1
|
Rahimian E, D'Arco F, Sudhakar S, Tahsini MR, Azin N, Morovvati M, Karimzadeh P, Farahvash MA. The full spectrum of MRI findings in 18 patients with Canavan disease: new insights into the areas of selective susceptibility. Neuroradiology 2024; 66:1829-1835. [PMID: 38880823 DOI: 10.1007/s00234-024-03388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION Canavan disease (CD) is a rare autosomal recessive neurodegenerative disorder caused by a deficiency of aspartoacylase A, an enzyme that degrades N-acetylaspartate (NAA). The disease is characterized by progressive white matter degeneration, leading to intellectual disability, seizures, and death. This retrospective study aims to describe the full spectrum of magnetic resonance imaging (MRI) findings in a large case series of CD patients. MATERIALS AND METHODS MRI findings in 18 patients with confirmed CD were investigated, and the full spectrum of brain abnormalities was compared with the existing literature to provide new insights regarding the brain MRI findings in these patients. All the cases were proven based on genetic study or NAA evaluation in urine or brain. RESULTS Imaging analysis showed involvement of the deep and subcortical white matter as well as the globus pallidus in all cases, with sparing of the putamen, caudate, and claustrum. The study provides updates on the imaging characteristics of CD and validates some underreported findings such as the involvement of the lateral thalamus with sparing of the pulvinar, involvement of the internal capsules and corpus callosum, and cystic formation during disease progression. CONCLUSION To our knowledge, this is one of the largest case series of patients with CD which includes a detailed description of the brain MRI findings. The study confirmed many of the previously reported MRI findings but also identified abnormalities that were previously rarely or not described. We speculate that areas of ongoing myelination are particularly vulnerable to changes in CD.
Collapse
Affiliation(s)
- Elham Rahimian
- Haghighat medical imaging research center, Haghighat medical imaging center, E Janbazan St, PFJW+269, Tehran, Iran
| | - Felice D'Arco
- Radiology Department, Neuroradiology Unit, Great Ormond Street Hospital, London, UK
| | - Sniya Sudhakar
- Radiology Department, Neuroradiology Unit, Great Ormond Street Hospital, London, UK
| | - Majid R Tahsini
- Haghighat medical imaging research center, Haghighat medical imaging center, E Janbazan St, PFJW+269, Tehran, Iran
| | - Neda Azin
- Radiology department, school of medicine, Isfahan university of medical sciences, Isfahan, Iran
| | - Mahdis Morovvati
- Haghighat medical imaging research center, Haghighat medical imaging center, E Janbazan St, PFJW+269, Tehran, Iran
| | - Parvaneh Karimzadeh
- Department of Pediatric Neurology, School of Medicine, Mofid Children's Hospital, Tehran, Iran
| | - Mohammad Aidin Farahvash
- Haghighat medical imaging research center, Haghighat medical imaging center, E Janbazan St, PFJW+269, Tehran, Iran
| |
Collapse
|
2
|
Wei H, Moffett JR, Amanat M, Fatemi A, Tsukamoto T, Namboodiri AM, Slusher BS. The pathogenesis of, and pharmacological treatment for, Canavan disease. Drug Discov Today 2022; 27:2467-2483. [PMID: 35636725 PMCID: PMC11806932 DOI: 10.1016/j.drudis.2022.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
Abstract
Canavan disease (CD) is an inherited leukodystrophy resulting from mutations in the gene encoding aspartoacylase (ASPA). ASPA is highly expressed in oligodendrocytes and catalyzes the cleavage of N-acetylaspartate (NAA) to produce aspartate and acetate. In this review, we examine the pathologies and clinical presentation in CD, the metabolism and transportation of NAA in the brain, and the hypothetical mechanisms whereby ASPA deficiency results in dysmyelination and a failure of normal brain development. We also discuss therapeutic options that could be used for the treatment of CD.
Collapse
Affiliation(s)
- Huijun Wei
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA
| | - John R Moffett
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | - Man Amanat
- Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Ali Fatemi
- Department of Neurology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Behavioral Science, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Aryan M Namboodiri
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Feng L, Chao J, Tian E, Li L, Ye P, Zhang M, Chen X, Cui Q, Sun G, Zhou T, Felix G, Qin Y, Li W, Meza ED, Klein J, Ghoda L, Hu W, Luo Y, Dang W, Hsu D, Gold J, Goldman SA, Matalon R, Shi Y. Cell-Based Therapy for Canavan Disease Using Human iPSC-Derived NPCs and OPCs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002155. [PMID: 33304759 PMCID: PMC7709977 DOI: 10.1002/advs.202002155] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/22/2020] [Indexed: 06/12/2023]
Abstract
Canavan disease (CD) is a fatal leukodystrophy caused by mutation of the aspartoacylase (ASPA) gene, which leads to deficiency in ASPA activity, accumulation of the substrate N-acetyl-L-aspartate (NAA), demyelination, and spongy degeneration of the brain. There is neither a cure nor a standard treatment for this disease. In this study, human induced pluripotent stem cell (iPSC)-based cell therapy is developed for CD. A functional ASPA gene is introduced into patient iPSC-derived neural progenitor cells (iNPCs) or oligodendrocyte progenitor cells (iOPCs) via lentiviral transduction or TALEN-mediated genetic engineering to generate ASPA iNPC or ASPA iOPC. After stereotactic transplantation into a CD (Nur7) mouse model, the engrafted cells are able to rescue major pathological features of CD, including deficient ASPA activity, elevated NAA levels, extensive vacuolation, defective myelination, and motor function deficits, in a robust and sustainable manner. Moreover, the transplanted mice exhibit much prolonged survival. These genetically engineered patient iPSC-derived cellular products are promising cell therapies for CD. This study has the potential to bring effective cell therapies, for the first time, to Canavan disease children who have no treatment options. The approach established in this study can also benefit many other children who have deadly genetic diseases that have no cure.
Collapse
Affiliation(s)
- Lizhao Feng
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Jianfei Chao
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - E Tian
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Li Li
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Peng Ye
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Mi Zhang
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Xianwei Chen
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Qi Cui
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Guihua Sun
- Diabetes and Metabolism Research Institute at City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Tao Zhou
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Gerardo Felix
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
- Irell & Manella Graduate School of Biological SciencesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Yue Qin
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Wendong Li
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Edward David Meza
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Jeremy Klein
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Lucy Ghoda
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Weidong Hu
- Department of Molecular Imaging and TherapyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Yonglun Luo
- Department of BiomedicineAarhus UniversityAarhus8000Denmark
| | - Wei Dang
- Center for Biomedicine and GeneticsBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - David Hsu
- Center for Biomedicine and GeneticsBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Joseph Gold
- Center for Biomedicine and GeneticsBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Steven A. Goldman
- Center for Translational NeuromedicineUniversity of Rochester Medical CenterRochesterNY14642USA
- Center for Translational NeuromedicineFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDK‐2200Denmark
| | - Reuben Matalon
- Department of Pediatricsthe University of Texas Medical Branch at Galveston301 University BlvdGalvestonTX77555‐0359USA
| | - Yanhong Shi
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| |
Collapse
|
4
|
Appu AP, Moffett JR, Arun P, Moran S, Nambiar V, Krishnan JKS, Puthillathu N, Namboodiri AMA. Increasing N-acetylaspartate in the Brain during Postnatal Myelination Does Not Cause the CNS Pathologies of Canavan Disease. Front Mol Neurosci 2017; 10:161. [PMID: 28626388 PMCID: PMC5454052 DOI: 10.3389/fnmol.2017.00161] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/09/2017] [Indexed: 01/03/2023] Open
Abstract
Canavan disease is caused by mutations in the gene encoding aspartoacylase (ASPA), a deacetylase that catabolizes N-acetylaspartate (NAA). The precise involvement of elevated NAA in the pathogenesis of Canavan disease is an ongoing debate. In the present study, we tested the effects of elevated NAA in the brain during postnatal development. Mice were administered high doses of the hydrophobic methyl ester of NAA (M-NAA) twice daily starting on day 7 after birth. This treatment increased NAA levels in the brain to those observed in the brains of Nur7 mice, an established model of Canavan disease. We evaluated various serological parameters, oxidative stress, inflammatory and neurodegeneration markers and the results showed that there were no pathological alterations in any measure with increased brain NAA levels. We examined oxidative stress markers, malondialdehyde content (indicator of lipid peroxidation), expression of NADPH oxidase and nuclear translocation of the stress-responsive transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF-2) in brain. We also examined additional pathological markers by immunohistochemistry and the expression of activated caspase-3 and interleukin-6 by Western blot. None of the markers were increased in the brains of M-NAA treated mice, and no vacuoles were observed in any brain region. These results show that ASPA expression prevents the pathologies associated with excessive NAA concentrations in the brain during postnatal myelination. We hypothesize that the pathogenesis of Canavan disease involves not only disrupted NAA metabolism, but also excessive NAA related signaling processes in oligodendrocytes that have not been fully determined and we discuss some of the potential mechanisms.
Collapse
Affiliation(s)
- Abhilash P. Appu
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - John R. Moffett
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Peethambaran Arun
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Sean Moran
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Vikram Nambiar
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Jishnu K. S. Krishnan
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Narayanan Puthillathu
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Aryan M. A. Namboodiri
- Department of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University of the Health SciencesBethesda, MD, United States
| |
Collapse
|