Rare Disease Institute, Children's National Hospital, Washington, DC; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Ilona Ginevic
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - George V Mazariegos
- Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Brett H Graham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | -
- American College of Medical Genetics and Genomics, Bethesda, MD
| |
Collapse
|
17
|
Chen T, Gao Y, Zhang S, Wang Y, Sui C, Yang L. Methylmalonic acidemia: Neurodevelopment and neuroimaging. Front Neurosci 2023; 17:1110942. [PMID: 36777632 PMCID: PMC9909197 DOI: 10.3389/fnins.2023.1110942] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Methylmalonic acidemia (MMA) is a genetic disease of abnormal organic acid metabolism, which is one of the important factors affecting the survival rate and quality of life of newborns or infants. Early detection and diagnosis are particularly important. The diagnosis of MMA mainly depends on clinical symptoms, newborn screening, biochemical detection, gene sequencing and neuroimaging diagnosis. The accumulation of methylmalonic acid and other metabolites in the body of patients causes brain tissue damage, which can manifest as various degrees of intellectual disability and severe neurological dysfunction. Neuroimaging examination has important clinical significance in the diagnosis and prognosis of MMA. This review mainly reviews the etiology, pathogenesis, and nervous system development, especially the neuroimaging features of MMA.
Collapse
Affiliation(s)
- Tao Chen
- Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yian Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shengdong Zhang
- Department of Radiology, Shandong Yinan People’s Hospital, Linyi, Shandong, China
| | - Yuanyuan Wang
- Department of Radiology, Binzhou Medical University, Yantai, Shandong, China
| | - Chaofan Sui
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Linfeng Yang
- Department of Radiology, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China,*Correspondence: Linfeng Yang,
| |
Collapse
|
18
|
Forny P, Hörster F, Baumgartner MR, Kölker S, Boy N. How guideline development has informed clinical research for organic acidurias (et vice versa). J Inherit Metab Dis 2023; 46:520-535. [PMID: 36591944 DOI: 10.1002/jimd.12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Organic acidurias, such as glutaric aciduria type 1 (GA1), methylmalonic (MMA), and propionic aciduria (PA) are a prominent group of inherited metabolic diseases involving accumulation of eponymous metabolites causing endogenous intoxication. For all three conditions, guidelines for diagnosis and management have been developed and revised over the last years, resulting in three revisions for GA1 and one revision for MMA/PA. The process of clinical guideline development in rare metabolic disorders is challenged by the scarcity and limited quality of evidence available. The body of literature is often fragmentary and where information is present, it is usually derived from small sample sizes. Therefore, the development of guidelines for GA1 and MMA/PA was initially confronted with a poor evidence foundation that hindered formulation of concrete recommendations in certain contexts, triggering specific research projects and initiation of longitudinal, prospective observational studies using patient registries. Reversely, these observational studies contributed to evaluate the value of newborn screening, phenotypic diversities, and treatment effects, thus significantly improving the quality of evidence and directly influencing formulation and evidence levels of guideline recommendations. Here, we present insights into interactions between guideline development and (pre)clinical research for GA1 and MMA/PA, and demonstrate how guidelines gradually improved from revision to revision. We describe how clinical studies help to unravel the relative impact of therapeutic interventions on outcome and conclude that despite new and better quality of research data over the last decades, significant shortcomings of evidence regarding prognosis and treatment remain. It appears that development of clinical guidelines can directly help to guide research, and vice versa.
Collapse
Affiliation(s)
- Patrick Forny
- Division of Metabolism and Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Friederike Hörster
- Division of Neuropaediatrics and Metabolic Medicine, Department of General Paediatrics, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Stefan Kölker
- Division of Neuropaediatrics and Metabolic Medicine, Department of General Paediatrics, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Nikolas Boy
- Division of Neuropaediatrics and Metabolic Medicine, Department of General Paediatrics, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Martín-Rivada Á, Cambra Conejero A, Martín-Hernández E, Moráis López A, Bélanger-Quintana A, Cañedo Villarroya E, Quijada-Fraile P, Bellusci M, Chumillas Calzada S, Bergua Martínez A, Stanescu S, Martínez-Pardo Casanova M, Ruíz-Sala P, Ugarte M, Pérez González B, Pedrón-Giner C. Newborn screening for propionic, methylmalonic acidemia and vitamin B12 deficiency. Analysis of 588,793 newborns. J Pediatr Endocrinol Metab 2022; 35:1223-1231. [PMID: 36112821 DOI: 10.1515/jpem-2022-0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/13/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES We present the results of our experience in the diagnosis and follow up of the positive cases for propionic, methylmalonic acidemias and cobalamin deficiencies (PA/MMA/MMAHC) since the Expanded Newborn Screening was implemented in Madrid Region. METHODS Dried blood samples were collected 48 h after birth. Amino acids and acylcarnitines were quantitated by MS/MS. Newborns with alterations were referred to the clinical centers for follow-up. Biochemical and molecular genetic studies for confirmation of a disease were performed. RESULTS In the period 2011-2020, 588,793 children were screened, being 953 of them were referred to clinical units for abnormal result (192 for elevated C3 levels). Among them, 88 were false positive cases, 85 maternal vitamin B12 deficiencies and 19 were confirmed to suffer an IEM (8 PA, 4 MMA, 7 MMAHC). Ten out 19 cases displayed symptoms before the NBS results (6 PA, 1 MMA, 3 MMAHC). C3, C16:1OH+C17 levels and C3/C2 and C3/Met ratios were higher in newborns with PA/MMA/MMAHC. Cases diagnosed with B12 deficiency had mean B12 levels of 187.6 ± 76.9 pg/mL and their mothers 213.7 ± 95.0; 5% of the mothers were vegetarian or had poor eating while 15% were diagnosed of pernicious anemia. Newborns and their mothers received treatment with B12 with different posology, normalizing their levels and the secondary alterations disappeared. CONCLUSIONS Elevated C3 are a frequent cause for abnormal result in newborn screening with a high rate of false positive cases. Presymptomatic diagnosis of most of PA and some MMA/MMAHC is difficult. Vitamin B12 deficiency secondary to maternal deprivation is frequent with an heterogenous clinical and biochemical spectrum.
Collapse
Affiliation(s)
- Álvaro Martín-Rivada
- Sección de Gastroenterología y Nutrición, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Ana Cambra Conejero
- Laboratorio de Cribado Neonatal de la Comunidad de Madrid, Servicio de Bioquímica Clínica, Hospital General Universitario GregorioMarañón, Madrid, Spain
| | - Elena Martín-Hernández
- Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias, Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Madrid, Spain
| | - Ana Moráis López
- Unidad de Nutrición Infantil y Enfermedades Metabólicas, Hospital Universitario La Paz, Madrid, Spain
| | - Amaya Bélanger-Quintana
- Centro de Referencia Nacional (CSUR) en Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Elvira Cañedo Villarroya
- Sección de Gastroenterología y Nutrición, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Pilar Quijada-Fraile
- Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias, Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Madrid, Spain
| | - Marcelo Bellusci
- Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias, Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Madrid, Spain
| | - Silvia Chumillas Calzada
- Unidad de Enfermedades Mitocondriales-Metabólicas Hereditarias, Centro de Referencia Nacional (CSUR) y Europeo (MetabERN) en Enfermedades Metabólicas, Madrid, Spain
| | - Ana Bergua Martínez
- Unidad de Nutrición Infantil y Enfermedades Metabólicas, Hospital Universitario La Paz, Madrid, Spain
| | - Sinziana Stanescu
- Centro de Referencia Nacional (CSUR) en Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | - Pedro Ruíz-Sala
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, IdiPAZ, CIBERER, Madrid, Spain
| | - Magdalena Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, IdiPAZ, CIBERER, Madrid, Spain
| | - Belén Pérez González
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, IdiPAZ, CIBERER, Madrid, Spain
| | - Consuelo Pedrón-Giner
- Sección de Gastroenterología y Nutrición, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| |
Collapse
|
20
|
Hertzog A, Selvanathan A, Devanapalli B, Ho G, Bhattacharya K, Tolun AA. A narrative review of metabolomics in the era of "-omics": integration into clinical practice for inborn errors of metabolism. Transl Pediatr 2022; 11:1704-1716. [PMID: 36345452 PMCID: PMC9636448 DOI: 10.21037/tp-22-105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Traditional targeted metabolomic investigations identify a pre-defined list of analytes in samples and have been widely used for decades in the diagnosis and monitoring of inborn errors of metabolism (IEMs). Recent technological advances have resulted in the development and maturation of untargeted metabolomics: a holistic, unbiased, analytical approach to detecting metabolic disturbances in human disease. We aim to provide a summary of untargeted metabolomics [focusing on tandem mass spectrometry (MS-MS)] and its application in the field of IEMs. METHODS Data for this review was identified through a literature search using PubMed, Google Scholar, and personal repositories of articles collected by the authors. Findings are presented within several sections describing the metabolome, the current use of targeted metabolomics in the diagnostic pathway of patients with IEMs, the more recent integration of untargeted metabolomics into clinical care, and the limitations of this newly employed analytical technique. KEY CONTENT AND FINDINGS Untargeted metabolomic investigations are increasingly utilized in screening for rare disorders, improving understanding of cellular and subcellular physiology, discovering novel biomarkers, monitoring therapy, and functionally validating genomic variants. Although the untargeted metabolomic approach has some limitations, this "next generation metabolic screening" platform is becoming increasingly affordable and accessible. CONCLUSIONS When used in conjunction with genomics and the other promising "-omic" technologies, untargeted metabolomics has the potential to revolutionize the diagnostics of IEMs (and other rare disorders), improving both clinical and health economic outcomes.
Collapse
Affiliation(s)
- Ashley Hertzog
- NSW Biochemical Genetics Service, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Arthavan Selvanathan
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Beena Devanapalli
- NSW Biochemical Genetics Service, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Gladys Ho
- Sydney Genome Diagnostics, The Children's Hospital at Westmead, Westmead, NSW, Australia.,Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Kaustuv Bhattacharya
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Westmead, NSW, Australia.,Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Adviye Ayper Tolun
- NSW Biochemical Genetics Service, The Children's Hospital at Westmead, Westmead, NSW, Australia.,Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
21
|
Marelli C, Fouilhoux A, Benoist J, De Lonlay P, Guffon‐Fouilhoux N, Brassier A, Cano A, Chabrol B, Pennisi A, Schiff M, Acquaviva C, Murphy E, Servais A, Lachmann R. Very long-term outcomes in 23 patients with cblA type methylmalonic acidemia. J Inherit Metab Dis 2022; 45:937-951. [PMID: 35618652 PMCID: PMC9540587 DOI: 10.1002/jimd.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVES To present the very long-term follow up of patients with cobalamin A (cblA) deficiency. METHODS A retrospective case series of adult (>16 years) patients with molecular or enzymatic diagnosis of cblA deficiency. RESULTS We included 23 patients (mean age: 27 ± 7.6 years; mean follow-up: 24.9 ± 7.6 years). Disease onset was mostly pediatric (78% < 1 year, median = 4 months) with acute neurologic deterioration (65%). Eight patients presented with chronic symptoms, and one had an adult-onset mild cblA deficiency. Most of the patients (61%) were initially classified as vitamin B12-unresponsive methylmalonic aciduria (MMA); in vitro B12 responsiveness was subsequently found in all the tested patients (n = 13). Initial management consisted of protein restriction (57%), B12 (17%), or both (26%). The main long-term problems were intellectual disability (39%) and renal failure (30%). However, 56.5% of the patients were living independently. Intellectual disability was equally distributed among the initial treatment groups, while renal failure (moderate and beginning at the age of 38 years) was present in only one out of seven patients initially treated with B12. CONCLUSIONS We provide a detailed picture of the long-term outcome of a series of adult cblA patients, mostly diagnosed before the enzymatic and molecular era. We confirm that about 35% of the patients do not present acutely, underlining the importance of measuring MMA in any case of unexplained chronic renal failure, intellectual disability, or growth delay. In addition, we describe a patient with a milder adult-onset form. Early B12 supplementation seems to protect from severe renal insufficiency.
Collapse
Affiliation(s)
- Cecilia Marelli
- Expert Centre for Neurogenetic Diseases and Adult Mitochondrial and Metabolic DiseasesUniversity Hospital of MontpellierMontpellierFrance
- MMDNUniversity of Montpellier, Ecole Pratique des Hautes Etudes, InsermMontpellierFrance
| | - Alain Fouilhoux
- Reference Center for Inborn Error of MetabolismHôpital Femme Mère Enfant, Hospices Civils de LyonBronFrance
| | - Jean‐Francois Benoist
- Inserm UMR_S1163Institut ImagineParisFrance
- Biochemistry DepartmentHôpital Necker Enfants Malades, Assistance Publique – Hôpitaux de ParisParisFrance
| | - Pascale De Lonlay
- Necker Hospital, Assistance Publique – Hôpitaux de Paris, Reference Center for Inborn Error of Metabolism and Filière G2M, Pediatrics DepartmentUniversity of ParisParisFrance
| | - Nathalie Guffon‐Fouilhoux
- Reference Center for Inborn Error of MetabolismHôpital Femme Mère Enfant, Hospices Civils de LyonBronFrance
| | - Anais Brassier
- Necker Hospital, Assistance Publique – Hôpitaux de Paris, Reference Center for Inborn Error of Metabolism and Filière G2M, Pediatrics DepartmentUniversity of ParisParisFrance
| | - Aline Cano
- Reference Center for Inherited Metabolic Disorders, Assistance Publique Hôpitaux de MarseilleCentre Hospitalier Universitaire de La Timone EnfantsMarseilleFrance
| | - Brigitte Chabrol
- Reference Center for Inherited Metabolic Disorders, Assistance Publique Hôpitaux de MarseilleCentre Hospitalier Universitaire de La Timone EnfantsMarseilleFrance
| | - Alessandra Pennisi
- Necker Hospital, Assistance Publique – Hôpitaux de Paris, Reference Center for Inborn Error of Metabolism and Filière G2M, Pediatrics DepartmentUniversity of ParisParisFrance
| | - Manuel Schiff
- Inserm UMR_S1163Institut ImagineParisFrance
- Necker Hospital, Assistance Publique – Hôpitaux de Paris, Reference Center for Inborn Error of Metabolism and Filière G2M, Pediatrics DepartmentUniversity of ParisParisFrance
| | - Cecile Acquaviva
- Center for Inherited Metabolic Disorders and Neonatal Screening, Est Biology and Pathology Department, Groupement Hospitalier Est (GHE)Hospices Civils de LyonBronFrance
| | - Elaine Murphy
- C. Dent Adult Metabolic UnitNational Hospital for Neurology and NeurosurgeryLondonUK
| | - Aude Servais
- Necker Hospital, Assistance Publique – Hôpitaux de Paris, Reference Center for Inborn Error of Metabolism and Filière G2M, Pediatrics DepartmentUniversity of ParisParisFrance
- Adult Nephrology and Transplantation DepartmentHôpital Necker Enfants Malades, APHPParisFrance
| | - Robin Lachmann
- C. Dent Adult Metabolic UnitNational Hospital for Neurology and NeurosurgeryLondonUK
| |
Collapse
|
22
|
Waisbren SE. Review of neuropsychological outcomes in isolated methylmalonic acidemia: recommendations for assessing impact of treatments. Metab Brain Dis 2022; 37:1317-1335. [PMID: 35348993 DOI: 10.1007/s11011-022-00954-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/09/2022] [Indexed: 11/29/2022]
Abstract
Methylmalonic acidemia (MMA) due to methylmalonyl-CoA mutase deficiency (OMIM #251,000) is an autosomal recessive disorder of organic acid metabolism associated with life-threatening acute metabolic decompensations and significant neuropsychological deficits. "Isolated" MMA refers to the presence of excess methylmalonic acid without homocysteine elevation. Belonging to this class of disorders are those that involve complete deficiency (mut0) and partial deficiency (mut-) of the methylmalonyl-CoA mutase enzyme and other disorders causing excess methylmalonic acid excretion. These other disorders include enzymatic subtypes related to cobalamin A defect (cblA) (OMIM #25,110), cobalamin B defect (cblB) (OMIM #251,110) and related conditions. Neuropsychological attributes associated with isolated MMA have become more relevant as survival rates increased following improved diagnostic and treatment strategies. Children with this disorder still are at risk for developmental delay, cognitive difficulties and progressive declines in functioning. Mean IQ for all types apart from cblA defect enzymatic subtype is rarely above 85 and much lower for mut0 enzymatic subtype. Identifying psychological domains responsive to improvements in biochemical status is important. This review suggests that processing speed, working memory, language, attention, and quality of life may be sensitive to fluctuations in metabolite levels while IQ and motor skills may be less amenable to change. Due to slower developmental trajectories, Growth Scale Values, Projected Retained Ability Scores and other indices of change need to be incorporated into clinical trial study protocols. Neuropsychologists are uniquely qualified to provide a differentiated picture of cognitive, behavioral and emotional consequences of MMA and analyze benefits or shortcomings of novel treatments.
Collapse
Affiliation(s)
- Susan E Waisbren
- Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Liu Y, Chen Z, Dong H, Ding Y, He R, Kang L, Li D, Shen M, Jin Y, Zhang Y, Song J, Tian Y, Cao Y, Liang D, Yang Y. Analysis of the relationship between phenotypes and genotypes in 60 Chinese patients with propionic acidemia: a fourteen-year experience at a tertiary hospital. Orphanet J Rare Dis 2022; 17:135. [PMID: 35331292 PMCID: PMC8944130 DOI: 10.1186/s13023-022-02271-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/20/2022] [Indexed: 11/21/2022] Open
Abstract
Background Propionic acidemia is a severe inherited metabolic disorder, caused by the deficiency of propionyl-CoA carboxylase which encoded by the PCCA and PCCB genes. The aim of the study was to investigate the clinical features and outcomes, molecular epidemiology and phenotype-genotype relationship in Chinese population. Methods We conducted a retrospective study of 60 Chinese patients diagnosed at Peking University First Hospital from 2007 to 2020. Their clinical and laboratory data were reviewed. The next-generation sequencing was conducted on blood samples from 58 patients. Results Only 5 (8.3%) patients were identified by newborn screening. In the rest 55 patients, 25 had early-onset (≤ 3 months) disease and 30 had late-onset (> 3 months) disease. Neurological abnormalities were the most frequent complications. Five cases detected by newborn screening had basically normal development. Nine (15%) cases died in our cohort. 24 patients (41.4%) harbored PCCA variants, and 34 (58.6%) harbored PCCB variants. 30 (11 reported and 19 novel) variants in PCCA and 28 (18 reported and 10 novel) variants in PCCB mere identified. c.2002G>A and c.937C>T in PCCA, and c.838dupC in PCCB were the most common variants in this cohort, with the frequency of 13.9% (6/44 alleles), 13.9% (6/44 alleles) and 12.5% (8/64 alleles), respectively. There was no difference in clinical features and outcomes between patients with PCCA and PCCB variants. Certain variants with high frequencies and homozygotes may be associated with early-onset or late-onset propionic acidemia. Conclusions Although the genotype–phenotype correlation is still unclear, certain variants seemed to be related to early-onset or late-onset propionic acidemia. Our study further delineated the complex clinical manifestations of propionic acidemia and expanded the spectrum of gene variants associated with propionic acidemia. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02271-3.
Collapse
Affiliation(s)
- Yi Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.,Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zhehui Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Hui Dong
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yuan Ding
- Department of Endocrinology and Genetic, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Ruxuan He
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Lulu Kang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dongxiao Li
- Department of Endocrinology and Genetic, Henan Children's Hospital, Zhengzhou, 450053, China
| | - Ming Shen
- Translational Medicine Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ying Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yao Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Jinqing Song
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yaping Tian
- Translational Medicine Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yongtong Cao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Desheng Liang
- School of Life Sciences, Central South University, Changsha, 410000, China.
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
24
|
Guilder LL, Kronick JB. Organic Acidemias. Pediatr Rev 2022; 43:123-134. [PMID: 35229111 DOI: 10.1542/pir.2020-000562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Laura L Guilder
- Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jonathan B Kronick
- Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Ling S, Wu S, Shuai R, Yu Y, Qiu W, Wei H, Yang C, Xu P, Zou H, Feng J, Niu T, Hu H, Zhang H, Liang L, Lu D, Gong Z, Zhan X, Ji W, Gu X, Han L. The Follow-Up of Chinese Patients in cblC Type Methylmalonic Acidemia Identified Through Expanded Newborn Screening. Front Genet 2022; 13:805599. [PMID: 35242167 PMCID: PMC8886223 DOI: 10.3389/fgene.2022.805599] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/21/2022] [Indexed: 11/18/2022] Open
Abstract
Objective: The cblC type of combined methylmalonic acidemia and homocystinuria, an inherited disorder with variable phenotypes, is included in newborn screening (NBS) programs at multiple newborn screening centers in China. The present study aimed to investigate the long-term clinical benefits of screening individual. Methods: A national, retrospective multi-center study of infants with confirmed cblC defect identified by NBS between 2004 and 2020 was conducted. We collected a large cohort of 538 patients and investigated their clinical data in detail, including disease onset, biochemical metabolites, and gene variation, and explored different factors on the prognosis. Results: The long-term outcomes of all patients were evaluated, representing 44.6% for poor outcomes. In our comparison of patients with already occurring clinical signs before treatment to asymptomatic ones, the incidence of intellectual impairment, movement disorders, ocular complications, hydrocephalus, and death were significantly different (p < 0.01). The presence of disease onset [Odd ratio (OR) 12.39, 95% CI 5.15–29.81; p = 0.000], variants of c.609G>A (OR 2.55, 95% CI 1.49–4.35; p = 0.001), and c.567dupT (OR 2.28, 95% CI 1.03–5.05; p = 0.042) were independently associated with poor outcomes, especially for neurodevelopmental deterioration. Conclusion: NBS, avoiding major disease-related events and allowing an earlier treatment initiation, appeared to have protective effects on the prognosis of infants with cblC defect.
Collapse
Affiliation(s)
- Shiying Ling
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengnan Wu
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Ruixue Shuai
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Yu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Wei
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Chiju Yang
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Peng Xu
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Hui Zou
- Center of Neonatal Disease Screening, Jinan Maternal and Child Health Care Hospital, Jinan, China
| | - Jizhen Feng
- Center of Neonatal Disease Screening, Shijiazhuang Maternal and Child Health Care Hospital, Shijiazhuang, China
| | - Tingting Niu
- Center of Neonatal Disease Screening, Shandong Maternal and Child Health Care Hospital, Jinan, China
| | - Haili Hu
- Center of Neonatal Disease Screening, Hefei Maternal and Child Health Care Hospital, Hefei, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lili Liang
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Deyun Lu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuwen Gong
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Zhan
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjun Ji
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lianshu Han
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Lianshu Han,
| |
Collapse
|
26
|
Kölker S, Gleich F, Mütze U, Opladen T. Rare Disease Registries Are Key to Evidence-Based Personalized Medicine: Highlighting the European Experience. Front Endocrinol (Lausanne) 2022; 13:832063. [PMID: 35317224 PMCID: PMC8934440 DOI: 10.3389/fendo.2022.832063] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Rare diseases, such as inherited metabolic diseases, have been identified as a health priority within the European Union more than 20 years ago and have become an integral part of EU health programs and European Reference Networks. Having the potential to pool data, to achieve sufficient sample size, to overcome the knowledge gap on rare diseases and to foster epidemiological and clinical research, patient registries are recognized as key instruments to evidence-based medicine for individuals with rare diseases. Patient registries can be used for multiple purposes, such as (1) describing the natural history and phenotypic diversity of rare diseases, (2) improving case definition and indication to treat, (3) identifying strategies for risk stratification and early prediction of disease severity (4), evaluating the impact of preventive, diagnostic, and therapeutic strategies on individual health, health economics, and the society, and (5) informing guideline development and policy makers. In contrast to clinical trials, patient registries aim to gather real-world evidence and to achieve generalizable results based on patient cohorts with a broad phenotypic spectrum. In order to develop a consistent and sustained framework for rare disease registries, uniform core principles have been formulated and have been formalized through the European Rare Disease Registration Infrastructure. Adherence to these core principles and compliance with the European general data protection regulations ensures that data collected and stored in patient registries can be exchanged and pooled in a protected environment. To illustrate the benefits and limitations of patient registries on rare disease research this review focuses on inherited metabolic diseases.
Collapse
|
27
|
Yu Y, Shuai R, Liang L, Qiu W, Shen L, Wu S, Wei H, Chen Y, Yang C, Xu P, Chen X, Zou H, Feng J, Niu T, Hu H, Ye J, Zhang H, Lu D, Gong Z, Zhan X, Ji W, Gu X, Han L. Different mutations in the MMUT gene are associated with the effect of vitamin B12 in a cohort of 266 Chinese patients with mut-type methylmalonic acidemia: A retrospective study. Mol Genet Genomic Med 2021; 9:e1822. [PMID: 34668645 PMCID: PMC8606212 DOI: 10.1002/mgg3.1822] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND To summarize the relationship between different MMUT gene mutations and the response to vitamin B12 in MMA. METHODS This was a retrospective study of patients diagnosed with mut-type MMA. All patients with mut-type MMA were tested for responsiveness to vitamin B12. RESULTS There were 81, 27, and 158 patients in the completely responsive, partially responsive, and nonresponsive groups, respectively, and the proportions of symptom occurrence were 30/81 (37.0%), 21/27 (77.8%), and 131/158 (82.9%), respectively (p < .001). The median levels of posttreatment propionyl carnitine (C3), C3/acetyl carnitine (C2) ratio in the blood, and methylmalonic acid in the urine were all lower than pretreatment, and the median level of C3/C2 ratio in the completely responsive group was within the normal range. In 266 patients, 144 different mutations in the MMUT gene were identified. Patients with the mutations of c.1663G>A, c.2080C>T, c.1880A>G, c.1208G>A, etc. were completely responsive and with the mutations of c.1741C>T, c.1630_1631GG>TA, c.599T>C, etc. were partially responsive. The proportions of healthy/developmental delay outcomes in the three groups were 63.0%/23.5%, 33.3%/40.7%, and 13.3%/60.1%, respectively (p < .001). CONCLUSION Different mutations in the MMUT gene are associated with the effect of vitamin B12 treatment.
Collapse
Affiliation(s)
- Yue Yu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruixue Shuai
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lili Liang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Linghua Shen
- Department of Pediatric Endocrinology and Genetics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Shengnan Wu
- Department of Pediatric Endocrinology and Genetics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Haiyan Wei
- Department of Pediatric Endocrinology and Genetics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yongxing Chen
- Department of Pediatric Endocrinology and Genetics, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Chiju Yang
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Peng Xu
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Xigui Chen
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Hui Zou
- Center of Neonatal Disease Screening, Jinan Maternal and Child Health Care Hospital, Jinan, China
| | - Jizhen Feng
- Center of Neonatal Disease Screening, Shijiazhuang Maternal and Child Health Care Hospital, Shijiazhuang, China
| | - Tingting Niu
- Center of Neonatal Disease Screening, Shandong Maternal and Child Health Care Hospital, Jinan, China
| | - Haili Hu
- Center of Neonatal Disease Screening, Hefei Maternal and Child Health Care Hospital, Hefei, China
| | - Jun Ye
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Deyun Lu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhuwen Gong
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xia Zhan
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenjun Ji
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Mütze U, Henze L, Gleich F, Lindner M, Grünert SC, Spiekerkoetter U, Santer R, Blessing H, Thimm E, Ensenauer R, Weigel J, Beblo S, Arélin M, Hennermann JB, Marquardt T, Marquardt I, Freisinger P, Krämer J, Dieckmann A, Weinhold N, Keller M, Walter M, Schiergens KA, Maier EM, Hoffmann GF, Garbade SF, Kölker S. Newborn screening and disease variants predict neurological outcome in isovaleric aciduria. J Inherit Metab Dis 2021; 44:857-870. [PMID: 33496032 DOI: 10.1002/jimd.12364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022]
Abstract
Isovaleric aciduria (IVA), a metabolic disease with severe (classic IVA) or attenuated phenotype (mild IVA), is included in newborn screening (NBS) programs worldwide. The long-term clinical benefit of screened individuals, however, is still rarely investigated. A national, prospective, observational, multi-center study of individuals with confirmed IVA identified by NBS between 1998 and 2018 was conducted. Long-term clinical outcomes of 94 individuals with IVA were evaluated, representing 73.4% (for classic IVA: 92.3%) of the German NBS cohort. In classic IVA (N = 24), NBS prevented untimely death except in one individual with lethal neonatal sepsis (3.8%) but did not completely prevent single (N = 10) or recurrent (N = 7) metabolic decompensations, 13 of them occurring already neonatally. IQ (mean ± SD, 90.7 ± 10.1) was mostly normal but below the reference population (P = .0022) and was even lower in individuals with severe neonatal decompensations (IQ 78.8 ± 7.1) compared to those without crises (IQ 94.7 ± 7.5; P = .01). Similar results were obtained for school placement. In contrast, individuals with mild IVA had excellent neurocognitive outcomes (IQ 105.5 ± 15.8; normal school placement) and a benign disease course (no metabolic decompensation, normal hospitalization rate), which did not appear to be impacted by metabolic maintenance therapy. In conclusion, NBS reduces mortality in classic IVA, but does not reliably protect against severe neonatal metabolic decompensations, crucial for favorable neurocognitive outcome. In contrast, individuals with mild IVA had excellent clinical outcomes regardless of metabolic maintenance therapy, questioning their benefit from NBS. Harmonized stratified therapeutic concepts are urgently needed.
Collapse
Affiliation(s)
- Ulrike Mütze
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine and Dietmar Hopp Metabolic Center, University Hospital Heidelberg, Heidelberg, Germany
| | - Lucy Henze
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine and Dietmar Hopp Metabolic Center, University Hospital Heidelberg, Heidelberg, Germany
| | - Florian Gleich
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine and Dietmar Hopp Metabolic Center, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Lindner
- Division of Pediatric Neurology, University Children's Hospital Frankfurt, Frankfurt, Germany
| | - Sarah C Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - René Santer
- Department of Pediatrics, University Medical Centre Eppendorf, Hamburg, Germany
| | - Holger Blessing
- Kinder- und Jugendklinik, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Eva Thimm
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Regina Ensenauer
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Child Nutrition, Max-Rubner-Institut, Karlsruhe, Germany
| | - Johannes Weigel
- Praxis für Kinder- und Jugendmedizin, Endokrinologie und Stoffwechsel, Augsburg, Germany
| | - Skadi Beblo
- Department of Women and Child Health, Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), University Hospitals, University of Leipzig, Leipzig, Germany
| | - Maria Arélin
- Department of Women and Child Health, Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), University Hospitals, University of Leipzig, Leipzig, Germany
| | - Julia B Hennermann
- Villa Metabolica, Department for Pediatric and Adolescent Medicine, Mainz University Medical Center, Mainz, Germany
| | - Thorsten Marquardt
- Department of General Pediatrics, Metabolic Diseases, University Children's Hospital Muenster, Muenster, Germany
| | - Iris Marquardt
- Department of Child Neurology, Children's Hospital Oldenburg, Oldenburg, Germany
| | - Peter Freisinger
- Children's Hospital Reutlingen, Klinikum am Steinenberg, Reutlingen, Germany
| | - Johannes Krämer
- University of Ulm, Department of Pediatric and Adolescent Medicine, Ulm, Germany
| | - Andrea Dieckmann
- Center for Inborn Metabolic Disorders, Department of Neuropediatrics, Jena University Hospital, Jena, Germany
| | - Natalie Weinhold
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Chronically Sick Children, Berlin, Germany
| | - Mareike Keller
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine and Dietmar Hopp Metabolic Center, University Hospital Heidelberg, Heidelberg, Germany
| | - Magdalena Walter
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine and Dietmar Hopp Metabolic Center, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Esther M Maier
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Georg F Hoffmann
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine and Dietmar Hopp Metabolic Center, University Hospital Heidelberg, Heidelberg, Germany
| | - Sven F Garbade
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine and Dietmar Hopp Metabolic Center, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine and Dietmar Hopp Metabolic Center, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
29
|
Current Perspectives on Neonatal Screening for Propionic Acidemia in Japan: An Unexpectedly High Incidence of Patients with Mild Disease Caused by a Common PCCB Variant. Int J Neonatal Screen 2021; 7:ijns7030035. [PMID: 34203287 PMCID: PMC8293189 DOI: 10.3390/ijns7030035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Propionic acidemia (PA) is a disorder of organic acid metabolism which typically presents with acute encephalopathy-like symptoms associated with metabolic acidosis and hyperammonemia during the neonatal period. The estimated incidence of symptomatic PA in Japan is 1/400,000. The introduction of neonatal screening using tandem mass spectrometry has revealed a far higher disease frequency of approximately 1/45,000 live births due to a prevalent variant of c.1304T>C (p.Y435C) in PCCB, which codes β-subunit of propionyl-CoA carboxylase. Our questionnaire-based follow-up study reveals that most of these patients remain asymptomatic. However, reports on symptomatic patients exhibiting cardiac complications such as cardiomyopathy and QT prolongation have been increasing. Moreover, there were even cases in which these cardiac complications were the only symptoms related to PA. A currently ongoing study is investigating the risk of cardiac complications in patients with neonatal screening-detected PA caused by this common variant.
Collapse
|
30
|
Forny P, Hörster F, Ballhausen D, Chakrapani A, Chapman KA, Dionisi‐Vici C, Dixon M, Grünert SC, Grunewald S, Haliloglu G, Hochuli M, Honzik T, Karall D, Martinelli D, Molema F, Sass JO, Scholl‐Bürgi S, Tal G, Williams M, Huemer M, Baumgartner MR. Guidelines for the diagnosis and management of methylmalonic acidaemia and propionic acidaemia: First revision. J Inherit Metab Dis 2021; 44:566-592. [PMID: 33595124 PMCID: PMC8252715 DOI: 10.1002/jimd.12370] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
Isolated methylmalonic acidaemia (MMA) and propionic acidaemia (PA) are rare inherited metabolic diseases. Six years ago, a detailed evaluation of the available evidence on diagnosis and management of these disorders has been published for the first time. The article received considerable attention, illustrating the importance of an expert panel to evaluate and compile recommendations to guide rare disease patient care. Since that time, a growing body of evidence on transplant outcomes in MMA and PA patients and use of precursor free amino acid mixtures allows for updates of the guidelines. In this article, we aim to incorporate this newly published knowledge and provide a revised version of the guidelines. The analysis was performed by a panel of multidisciplinary health care experts, who followed an updated guideline development methodology (GRADE). Hence, the full body of evidence up until autumn 2019 was re-evaluated, analysed and graded. As a result, 21 updated recommendations were compiled in a more concise paper with a focus on the existing evidence to enable well-informed decisions in the context of MMA and PA patient care.
Collapse
Affiliation(s)
- Patrick Forny
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
| | - Friederike Hörster
- Division of Neuropediatrics and Metabolic MedicineUniversity Hospital HeidelbergHeidelbergGermany
| | - Diana Ballhausen
- Paediatric Unit for Metabolic Diseases, Department of Woman‐Mother‐ChildUniversity Hospital LausanneLausanneSwitzerland
| | - Anupam Chakrapani
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust and Institute for Child HealthNIHR Biomedical Research Center (BRC), University College LondonLondonUK
| | - Kimberly A. Chapman
- Rare Disease Institute, Children's National Health SystemWashingtonDistrict of ColumbiaUSA
| | - Carlo Dionisi‐Vici
- Division of Metabolism, Department of Pediatric SpecialtiesBambino Gesù Children's HospitalRomeItaly
| | - Marjorie Dixon
- Dietetics, Great Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Sarah C. Grünert
- Department of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre‐University of FreiburgFaculty of MedicineFreiburgGermany
| | - Stephanie Grunewald
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust and Institute for Child HealthNIHR Biomedical Research Center (BRC), University College LondonLondonUK
| | - Goknur Haliloglu
- Department of Pediatrics, Division of Pediatric NeurologyHacettepe University Children's HospitalAnkaraTurkey
| | - Michel Hochuli
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, InselspitalBern University Hospital and University of BernBernSwitzerland
| | - Tomas Honzik
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Daniela Karall
- Department of Paediatrics I, Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
| | - Diego Martinelli
- Division of Metabolism, Department of Pediatric SpecialtiesBambino Gesù Children's HospitalRomeItaly
| | - Femke Molema
- Department of Pediatrics, Center for Lysosomal and Metabolic DiseasesErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Jörn Oliver Sass
- Department of Natural Sciences & Institute for Functional Gene Analytics (IFGA)Bonn‐Rhein Sieg University of Applied SciencesRheinbachGermany
| | - Sabine Scholl‐Bürgi
- Department of Paediatrics I, Inherited Metabolic DisordersMedical University of InnsbruckInnsbruckAustria
| | - Galit Tal
- Metabolic Unit, Ruth Rappaport Children's HospitalRambam Health Care CampusHaifaIsrael
| | - Monique Williams
- Department of Pediatrics, Center for Lysosomal and Metabolic DiseasesErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Martina Huemer
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
- Department of PaediatricsLandeskrankenhaus BregenzBregenzAustria
| | - Matthias R. Baumgartner
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
| |
Collapse
|
31
|
Molema F, Martinelli D, Hörster F, Kölker S, Tangeraas T, de Koning B, Dionisi‐Vici C, Williams M. Liver and/or kidney transplantation in amino and organic acid-related inborn errors of metabolism: An overview on European data. J Inherit Metab Dis 2021; 44:593-605. [PMID: 32996606 PMCID: PMC8247334 DOI: 10.1002/jimd.12318] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/29/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND This study provides a general overview on liver and/or kidney transplantation in patients with an amino and organic acid-related disorder (AOA) with the aim to investigate patient characteristics and global outcome in Europe. This study was an initiative of the E-IMD and the AOA subnetwork of MetabERN. METHODS A questionnaire was sent to all clinically active European Society for the Study of Inborn Errors of Metabolism (SSIEM) members. The questionnaire focused on transplanted individuals with methylmalonic acidemia (MMA), propionic acidemia (PA), maple syrup urine disease (MSUD), and urea-cycle disorders (UCDs). RESULTS We identified 280 transplanted AOA patients (liver transplantation in 20 MMA, 37 PA, 47 MSUD, and 111 UCD patients, kidney or combined liver and kidney transplantation in 57 MMA patients and undefined transplantation type in 8 MMA patients), followed by 51 metabolic centers. At a median follow-up of 3.5 years, posttransplant survival ranged between 78% and 100%, being the lowest in PA patients. Overall, the risk of mortality was highest within 14 days posttransplantation. Neurological complications were mainly reported in Mut0 type MMA (n = 8). Nonneurological complications occurred in MMA (n = 28), PA (n = 7), and UCD (n = 14) patients, while it was virtually absent in MSUD patients. Only 116/280 patients were psychologically tested. In all, except MSUD patients, the intelligence quotient (IQ) remained unchanged in the majority (76/94, 81%). Forty-one percentage (9/22) of MSUD patient showed improved IQ. CONCLUSION The survival in AOA individuals receiving liver and/or kidney transplantation seems satisfactory. Evidence-based guidelines, systematic data collection, and improved cooperation between transplantation centers and European Reference Networks are indispensable to improve patient care and outcomes.
Collapse
Affiliation(s)
- Femke Molema
- Department of Pediatrics, Center for Lysosomal and Metabolic DiseasesErasmus MC University Medical Center, AOA subgroup MetabERNRotterdamThe Netherlands
- Subnetwork for Amino and Organic Acid‐Related Disorders (AOA)European Reference Network for Hereditary Metabolic Disorders (MetabERN)UdineItaly
| | - Diego Martinelli
- Subnetwork for Amino and Organic Acid‐Related Disorders (AOA)European Reference Network for Hereditary Metabolic Disorders (MetabERN)UdineItaly
- U.O.C. Patologia MetabolicaOspedale Pediatrico Bambino Gesù, AOA Subgroup MetabERNRomeItaly
| | - Friederike Hörster
- Subnetwork for Amino and Organic Acid‐Related Disorders (AOA)European Reference Network for Hereditary Metabolic Disorders (MetabERN)UdineItaly
- Centre for Child and Adolescent Medicine, Division of Neuropaediatrics and Metabolic MedicineUniversity Hospital Heidelberg, AOA Subgroup MetabERNHeidelbergGermany
| | - Stefan Kölker
- Subnetwork for Amino and Organic Acid‐Related Disorders (AOA)European Reference Network for Hereditary Metabolic Disorders (MetabERN)UdineItaly
- Centre for Child and Adolescent Medicine, Division of Neuropaediatrics and Metabolic MedicineUniversity Hospital Heidelberg, AOA Subgroup MetabERNHeidelbergGermany
| | - Trine Tangeraas
- Subnetwork for Amino and Organic Acid‐Related Disorders (AOA)European Reference Network for Hereditary Metabolic Disorders (MetabERN)UdineItaly
- Department of Paediatric and Adolescent Medicine, AOA subgroup MetabERNOslo University Hospital RikshospitaletOsloNorway
| | - Barbara de Koning
- Department of Paediatric Gastro‐EnterologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Carlo Dionisi‐Vici
- Subnetwork for Amino and Organic Acid‐Related Disorders (AOA)European Reference Network for Hereditary Metabolic Disorders (MetabERN)UdineItaly
- U.O.C. Patologia MetabolicaOspedale Pediatrico Bambino Gesù, AOA Subgroup MetabERNRomeItaly
| | - Monique Williams
- Department of Pediatrics, Center for Lysosomal and Metabolic DiseasesErasmus MC University Medical Center, AOA subgroup MetabERNRotterdamThe Netherlands
- Subnetwork for Amino and Organic Acid‐Related Disorders (AOA)European Reference Network for Hereditary Metabolic Disorders (MetabERN)UdineItaly
| | | |
Collapse
|
32
|
Opladen T, Gleich F, Kozich V, Scarpa M, Martinelli D, Schaefer F, Jeltsch K, Juliá-Palacios N, García-Cazorla Á, Dionisi-Vici C, Kölker S. U-IMD: the first Unified European registry for inherited metabolic diseases. Orphanet J Rare Dis 2021; 16:95. [PMID: 33602304 PMCID: PMC7893973 DOI: 10.1186/s13023-021-01726-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/03/2021] [Indexed: 11/21/2022] Open
Abstract
Background Following the broad application of new analytical methods, more and more pathophysiological processes in previously unknown diseases have been elucidated. The spectrum of clinical presentation of rare inherited metabolic diseases (IMDs) is broad and ranges from single organ involvement to multisystemic diseases. With the aim of overcoming the limited knowledge about the natural course, current diagnostic and therapeutic approaches, the project has established the first unified patient registry for IMDs that fully meets the requirements of the European Infrastructure for Rare Diseases (ERDRI). Results In collaboration with the European Reference Network for Rare Hereditary Metabolic Disorders (MetabERN), the Unified European registry for Inherited Metabolic Diseases (U-IMD) was established to collect patient data as an observational, non-interventional natural history study. Following the recommendations of the ERDRI the U-IMD registry uses common data elements to define the IMDs, report the clinical phenotype, describe the biochemical markers and to capture the drug treatment. Until today, more than 1100 IMD patients have been registered. Conclusion The U-IMD registry is the first observational, non-interventional patient registry that encompasses all known IMDs. Full semantic interoperability for other registries has been achieved, as demonstrated by the use of a minimum common core data set for equivalent description of metabolic patients in U-IMD and in the patient registry of the European Rare Kidney Disease Reference Network (ERKNet). In conclusion, the U-IMD registry will contribute to a better understanding of the long-term course of IMDs and improved patients care by understanding the natural disease course and by enabling an optimization of diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Thomas Opladen
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, Centre for Child and Adolescent Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| | - Florian Gleich
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, Centre for Child and Adolescent Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Viktor Kozich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University - First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Maurizio Scarpa
- Regional Coordinating Center for Rare Diseases, Udine University Hospital, Udine, Italy
| | - Diego Martinelli
- U.O.C. di Patologia Metabolica, Dipartimento di Medicina Pediatrica, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Franz Schaefer
- Division of Pediatric Nephrology, Department of General Pediatrics, Centre for Child and Adolescent Medicine, Heidelberg, Germany
| | - Kathrin Jeltsch
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, Centre for Child and Adolescent Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Natalia Juliá-Palacios
- Inborn Errors of Metabolism Unit, Neurology Department, Institut de Recerca Sant Joan de Déu, and CIBERER-ISCIII, Barcelona, Spain
| | - Ángels García-Cazorla
- Inborn Errors of Metabolism Unit, Neurology Department, Institut de Recerca Sant Joan de Déu, and CIBERER-ISCIII, Barcelona, Spain
| | - Carlo Dionisi-Vici
- U.O.C. di Patologia Metabolica, Dipartimento di Medicina Pediatrica, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Stefan Kölker
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, Centre for Child and Adolescent Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| |
Collapse
|
33
|
Hörster F, Tuncel AT, Gleich F, Plessl T, Froese SD, Garbade SF, Kölker S, Baumgartner MR. Delineating the clinical spectrum of isolated methylmalonic acidurias: cblA and mut. J Inherit Metab Dis 2021; 44:193-214. [PMID: 32754920 DOI: 10.1002/jimd.12297] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/03/2020] [Accepted: 07/30/2020] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Long-term outcome is postulated to be different in isolated methylmalonic aciduria caused by mutations in the MMAA gene (cblA type) compared with methylmalonyl-CoA mutase deficiency (mut), but case definition was previously difficult. METHOD Cross-sectional analysis of data from the European Registry and Network for Intoxication type Metabolic Diseases (Chafea no. December 1, 2010). RESULTS Data from 28 cblA and 95 mut patients in most cases confirmed by mutation analysis (including 4 new mutations for cblA and 19 new mutations for mut). Metabolic crisis is the predominant symptom leading to diagnosis in both groups. Biochemical disturbances during the first crisis were similar in both groups, as well as the age at diagnosis. Z scores of body height and body weight were similar in both groups at birth, but were significantly lower in the mut group at the time of last visit. Glomerular filtration rate was significantly higher in cblA; and as a consequence, chronic renal failure and related complications were significantly less frequent and renal function could be preserved even in older patients. Neurological complications were predominantly found in the mut subgroup. Methylmalonic acidemia (MMA) levels in urine and plasma were significantly lower in cblA. 27/28 cblA patients were reported to be responsive to cobalamin, only 86% of cblA patients were treated with i.m. hydroxocobalamin. In total, 73% of cblA and 98% of mut patients followed a calculated diet with amino acid supplements in 27% (cblA) and 69% (mut). During the study interval, six patients from the mut group died, while all cblA patients survived. CONCLUSION Although similar at first, cblA patients respond to hydroxocobalamin treatment, subsequently show significantly lower levels of MMA and a milder course than mut patients.
Collapse
Affiliation(s)
- Friederike Hörster
- Division of Neuropediatrics and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ali Tunç Tuncel
- Division of Neuropediatrics and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Florian Gleich
- Division of Neuropediatrics and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Tanja Plessl
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Sean D Froese
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Sven F Garbade
- Division of Neuropediatrics and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Division of Neuropediatrics and Metabolic Medicine, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
The Cost-Effectiveness of Expanding the UK Newborn Bloodspot Screening Programme to Include Five Additional Inborn Errors of Metabolism. Int J Neonatal Screen 2020; 6:ijns6040093. [PMID: 33233828 PMCID: PMC7711627 DOI: 10.3390/ijns6040093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022] Open
Abstract
Glutaric aciduria type 1, homocystinuria, isovaleric acidaemia, long-chain hydroxyacyl CoA dehydrogenase deficiency and maple syrup urine disease are all inborn errors of metabolism that can be detected through newborn bloodspot screening. This evaluation was undertaken in 2013 to provide evidence to the UK National Screening Committee for the cost-effectiveness of including these five conditions in the UK Newborn Bloodspot Screening Programme. A decision-tree model with lifetable estimates of outcomes was built with the model structure and parameterisation informed by a systematic review and expert clinical judgment. A National Health Service/Personal Social Services perspective was used, and lifetime costs and quality-adjusted life years (QALYs) were discounted at 1.5%. Uncertainty in the results was explored using expected value of perfect information analysis methods together with a sensitivity analysis using the screened incidence rate in the UK from 2014 to 2018. The model estimates that screening for all the conditions is more effective and cost saving when compared to not screening for each of the conditions, and the results were robust to the updated incidence rates. The key uncertainties included the sensitivity and specificity of the screening test and the estimated costs and QALYs.
Collapse
|
35
|
Strauss KA, Williams KB, Carson VJ, Poskitt L, Bowser LE, Young M, Robinson DL, Hendrickson C, Beiler K, Taylor CM, Haas-Givler B, Hailey J, Chopko S, Puffenberger EG, Brigatti KW, Miller F, Morton DH. Glutaric acidemia type 1: Treatment and outcome of 168 patients over three decades. Mol Genet Metab 2020; 131:325-340. [PMID: 33069577 DOI: 10.1016/j.ymgme.2020.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 01/19/2023]
Abstract
Glutaric acidemia type 1 (GA1) is a disorder of cerebral organic acid metabolism resulting from biallelic mutations of GCDH. Without treatment, GA1 causes striatal degeneration in >80% of affected children before two years of age. We analyzed clinical, biochemical, and developmental outcomes for 168 genotypically diverse GA1 patients managed at a single center over 31 years, here separated into three treatment cohorts: children in Cohort I (n = 60; DOB 2006-2019) were identified by newborn screening (NBS) and treated prospectively using a standardized protocol that included a lysine-free, arginine-enriched metabolic formula, enteral l-carnitine (100 mg/kg•day), and emergency intravenous (IV) infusions of dextrose, saline, and l-carnitine during illnesses; children in Cohort II (n = 57; DOB 1989-2018) were identified by NBS and treated with natural protein restriction (1.0-1.3 g/kg•day) and emergency IV infusions; children in Cohort III (n = 51; DOB 1973-2016) did not receive NBS or special diet. The incidence of striatal degeneration in Cohorts I, II, and III was 7%, 47%, and 90%, respectively (p < .0001). No neurologic injuries occurred after 19 months of age. Among uninjured children followed prospectively from birth (Cohort I), measures of growth, nutritional sufficiency, motor development, and cognitive function were normal. Adherence to metabolic formula and l-carnitine supplementation in Cohort I declined to 12% and 32%, respectively, by age 7 years. Cessation of strict dietary therapy altered plasma amino acid and carnitine concentrations but resulted in no serious adverse outcomes. In conclusion, neonatal diagnosis of GA1 coupled to management with lysine-free, arginine-enriched metabolic formula and emergency IV infusions during the first two years of life is safe and effective, preventing more than 90% of striatal injuries while supporting normal growth and psychomotor development. The need for dietary interventions and emergency IV therapies beyond early childhood is uncertain.
Collapse
MESH Headings
- Amino Acid Metabolism, Inborn Errors/diet therapy
- Amino Acid Metabolism, Inborn Errors/epidemiology
- Amino Acid Metabolism, Inborn Errors/genetics
- Amino Acid Metabolism, Inborn Errors/metabolism
- Brain/metabolism
- Brain/pathology
- Brain Diseases, Metabolic/diet therapy
- Brain Diseases, Metabolic/epidemiology
- Brain Diseases, Metabolic/genetics
- Brain Diseases, Metabolic/metabolism
- Carnitine/metabolism
- Child
- Child, Preschool
- Corpus Striatum/metabolism
- Corpus Striatum/pathology
- Diet
- Female
- Glutaryl-CoA Dehydrogenase/deficiency
- Glutaryl-CoA Dehydrogenase/genetics
- Glutaryl-CoA Dehydrogenase/metabolism
- Humans
- Infant
- Infant, Newborn
- Lysine/metabolism
- Male
Collapse
Affiliation(s)
- Kevin A Strauss
- Clinic for Special Children, Strasburg, PA, USA; Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA; Departments of Pediatrics and Molecular, Cell & Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA, USA.
| | | | - Vincent J Carson
- Clinic for Special Children, Strasburg, PA, USA; Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA
| | - Laura Poskitt
- Clinic for Special Children, Strasburg, PA, USA; Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA
| | | | | | | | | | | | - Cora M Taylor
- Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA, USA
| | | | | | - Stephanie Chopko
- Department of Pediatrics, Nemours Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
| | | | | | - Freeman Miller
- Department of Orthopedic Surgery, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - D Holmes Morton
- Clinic for Special Children, Strasburg, PA, USA; Department of Pediatrics, Penn Medicine-Lancaster General Hospital, Lancaster, PA, USA; Central Pennsylvania Clinic, Belleville, PA, USA
| |
Collapse
|
36
|
Mütze U, Garbade SF, Gramer G, Lindner M, Freisinger P, Grünert SC, Hennermann J, Ensenauer R, Thimm E, Zirnbauer J, Leichsenring M, Gleich F, Hörster F, Grohmann-Held K, Boy N, Fang-Hoffmann J, Burgard P, Walter M, Hoffmann GF, Kölker S. Long-term Outcomes of Individuals With Metabolic Diseases Identified Through Newborn Screening. Pediatrics 2020; 146:peds.2020-0444. [PMID: 33051224 DOI: 10.1542/peds.2020-0444] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Although extended newborn screening (NBS) programs have been introduced more than 20 years ago, their impact on the long-term clinical outcome of individuals with inherited metabolic diseases (IMDs) is still rarely investigated. METHODS We studied the clinical outcomes of individuals with IMDs identified by NBS between 1999 and 2016 in a prospective multicenter observational study. RESULTS In total, 306 screened individuals with IMDs (115 with phenylketonuria and 191 with other IMDs with a lifelong risk for metabolic decompensation) were followed for a median time of 6.2 years. Although the risk for metabolic decompensation was disease-specific and NBS could not prevent decompensations in every individual at risk (n = 49), the majority did not develop permanent disease-specific signs (75.9%), showed normal development (95.6%) and normal cognitive outcome (87.7%; mean IQ: 100.4), and mostly attended regular kindergarten (95.2%) and primary school (95.2%). This demonstrates that not only individuals with phenylketonuria, serving as a benchmark, but also those with lifelong risk for metabolic decompensation had a favorable long-term outcome. High NBS process quality is the prerequisite of this favorable outcome. This is supported by 28 individuals presenting with first symptoms at a median age of 3.5 days before NBS results were available, by the absence of neonatal decompensations after the report of NBS results, and by the challenge of keeping relevant process parameters at a constantly high level. CONCLUSIONS NBS for IMDs, although not completely preventing clinical presentations in all individuals, can be considered a highly successful program of secondary prevention.
Collapse
Affiliation(s)
- Ulrike Mütze
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany;
| | - Sven F Garbade
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Gwendolyn Gramer
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Lindner
- Division of Pediatric Neurology, University Children's Hospital Frankfurt, Frankfurt, Germany
| | - Peter Freisinger
- Children's Hospital Reutlingen, Klinikum am Steinenberg Reutlingen, Reutlingen, Germany
| | - Sarah Catharina Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Julia Hennermann
- Villa Metabolica, Center for Pediatric and Adolescent Medicine, University Medical Center Mainz, Mainz, Germany
| | - Regina Ensenauer
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Child Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Eva Thimm
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Judith Zirnbauer
- Department of Pediatric and Adolescent Medicine, Medical School, Ulm University, Ulm, Germany; and
| | - Michael Leichsenring
- Department of Pediatric and Adolescent Medicine, Medical School, Ulm University, Ulm, Germany; and
| | - Florian Gleich
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Friederike Hörster
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Karina Grohmann-Held
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Center for Child and Adolescent Medicine, University Hospital Greifswald, Greifswald, Germany
| | - Nikolas Boy
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Junmin Fang-Hoffmann
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Burgard
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Magdalena Walter
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine and Dietmar Hopp Metabolic Center, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
37
|
Imerci A, Strauss KA, Oleas-Santillan GF, Miller F. Orthopaedic manifestations of glutaric acidemia Type 1. J Child Orthop 2020; 14:473-479. [PMID: 33204356 PMCID: PMC7666789 DOI: 10.1302/1863-2548.14.200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Glutaric acidemia type 1 (GA1), a rare hereditary metabolic disease caused by biallelic mutations of GCDH, can result in acute or insidious striatal degeneration within the first few years of life. We reviewed the orthopaedic sequelae and management of 114 neurologically injured patients with a confirmed molecular diagnosis of GA1. METHODS We performed a retrospective chart review spanning 28 years identifying 114 GA1 patients, most from the Old Order Amish population of Lancaster County, Pennsylvania, who were homozygous for a pathogenic founder variant of GCDH (c.1262C>T). We collected demographics, medical comorbidities, muscle tone patterns, Gross Motor Function Classification System level, gastrostomy tube status, seizure history, inpatient events, orthopaedic diagnoses and operative characteristics. RESULTS Over an average follow-up of 4.7 ± 3.4 years, 24 (21%) of 114 patients had musculoskeletal problems requiring orthopaedic consultation. Scoliosis (n = 14), hip dislocation (n = 8/15 hips), hip subluxation (n = 2/three hips), and windswept hip deformity (n = 2) in the spine and hip joint were most common. In total, 35 orthopaedic surgeries were performed in 17 (71%) patients. The most common primary operations were one-stage procedures with proximal femoral varus derotation osteotomy and/or pelvic osteotomy (n = 8/14 hips) for subluxation or dislocation. In all, 11 patients had posterior spinal fusion for severe scoliosis. With the recommended metabolic management, there were no disease-specific complications in this cohort. CONCLUSIONS Children with GA1 who have static striatal lesions are at risk for musculoskeletal complications, especially scoliosis and hip dislocation, and appropriate operative management requires consultation with a metabolic specialist with specific considerations for fluid management and nutrition. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Ahmet Imerci
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| | | | | | - Freeman Miller
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA,Correspondence should be sent to Freeman Miller, Department of Orthopaedics, Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE 19803, USA. E-mail:
| |
Collapse
|
38
|
Long Term Follow-Up of Polish Patients with Isovaleric Aciduria. Clinical and Molecular Delineation of Isovaleric Aciduria. Diagnostics (Basel) 2020; 10:diagnostics10100738. [PMID: 32977617 PMCID: PMC7598207 DOI: 10.3390/diagnostics10100738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022] Open
Abstract
Isovaleric acidemia (IVA) is an autosomal recessive leucine inborn error of metabolism caused by isovaleryl-CoA dehydrogenase deficiency. The disease has various courses, from severe ones manifesting in newborns to the intermittent form with first manifestation in children and adults. The aim of this study was to analyze clinical and neurological outcomes in Polish patients with IVA. Ten patients diagnosed and treated in The Children's Memorial Health Institute were included in the study. The diagnosis was based on tandem MS (increased level of C5 acylcarnitine) and urine GCMS (increased isovalerylglycine, and 3-hydroxyisovaleric acid). Molecular analysis was performed in seven patients (70%) leading to the detection of pathogenic variants in the IVD gene in all of them. A retrospective analysis of patients' medical records included: demographics, symptoms at diagnosis, medical management, and biochemical and clinical outcomes following therapy. The median follow-up time (median; Q1-Q2) was 2.5 years (1.5-9.0) for newborn screening (NBS) and family screening (FS) children, and 17 years (5.0-20) for symptomatic patients. Five patients were in a good clinical state, four children presented mild neurological symptoms, and one-severely delayed child. In the IVD gene, five known and two novel variants (p.466C>G, c.1132G>A) were identified. Molecular analysis was performed in seven patients leading to identification of biallelic pathogenic variants in the IVD gene in all of them. We can conclude that long-term clinical and neurological outcomes of patients with IVA were satisfactory as a result of an early diagnosis and proper management. Although early treatment did not prevent decompensations, they were milder in these patients.
Collapse
|
39
|
Clinical Course and Nutritional Management of Propionic and Methylmalonic Acidemias. J Nutr Metab 2020; 2020:8489707. [PMID: 33014459 PMCID: PMC7519177 DOI: 10.1155/2020/8489707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/28/2020] [Accepted: 09/02/2020] [Indexed: 11/18/2022] Open
Abstract
Propionic and methylmalonic acidemias result in multiple health problems including increased risk for neurological and intellectual disabilities. Knowledge regarding factors that correlate to poor prognosis and long-term outcomes is still limited. In this study, we aim to provide insight concerning clinical course and long-term complications by identifying possible correlating factors to complications. Results. This is a retrospective review of 20 Egyptian patients diagnosed with PA (n = 10) and MMA (n = 10) in the years 2014–2018. PA patients had lower DQ/IQ and were more liable to hypotonia and developmental delay. The DQ/IQ had a strong negative correlation with length of hospital stay, frequency of PICU admissions, time delay until diagnosis, and the mode ammonia level. However, DQ/IQ did not correlate with age of onset of symptoms or the peak ammonia level at presentation. Both the growth percentiles and albumin levels had a positive correlation with natural protein intake and did not correlate with the total protein intake. Additionally, patients on higher amounts of medical formula did not necessarily show an improvement in the frequency of decompensation episodes. Conclusion. Our findings indicate that implementation of NBS, vigilant and proactive management of decompensation episodes, and pursuing normal ammonia levels during monitoring can help patients achieve a better neurological prognosis. Furthermore, patients can have a better outcome on mainly natural protein; medical formula should only be used in cases where patients do not meet 100–120% of their DRI from natural protein.
Collapse
|
40
|
Tangeraas T, Sæves I, Klingenberg C, Jørgensen J, Kristensen E, Gunnarsdottir G, Hansen EV, Strand J, Lundman E, Ferdinandusse S, Salvador CL, Woldseth B, Bliksrud YT, Sagredo C, Olsen ØE, Berge MC, Trømborg AK, Ziegler A, Zhang JH, Sørgjerd LK, Ytre-Arne M, Hogner S, Løvoll SM, Kløvstad Olavsen MR, Navarrete D, Gaup HJ, Lilje R, Zetterström RH, Stray-Pedersen A, Rootwelt T, Rinaldo P, Rowe AD, Pettersen RD. Performance of Expanded Newborn Screening in Norway Supported by Post-Analytical Bioinformatics Tools and Rapid Second-Tier DNA Analyses. Int J Neonatal Screen 2020; 6:51. [PMID: 33123633 PMCID: PMC7570219 DOI: 10.3390/ijns6030051] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
In 2012, the Norwegian newborn screening program (NBS) was expanded (eNBS) from screening for two diseases to that for 23 diseases (20 inborn errors of metabolism, IEMs) and again in 2018, to include a total of 25 conditions (21 IEMs). Between 1 March 2012 and 29 February 2020, 461,369 newborns were screened for 20 IEMs in addition to phenylketonuria (PKU). Excluding PKU, there were 75 true-positive (TP) (1:6151) and 107 (1:4311) false-positive IEM cases. Twenty-one percent of the TP cases were symptomatic at the time of the NBS results, but in two-thirds, the screening result directed the exact diagnosis. Eighty-two percent of the TP cases had good health outcomes, evaluated in 2020. The yearly positive predictive value was increased from 26% to 54% by the use of the Region 4 Stork post-analytical interpretive tool (R4S)/Collaborative Laboratory Integrated Reports 2.0 (CLIR), second-tier biochemical testing and genetic confirmation using DNA extracted from the original dried blood spots. The incidence of IEMs increased by 46% after eNBS was introduced, predominantly due to the finding of attenuated phenotypes. The next step is defining which newborns would truly benefit from screening at the milder end of the disease spectrum. This will require coordinated international collaboration, including proper case definitions and outcome studies.
Collapse
Affiliation(s)
- Trine Tangeraas
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Ingjerd Sæves
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Claus Klingenberg
- Department of Paediatrics, University Hospital of North Norway, 9019 Tromsø, Norway;
- Paediatric Research Group, Department of Clinical Medicine, UiT The Artic University of Norway, 9019 Tromsø, Norway
| | - Jens Jørgensen
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Erle Kristensen
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
- Paediatric Research Group, Department of Clinical Medicine, UiT The Artic University of Norway, 9019 Tromsø, Norway
| | - Gunnþórunn Gunnarsdottir
- Department of Paediatrics, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (G.G.); (R.L.); (T.R.)
| | | | - Janne Strand
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Emma Lundman
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, AZ 1105 Amsterdam, The Netherlands;
| | - Cathrin Lytomt Salvador
- Norwegian National Unit for Diagnostics of Congenital Metabolic Disorders, Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway; (C.L.S.); (B.W.); (Y.T.B.)
| | - Berit Woldseth
- Norwegian National Unit for Diagnostics of Congenital Metabolic Disorders, Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway; (C.L.S.); (B.W.); (Y.T.B.)
| | - Yngve T Bliksrud
- Norwegian National Unit for Diagnostics of Congenital Metabolic Disorders, Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway; (C.L.S.); (B.W.); (Y.T.B.)
| | - Carlos Sagredo
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Øyvind E Olsen
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Mona C Berge
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Anette Kjoshagen Trømborg
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Anders Ziegler
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Jin Hui Zhang
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Linda Karlsen Sørgjerd
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Mari Ytre-Arne
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Silje Hogner
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Siv M Løvoll
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Mette R Kløvstad Olavsen
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Dionne Navarrete
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Hege J Gaup
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Rina Lilje
- Department of Paediatrics, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (G.G.); (R.L.); (T.R.)
| | - Rolf H Zetterström
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Solna, Sweden, Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden;
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Terje Rootwelt
- Department of Paediatrics, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (G.G.); (R.L.); (T.R.)
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Piero Rinaldo
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, NY 55902, USA;
| | - Alexander D Rowe
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| | - Rolf D Pettersen
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0424 Oslo, Norway; (I.S.); (J.J.); (E.K.); (J.S.); (E.L.); (C.S.); (Ø.E.O.); (M.C.B.); (A.K.T.); (A.Z.); (J.H.Z.); (L.K.S.); (M.Y.-A.); (S.H.); (S.M.L.); (M.R.K.O.); (D.N.); (H.J.G.); (A.S.-P.); (A.D.R.); (R.D.P.)
| |
Collapse
|
41
|
Haijes HA, Molema F, Langeveld M, Janssen MC, Bosch AM, van Spronsen F, Mulder MF, Verhoeven‐Duif NM, Jans JJ, van der Ploeg AT, Wagenmakers MA, Rubio‐Gozalbo ME, Brouwers MCGJ, de Vries MC, Langendonk JG, Williams M, van Hasselt PM. Retrospective evaluation of the Dutch pre-newborn screening cohort for propionic acidemia and isolated methylmalonic acidemia: What to aim, expect, and evaluate from newborn screening? J Inherit Metab Dis 2020; 43:424-437. [PMID: 31828787 PMCID: PMC7317354 DOI: 10.1002/jimd.12193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/14/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022]
Abstract
Evidence for effectiveness of newborn screening (NBS) for propionic acidemia (PA) and isolated methylmalonic acidemia (MMA) is scarce. Prior to implementation in the Netherlands, we aim to estimate the expected health gain of NBS for PA and MMA. In this national retrospective cohort study, the clinical course of 76/83 Dutch PA and MMA patients, diagnosed between January 1979 and July 2019, was evaluated. Five clinical outcome parameters were defined: adverse outcome of the first symptomatic phase, frequency of acute metabolic decompensations (AMD), cognitive function, mitochondrial complications, and treatment-related complications. Outcomes of patients identified by family testing were compared with the outcomes of their index siblings. An adverse outcome due to the first symptomatic phase was recorded in 46% of the clinically diagnosed patients. Outcome of the first symptomatic phase was similar in 5/9 sibling pairs and better in 4/9 pairs. Based on the day of diagnosis of the clinically diagnosed patients and sibling pair analysis, a preliminary estimated reduction of adverse outcome due to the first symptomatic phase from 46% to 36%-38% was calculated. Among the sibling pairs, AMD frequency, cognitive function, mitochondrial, and treatment-related complications were comparable. These results suggest that the health gain of NBS for PA and MMA in overall outcome may be limited, as only a modest decrease of adverse outcomes due to the first symptomatic phase is expected. With current clinical practice, no reduced AMD frequency, improved cognitive function, or reduced frequency of mitochondrial or treatment-related complications can be expected.
Collapse
Affiliation(s)
- Hanneke A. Haijes
- Section Metabolic Diagnostics, Department of GeneticsUniversity Medical Centre Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Section Metabolic Diseases, Department of Child Health, Wilhelmina Children's HospitalUniversity Medical Centre Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Femke Molema
- Department of Pediatrics, Center for Lysosomal and Metabolic DiseasesErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Mirjam Langeveld
- Department of Endocrinology and MetabolismAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Mirian C. Janssen
- Department of Internal MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Annet M. Bosch
- Department of Pediatrics, Emma Children's HospitalAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Francjan van Spronsen
- Division of Metabolic Diseases, Beatrix Children's HospitalUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
| | - Margot F. Mulder
- Department of PediatricsAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Nanda M. Verhoeven‐Duif
- Section Metabolic Diagnostics, Department of GeneticsUniversity Medical Centre Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Judith J.M. Jans
- Section Metabolic Diagnostics, Department of GeneticsUniversity Medical Centre Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Ans T. van der Ploeg
- Department of Pediatrics, Center for Lysosomal and Metabolic DiseasesErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Margreet A. Wagenmakers
- Department of Internal Medicine, Center for Lysosomal and Metabolic DiseasesErasmus MC University Medical CenterRotterdamThe Netherlands
| | - M. Estela Rubio‐Gozalbo
- Department of Pediatrics and Clinical GeneticsMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Martijn C. G. J. Brouwers
- Department of Internal Medicine, Division of Endocrinology and Metabolic DiseaseMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Maaike C. de Vries
- Department of PediatricsRadboud University Medical CenterNijmegenThe Netherlands
| | - Janneke G. Langendonk
- Department of Internal Medicine, Center for Lysosomal and Metabolic DiseasesErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Monique Williams
- Department of Pediatrics, Center for Lysosomal and Metabolic DiseasesErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Peter M. van Hasselt
- Section Metabolic Diseases, Department of Child Health, Wilhelmina Children's HospitalUniversity Medical Centre Utrecht, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
42
|
Iijima H, Ishige N, Kubota M. Clinical Application of Liquid Chromatography Tandem Mass Spectrometry Using Dried Blood Spot as a More Rapid Method for Determination of Methylmalonic Acid, Propionylcarnitine, and Total Homocysteine. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2020. [DOI: 10.1590/2326-4594-jiems-2019-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
43
|
Piercy H, Yeo M, Yap S, Hart AR. What are the information needs of parents caring for a child with Glutaric aciduria type 1? BMC Pediatr 2019; 19:349. [PMID: 31607269 PMCID: PMC6790240 DOI: 10.1186/s12887-019-1742-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 09/20/2019] [Indexed: 11/10/2022] Open
Abstract
Background Newborn screening has enabled the early diagnosis of Glutaric aciduria type 1, with the possibility of improving neurological outcomes in affected children. Achieving those outcomes requires parents to effectively manage their child’s condition by adherence to a strict dietary regime and responding to situations that may trigger decompensation. The specific information and support needs of this group of parents are unknown. Methods A focus group with five parents was conducted to gain insights into the information that parents needed and the ways in which they accessed and used information to manage their child’s condition. A topic guide was used to direct the discussion which was recorded and fully transcribed. All participants gave informed consent. Data were analysed using thematic analysis, a structured approach that contributes to transparency and validity of results while allowing the integration of predetermined and emerging themes. To ensure rigour, two researchers were involved in initial coding of data and key analytic decisions. Results Two main themes were identified. ‘Understanding the condition’ explored parent’s needs to understand the scientific complexity of the condition and to be aware of the worst case scenario associated with loss of metabolic control. ‘Managing the condition’ explained how parents co-ordinated and controlled the involvement of other carers and parents’ need to be active partners in medical management to feel in control of the situation. Conclusions The study highlights the importance of addressing parents’ initial and ongoing informational needs so they can fulfil their role and protect their child from metabolic harm.
Collapse
Affiliation(s)
| | - Mildrid Yeo
- Guys and St Thomas' NHS Foundation Trust, London, UK
| | - Sufin Yap
- Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - Anthony R Hart
- Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
44
|
Haijes HA, Jans JJM, Tas SY, Verhoeven-Duif NM, van Hasselt PM. Pathophysiology of propionic and methylmalonic acidemias. Part 1: Complications. J Inherit Metab Dis 2019; 42:730-744. [PMID: 31119747 DOI: 10.1002/jimd.12129] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 12/14/2022]
Abstract
Over the last decades, advances in clinical care for patients suffering from propionic acidemia (PA) and isolated methylmalonic acidemia (MMA) have resulted in improved survival. These advances were possible thanks to new pathophysiological insights. However, patients may still suffer from devastating complications which largely determine the unsatisfying overall outcome. To optimize our treatment strategies, better insight in the pathophysiology of complications is needed. Here, we perform a systematic data-analysis of cohort studies and case-reports on PA and MMA. For each of the prevalent and rare complications, we summarize the current hypotheses and evidence for the underlying pathophysiology of that complication. A common hypothesis on pathophysiology of many of these complications is that mitochondrial impairment plays a major role. Assuming that complications in which mitochondrial impairment may play a role are overrepresented in monogenic mitochondrial diseases and, conversely, that complications in which mitochondrial impairment does not play a role are underrepresented in mitochondrial disease, we studied the occurrence of the complications in PA and MMA in mitochondrial and other monogenic diseases, using data provided by the Human Phenotype Ontology. Lastly, we combined this with evidence from literature to draw conclusions on the possible role of mitochondrial impairment in each complication. Altogether, this review provides a comprehensive overview on what we, to date, do and do not understand about pathophysiology of complications occurring in PA and MMA and about the role of mitochondrial impairment herein.
Collapse
Affiliation(s)
- Hanneke A Haijes
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Section Metabolic Diseases, Department of Child Health, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Judith J M Jans
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Simone Y Tas
- Section Metabolic Diseases, Department of Child Health, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nanda M Verhoeven-Duif
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Peter M van Hasselt
- Section Metabolic Diseases, Department of Child Health, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
45
|
Almási T, Guey LT, Lukacs C, Csetneki K, Vokó Z, Zelei T. Systematic literature review and meta-analysis on the epidemiology of methylmalonic acidemia (MMA) with a focus on MMA caused by methylmalonyl-CoA mutase (mut) deficiency. Orphanet J Rare Dis 2019; 14:84. [PMID: 31023387 PMCID: PMC6485056 DOI: 10.1186/s13023-019-1063-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Methylmalonic acidemia/aciduria (MMA) is a genetically heterogeneous group of inherited metabolic disorders biochemically characterized by the accumulation of methylmalonic acid. Isolated MMA is primarily caused by the deficiency of methylmalonyl-CoA mutase (MMA mut; EC 5.4.99.2). A systematic literature review and a meta-analysis were undertaken to assess and compile published epidemiological data on MMA with a focus on the MMA mut subtype (OMIM #251000). Of the 1114 identified records, 227 papers were assessed for eligibility in full text, 48 articles reported on disease epidemiology, and 39 articles were included into the quantitative synthesis. Implementation of newborn screening in various countries has allowed for the estimation of birth prevalence of MMA and its isolated form. Meta-analysis pooled point estimates of MMA (all types) detection rates were 0.79, 1.12, 1.22 and 6.04 per 100,000 newborns in Asia-Pacific, Europe, North America and the Middle East and North Africa (MENA) regions, respectively. The detection rate of isolated MMA was < 1 per 100,000 newborns in all regions with the exception of MENA where it approached 6 per 100,000 newborns. Few studies published data on the epidemiology of MMA mut, therefore no meta-analysis could have been performed on this subtype. Most of the identified papers reported birth prevalence estimates below 1 per 100,000 newborns for MMA mut. The systematic literature review clearly demonstrates that MMA and its subtypes are ultra-rare disorders.
Collapse
Affiliation(s)
- Tímea Almási
- Syreon Research Institute, Mexikói str. 65/A, Budapest, H-1142, Hungary.
| | | | | | - Kata Csetneki
- Syreon Research Institute, Mexikói str. 65/A, Budapest, H-1142, Hungary
| | - Zoltán Vokó
- Syreon Research Institute, Mexikói str. 65/A, Budapest, H-1142, Hungary.,Department of Health Policy & Health Economics, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Zelei
- Syreon Research Institute, Mexikói str. 65/A, Budapest, H-1142, Hungary
| |
Collapse
|
46
|
|
47
|
Almási T, Guey LT, Lukacs C, Csetneki K, Vokó Z, Zelei T. Systematic literature review and meta-analysis on the epidemiology of propionic acidemia. Orphanet J Rare Dis 2019; 14:40. [PMID: 30760309 PMCID: PMC6375193 DOI: 10.1186/s13023-018-0987-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
Propionic acidemia (PA, OMIM #606054) is a serious, life-threatening, inherited, metabolic disorder caused by the deficiency of the mitochondrial enzyme propionyl-coenzyme A (CoA) carboxylase (EC 6.4.1.3). The primary objective of this study was to conduct a systematic literature review and meta-analysis on the epidemiology of PA. The literature search was performed covering Medline, Embase, Cochrane Database of Systematic Reviews, CRD Database, Academic Search Complete, CINAHL and PROSPERO databases. Websites of rare disease organizations were also searched for eligible studies. Of the 2338 identified records, 188 articles were assessed for eligibility in full text, 43 articles reported on disease epidemiology, and 31 studies were included into the quantitative synthesis. Due to the rarity of PA, broadly targeted population-based prevalence studies are not available. Nonetheless, implementation of newborn screening programs has allowed the estimation of the birth prevalence data of PA across multiple geographic regions. The pooled point estimates indicated detection rates of 0.29; 0.33; 0.33 and 4.24 in the Asia-Pacific, Europe, North America and the Middle East and North Africa (MENA) regions, respectively. Our systematic literature review and meta-analysis confirm that PA is an ultra-rare disorder, with similar detection rates across all regions with the exception of the MENA region where the disease, similar to other inherited metabolic disorders, is more frequent.
Collapse
Affiliation(s)
- Tímea Almási
- Syreon Research Institute, Mexikói str. 65/A, Budapest, H-1142, Hungary.
| | | | | | - Kata Csetneki
- Syreon Research Institute, Mexikói str. 65/A, Budapest, H-1142, Hungary
| | - Zoltán Vokó
- Syreon Research Institute, Mexikói str. 65/A, Budapest, H-1142, Hungary.,Department of Health Policy & Health Economics, Eötvös Loránd University, Budapest, Hungary
| | - Tamás Zelei
- Syreon Research Institute, Mexikói str. 65/A, Budapest, H-1142, Hungary
| |
Collapse
|
48
|
Posset R, Garbade SF, Boy N, Burlina AB, Dionisi-Vici C, Dobbelaere D, Garcia-Cazorla A, de Lonlay P, Teles EL, Vara R, Mew NA, Batshaw ML, Baumgartner MR, McCandless S, Seminara J, Summar M, Hoffmann GF, Kölker S, Burgard P. Transatlantic combined and comparative data analysis of 1095 patients with urea cycle disorders-A successful strategy for clinical research of rare diseases. J Inherit Metab Dis 2019; 42:93-106. [PMID: 30740724 PMCID: PMC7329920 DOI: 10.1002/jimd.12031] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND To improve our understanding of urea cycle disorders (UCDs) prospectively followed by two North American (NA) and European (EU) patient cohorts. AIMS Description of the NA and EU patient samples and investigation of the prospects of combined and comparative analyses for individuals with UCDs. METHODS Retrieval and comparison of the data from 1095 individuals (NA: 620, EU: 475) from two electronic databases. RESULTS The proportion of females with ornithine transcarbamylase deficiency (fOTC-D), particularly those being asymptomatic (asfOTC-D), was higher in the NA than in the EU sample. Exclusion of asfOTC-D resulted in similar distributions in both samples. The mean age at first symptoms was higher in NA than in EU patients with late onset (LO), but similar for those with early (≤ 28 days) onset (EO) of symptoms. Also, the mean age at diagnosis and diagnostic delay for EO and LO patients were similar in the NA and EU cohorts. In most patients (including fOTC-D), diagnosis was made after the onset of symptoms (59.9%) or by high-risk family screening (24.7%), and less often by newborn screening (8.9%) and prenatal testing (3.7%). Analysis of clinical phenotypes revealed that EO patients presented with more symptoms than LO individuals, but that numbers of symptoms correlated with plasma ammonium concentrations in EO patients only. Liver transplantation was reported for 90 NA and 25 EU patients. CONCLUSIONS Combined analysis of databases drawn from distinct populations opens the possibility to increase sample sizes for natural history questions, while comparative analysis utilizing differences in approach to treatment can evaluate therapeutic options and enhance long-term outcome studies.
Collapse
Affiliation(s)
- Roland Posset
- Centre for Pediatric and Adolescent Medicine, Division of Neuropediatrics and Inherited Metabolic Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Sven F. Garbade
- Centre for Pediatric and Adolescent Medicine, Division of Neuropediatrics and Inherited Metabolic Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Nikolas Boy
- Centre for Pediatric and Adolescent Medicine, Division of Neuropediatrics and Inherited Metabolic Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Alberto B. Burlina
- Azienda Ospedaliera di Padova, U.O.C. Malattie Metaboliche Ereditarie, Padova, Italy
| | - Carlo Dionisi-Vici
- Ospedale Pediatrico Bambino Gésu, U.O.C. Patologia Metabolica, Rome, Italy
| | - Dries Dobbelaere
- Centre de Référence Maladies Héréditaires du Métabolisme de l’Enfant et de l’Adulte, Jeanne de Flandre Hospital, CHRU Lille, and RADEME EA 7364, Faculty of Medicine, University Lille 2, Lille 59037, France
| | - Angeles Garcia-Cazorla
- Hospital San Joan de Deu, Institut Pediàtric de Recerca. Servicio de Neurologia and CIBERER, ISCIII, Barcelona, Spain
| | - Pascale de Lonlay
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Service de Maladies Métaboliques, Paris, France
| | - Elisa Leão Teles
- Unidade de Doenças Metabólicas, Serviço de Pediatria, Hospital de S. João, EPE, Porto, Portugal
| | - Roshni Vara
- Evelina Children’s Hospital, St Thomas’ Hospital, London, UK
| | - Nicholas Ah Mew
- Children’s National Health System and The George Washington School of Medicine, Washington, District of Columbia, USA
| | - Mark L. Batshaw
- Children’s National Health System and The George Washington School of Medicine, Washington, District of Columbia, USA
| | | | - Shawn McCandless
- Case Western Reserve University and University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Jennifer Seminara
- Children’s National Health System and The George Washington School of Medicine, Washington, District of Columbia, USA
| | - Marshall Summar
- Rare Disease Institute, Children’s National Health System, 111 Michigan Ave., NW, Washington, DC, 20010, USA
| | - Georg F. Hoffmann
- Centre for Pediatric and Adolescent Medicine, Division of Neuropediatrics and Inherited Metabolic Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Stefan Kölker
- Centre for Pediatric and Adolescent Medicine, Division of Neuropediatrics and Inherited Metabolic Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Peter Burgard
- Centre for Pediatric and Adolescent Medicine, Division of Neuropediatrics and Inherited Metabolic Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | | |
Collapse
|
49
|
Häberle J, Chakrapani A, Ah Mew N, Longo N. Hyperammonaemia in classic organic acidaemias: a review of the literature and two case histories. Orphanet J Rare Dis 2018; 13:219. [PMID: 30522498 PMCID: PMC6282273 DOI: 10.1186/s13023-018-0963-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
Background The ‘classic’ organic acidaemias (OAs) (propionic, methylmalonic and isovaleric) typically present in neonates or infants as acute metabolic decompensation with encephalopathy. This is frequently accompanied by severe hyperammonaemia and constitutes a metabolic emergency, as increased ammonia levels and accumulating toxic metabolites are associated with life-threatening neurological complications. Repeated and frequent episodes of hyperammonaemia (alongside metabolic decompensations) can result in impaired growth and intellectual disability, the severity of which increase with longer duration of hyperammonaemia. Due to the urgency required, diagnostic evaluation and initial management of patients with suspected OAs should proceed simultaneously. Paediatricians, who do not have specialist knowledge of metabolic disorders, have the challenging task of facilitating a timely diagnosis and treatment. This article outlines how the underlying pathophysiology and biochemistry of the organic acidaemias are closely linked to their clinical presentation and management, and provides practical advice for decision-making during early, acute hyperammonaemia and metabolic decompensation in neonates and infants with organic acidaemias. Clinical management The acute management of hyperammonaemia in organic acidaemias requires administration of intravenous calories as glucose and lipids to promote anabolism, carnitine to promote urinary excretion of urinary organic acid esters, and correction of metabolic acidosis with the substitution of bicarbonate for chloride in intravenous fluids. It may also include the administration of ammonia scavengers such as sodium benzoate or sodium phenylbutyrate. Treatment with N-carbamyl-L-glutamate can rapidly normalise ammonia levels by stimulating the first step of the urea cycle. Conclusions Our understanding of optimal treatment strategies for organic acidaemias is still evolving. Timely diagnosis is essential and best achieved by the early identification of hyperammonaemia and metabolic acidosis. Correcting metabolic imbalance and hyperammonaemia are critical to prevent brain damage in affected patients.
Collapse
Affiliation(s)
- Johannes Häberle
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Anupam Chakrapani
- Department of Clinical Inherited Metabolic Disorders, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Nicholas Ah Mew
- Children's National Rare Disease Institute, Children's National Health System, Washington, DC, USA
| | - Nicola Longo
- Department of Pediatrics, Division of Medical Genetics, University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
50
|
Tuncel AT, Boy N, Morath MA, Hörster F, Mütze U, Kölker S. Organic acidurias in adults: late complications and management. J Inherit Metab Dis 2018; 41:765-776. [PMID: 29335813 DOI: 10.1007/s10545-017-0135-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/05/2017] [Accepted: 12/28/2017] [Indexed: 12/13/2022]
Abstract
Organic acidurias (synonym, organic acid disorders, OADs) are a heterogenous group of inherited metabolic diseases delineated with the implementation of gas chromatography/mass spectrometry in metabolic laboratories starting in the 1960s and 1970s. Biochemically, OADs are characterized by accumulation of mono-, di- and/or tricarboxylic acids ("organic acids") and corresponding coenzyme A, carnitine and/or glycine esters, some of which are considered toxic at high concentrations. Clinically, disease onset is variable, however, affected individuals may already present during the newborn period with life-threatening acute metabolic crises and acute multi-organ failure. Tandem mass spectrometry-based newborn screening programmes, in particular for isovaleric aciduria and glutaric aciduria type 1, have significantly reduced diagnostic delay. Dietary treatment with low protein intake or reduced intake of the precursor amino acid(s), carnitine supplementation, cofactor treatment (in responsive patients) and nonadsorbable antibiotics is commonly used for maintenance treatment. Emergency treatment options with high carbohydrate/glucose intake, pharmacological and extracorporeal detoxification of accumulating toxic metabolites for intensified therapy during threatening episodes exist. Diagnostic and therapeutic measures have improved survival and overall outcome in individuals with OADs. However, it has become increasingly evident that the manifestation of late disease complications cannot be reliably predicted and prevented. Conventional metabolic treatment often fails to prevent irreversible organ dysfunction with increasing age, even if patients are considered to be "metabolically stable". This has challenged our understanding of OADs and has elicited the discussion on optimized therapy, including (early) organ transplantation, and long-term care.
Collapse
Affiliation(s)
- Ali Tunç Tuncel
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Nikolas Boy
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Marina A Morath
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Friederike Hörster
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Ulrike Mütze
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Stefan Kölker
- Division of Neuropediatrics and Metabolic Medicine, Centre for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| |
Collapse
|