1
|
Li Z, Zhang X, Chen H, Zeng H, Wu J, Wang Y, Ma N, Lan J, Zhang Y, Niu H, Shang L, Jiang X, Yang M. Empagliflozin in children with glycogen storage disease-associated inflammatory bowel disease: a prospective, single-arm, open-label clinical trial. Sci Rep 2024; 14:8630. [PMID: 38622211 PMCID: PMC11018849 DOI: 10.1038/s41598-024-59320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
Glycogen storage disease type Ib (GSD-Ib) is a rare inborn error of glycogen metabolism caused by mutations in SLC37A4. Patients with GSD-Ib are at high risk of developing inflammatory bowel disease (IBD). We evaluated the efficacy of empagliflozin, a renal sodium‒glucose cotransporter protein 2 (SGLT2) inhibitor, on colonic mucosal healing in patients with GSD-associated IBD. A prospective, single-arm, open-label clinical trial enrolled eight patients with GSD-associated IBD from Guangdong Provincial People's Hospital in China from July 1, 2022 through December 31, 2023. Eight patients were enrolled with a mean age of 10.34 ± 2.61 years. Four male and four female. The endoscopic features included deep and large circular ulcers, inflammatory hyperplasia, obstruction and stenosis. The SES-CD score significantly decreased at week 48 compared with before empagliflozin. Six patients completed 48 weeks of empagliflozin therapy and endoscopy showed significant improvement or healing of mucosal ulcers, inflammatory hyperplasia, stenosis, and obstruction. One patient had severe sweating that required rehydration and developed a urinary tract infection. No serious or life-threatening adverse events. This study suggested that empagliflozin may promote colonic mucosal healing and reduce hyperplasia, stenosis, and obstruction in children with GSD-associated IBD.
Collapse
Affiliation(s)
- Zhiling Li
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoyan Zhang
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Huan Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hanshi Zeng
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiaxing Wu
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Wang
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ni Ma
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiaoli Lan
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuxin Zhang
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Huilin Niu
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lei Shang
- Department of Health Statistics, School of Public Health, Fourth Military Medical University, Xi'an, China
| | - Xun Jiang
- Department of Pediatrics, The Second Affiliated Hospital, Fourth Military Medical University, Xi'an, China.
| | - Min Yang
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Subih HS, Qudah RA, Janakat S, Rimawi H, Elsahoryi NA, Alyahya L. Medium-Chain Triglyceride Oil and Dietary Intervention Improved Body Composition and Metabolic Parameters in Children with Glycogen Storage Disease Type 1 in Jordan: A Clinical Trial. Foods 2024; 13:1091. [PMID: 38611395 PMCID: PMC11011708 DOI: 10.3390/foods13071091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Glycogen storage diseases (GSDs) are a group of carbohydrate metabolism disorders, most of which are inherited in autosomal recessive patterns. GSDs are of two types: those that have to do with liver and hypoglycaemia (hepatic GSDs) and those that are linked to neuromuscular presentation. This study aims to assess the impact of dietary intervention, including medium-chain triglyceride (MCT) oil, on anthropometric measurements, body composition analysis and metabolic parameters among Jordanian children and is expected to be the first in the country. A sample of 38 children with glycogen storage disease type 1 (GSD-1) (median age = 6.4 years) were on a diet that included uncooked cornstarch therapy and a fructose-, sucrose- and lactose-restricted diet. Patients started to take MCT oil along with the prescribed diet after the first body composition test. Patients' nutritional status was re-evaluated three months later. The study results show that the percentage of patients who suffered from hypoglycaemia at the beginning of the study decreased significantly from 94.7% to 7.9% (p < 0.0001). The serum levels of triglycerides, cholesterol, uric acid and lactate decreased significantly after three months of intervention (100-71.1%, 73.7-21.1%, 97.4-52.6% and 94.7-18.4%, respectively). In contrast, there was no statistical difference in neutrophil count. Regarding clinical parameters, liver span was significantly reduced from (16.01 ± 2.65 cm) to (14.85 ± 2.26 cm) (p < 0.0001). There were significant improvements in growth parameters, including height-for-age and BMI-for-age for children aged ≥2 years (p = 0.034 and p = 0.074, respectively). Significant improvements in skeletal muscle mass and bone mineral content were also noticed at the end of the trial (p ≤ 0.05). In conclusion, medium-chain triglyceride therapy is found to improve biochemical and growth parameters in children with GSD-1 in Jordan.
Collapse
Affiliation(s)
- Hadil S. Subih
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (R.A.Q.); (S.J.)
| | - Reem A. Qudah
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (R.A.Q.); (S.J.)
| | - Sana Janakat
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (R.A.Q.); (S.J.)
| | - Hanadi Rimawi
- Royal Medical Services, P.O. Box 712996, Amman 11171, Jordan;
| | - Nour Amin Elsahoryi
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan;
| | - Linda Alyahya
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| |
Collapse
|
3
|
Li A, Yan C, Qiu J, Ji Y, Fu Y, Yan W. Adverse effects of plastic leachate and its component 2,4-DTBP on the early development of zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167246. [PMID: 37741407 DOI: 10.1016/j.scitotenv.2023.167246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/03/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Plastic waste has become a global environmental problem threatening the health of aquatic organisms especially via leachate. In this study, the test of zebrafish embryo showed adverse effects of leachate from some agricultural mulching films after UV light aging for 60 h. A typical phenolic antioxidant 2,4-di-tert-butylphenol (2,4-DTBP) was detected in the leachate and tested further for the zebrafish embryo biotoxicity. The microplastic leachate (6, 8 g/L, mass concentration measured by weight of plastic) increased the death and malformation rates, and reduced the hatching rate, heart rate, and body length of zebrafish larvae in the 96-hour early development period. Similar adverse effects were also caused by the 2,4-DTBP (0.01, 0.1, 1.0 mg/L, corresponding to 0.049, 0.49, and 4.85 μM) to some degree but could not completely explain the significant influences caused by the plastic leachate. Transcriptome analysis of zebrafish embryos exposed to the 2,4-DTBP for 96 h showed that the protein, fat, and carbohydrate digestion and absorption pathways, pancreatic secretion, PPAR signaling pathway, tryptophan metabolism, and adipocytokine signaling pathway were considerably down-regulated, but the cholesterol metabolism pathway was up-regulated in larval zebrafish. The altered transcriptional expression of mRNA at early development stage (96 h post fertilization) of zebrafish suggested that the 2,4-DTBP caused reduction of digestive capacity and pancreatic secretory function, and adversely affected processes associated with energy metabolism and glycolipid metabolism of larval zebrafish. This study helps us further understanding the effects of plastic leachate on the early development of fishes.
Collapse
Affiliation(s)
- Aifeng Li
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Chen Yan
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Jiangbing Qiu
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Ying Ji
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Yilei Fu
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Wenhui Yan
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
4
|
Wang Z, Zhao R, Jia X, Li X, Ma L, Fu H. Three novel SLC37A4 variants in glycogen storage disease type 1b and a literature review. J Int Med Res 2023; 51:3000605231216633. [PMID: 38087503 PMCID: PMC10718061 DOI: 10.1177/03000605231216633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Glycogen storage disease type 1b (GSD1b) is a rare genetic disorder, resulting from mutations in the SLC37A4 gene located on chromosome 11q23.3. Although the SLC37A4 gene has been identified as the pathogenic gene for GSD1b, the complete variant spectrum of this gene remains to be fully elucidated. In this study, we present three patients diagnosed with GSD1b through genetic testing. We detected five variants of the SLC37A4 gene in these three patients, with three of these mutations (p. L382Pfs*15, p. G117fs*28, and p. T312Sfs*13) being novel variants not previously reported in the literature. We also present a literature review and general overview of the currently reported SLC37A4 gene variants. Our study expands the mutation spectrum of SLC37A4, which may help enable genetic testing to facilitate prompt diagnosis, appropriate intervention, and genetic counseling for affected families.
Collapse
Affiliation(s)
- Zhuolin Wang
- Department of Gastroenterology, Hebei Children's Hospital, 133 Jianhua South Street, Shijiazhuang 050031, Hebei Province, China
| | - Ruiqin Zhao
- Department of Gastroenterology, Hebei Children's Hospital, 133 Jianhua South Street, Shijiazhuang 050031, Hebei Province, China
| | - Xiaoyun Jia
- Department of Gastroenterology, Hebei Children's Hospital, 133 Jianhua South Street, Shijiazhuang 050031, Hebei Province, China
| | - Xiaolei Li
- Department of Gastroenterology, Hebei Children's Hospital, 133 Jianhua South Street, Shijiazhuang 050031, Hebei Province, China
| | - Li Ma
- Department of Neonatology, Hebei Children's Hospital, 133 Jianhua South Street, Shijiazhuang 050031, Hebei Province, China
| | - Haiyan Fu
- Department of Gastroenterology, Hebei Children's Hospital, 133 Jianhua South Street, Shijiazhuang 050031, Hebei Province, China
| |
Collapse
|
5
|
Zhong J, Gou Y, Zhao P, Dong X, Guo M, Li A, Hao A, Luu HH, He TC, Reid RR, Fan J. Glycogen storage disease type I: Genetic etiology, clinical manifestations, and conventional and gene therapies. PEDIATRIC DISCOVERY 2023; 1:e3. [PMID: 38370424 PMCID: PMC10874634 DOI: 10.1002/pdi3.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/11/2023] [Indexed: 02/20/2024]
Abstract
Glycogen storage disease type I (GSDI) is an inherited metabolic disorder characterized by a deficiency of enzymes or proteins involved in glycogenolysis and gluconeogenesis, resulting in excessive intracellular glycogen accumulation. While GSDI is classified into four different subtypes based on molecular genetic variants, GSDIa accounts for approximately 80%. GSDIa and GSDIb are autosomal recessive disorders caused by deficiencies in glucose-6-phosphatase (G6Pase-α) and glucose-6-phosphate-transporter (G6PT), respectively. For the past 50 years, the care of patients with GSDI has been improved following elaborate dietary managements. GSDI patients currently receive dietary therapies that enable patients to improve hypoglycemia and alleviate early symptomatic signs of the disease. However, dietary therapies have many limitations with a risk of calcium, vitamin D, and iron deficiency and cannot prevent long-term complications, such as progressive liver and renal failure. With the deepening understanding of the pathogenesis of GSDI and the development of gene therapy technology, there is great progress in the treatment of GSDI. Here, we review the underlying molecular genetics and the current clinical management strategies of GSDI patients with an emphasis on promising experimental gene therapies.
Collapse
Affiliation(s)
- Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangyu Dong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Meichun Guo
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Aohua Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ailing Hao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| |
Collapse
|
6
|
Gümüş E, Özen H. Glycogen storage diseases: An update. World J Gastroenterol 2023; 29:3932-3963. [PMID: 37476587 PMCID: PMC10354582 DOI: 10.3748/wjg.v29.i25.3932] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/15/2023] [Accepted: 04/30/2023] [Indexed: 06/28/2023] Open
Abstract
Glycogen storage diseases (GSDs), also referred to as glycogenoses, are inherited metabolic disorders of glycogen metabolism caused by deficiency of enzymes or transporters involved in the synthesis or degradation of glycogen leading to aberrant storage and/or utilization. The overall estimated GSD incidence is 1 case per 20000-43000 live births. There are over 20 types of GSD including the subtypes. This heterogeneous group of rare diseases represents inborn errors of carbohydrate metabolism and are classified based on the deficient enzyme and affected tissues. GSDs primarily affect liver or muscle or both as glycogen is particularly abundant in these tissues. However, besides liver and skeletal muscle, depending on the affected enzyme and its expression in various tissues, multiorgan involvement including heart, kidney and/or brain may be seen. Although GSDs share similar clinical features to some extent, there is a wide spectrum of clinical phenotypes. Currently, the goal of treatment is to maintain glucose homeostasis by dietary management and the use of uncooked cornstarch. In addition to nutritional interventions, pharmacological treatment, physical and supportive therapies, enzyme replacement therapy (ERT) and organ transplantation are other treatment approaches for both disease manifestations and long-term complications. The lack of a specific therapy for GSDs has prompted efforts to develop new treatment strategies like gene therapy. Since early diagnosis and aggressive treatment are related to better prognosis, physicians should be aware of these conditions and include GSDs in the differential diagnosis of patients with relevant manifestations including fasting hypoglycemia, hepatomegaly, hypertransaminasemia, hyperlipidemia, exercise intolerance, muscle cramps/pain, rhabdomyolysis, and muscle weakness. Here, we aim to provide a comprehensive review of GSDs. This review provides general characteristics of all types of GSDs with a focus on those with liver involvement.
Collapse
Affiliation(s)
- Ersin Gümüş
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children’s Hospital, Ankara 06230, Turkey
| | - Hasan Özen
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Hacettepe University Faculty of Medicine, Ihsan Dogramaci Children’s Hospital, Ankara 06230, Turkey
| |
Collapse
|
7
|
Dale DC, Bolyard AA, Makaryan V. The promise of novel treatments for severe chronic neutropenia. Expert Rev Hematol 2023; 16:1025-1033. [PMID: 37978893 DOI: 10.1080/17474086.2023.2285987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Severe chronic neutropenia, i.e. absolute neutrophil count (ANC) less than 0.5 × 109/L, is a serious health problem because it predisposes patients to recurrent bacterial infections. Management radically changed with the discovery that granulocyte colony-stimulating factor (G-CSF) could be used to effectively treat most patients; therapy required regular subcutaneous injections. In the early days of G-CSF therapy, there were concerns that it might somehow overstimulate the bone marrow and cause myelodysplasia (MDS) or acute myeloid leukemia (AML). Detailed research records from the Severe Chronic Neutropenia International Registry (SCNIR) indicate that this is a relatively low-risk event. The research records suggest that certain patient groups are primarily at risk. Presently, allogeneic hematopoietic stem cell therapy serves as an alternate form of therapy. AREAS COVERED Due to these concerns and the desire for an easy-to-take oral alternative, several new treatments are under investigation. These treatments include neutrophil elastase inhibitors, SGLT-2 inhibitors, mavorixafor - an oral CXCR4 inhibitor, gene therapy, and gene editing. EXPERT OPINION All of these alternatives to G-CSF are promising. The risks, relative benefits, and costs are yet to be determined.
Collapse
Affiliation(s)
- David C Dale
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Vahagn Makaryan
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Zou YG, Wang H, Li WW, Dai DL. Challenges in pediatric inherited/metabolic liver disease: Focus on the disease spectrum, diagnosis and management of relatively common disorders. World J Gastroenterol 2023; 29:2114-2126. [PMID: 37122598 PMCID: PMC10130973 DOI: 10.3748/wjg.v29.i14.2114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
The clinical scenario of pediatric liver disease is becoming more intricate due to changes in the disease spectrum, in which an increasing number of inherited/ metabolic liver diseases are reported, while infectious diseases show a decreasing trend. The similar clinical manifestations caused by inherited/metabolic diseases might be under-recognized or misdiagnosed due to nonspecific characteristics. A delayed visit to a doctor due to a lack of symptoms or mild symptoms at an early stage will result in late diagnosis and treatment. Moreover, limited diagnostic approaches, especially liver biopsy, are not easily accepted by pediatric patients, leading to challenges in etiological diagnosis. Liver dysfunction due to inherited/metabolic diseases is often caused by a variety of metabolites, so precision treatment is difficult; symptomatic treatment is a compelling option for inherited disorders.
Collapse
Affiliation(s)
- Yi-Gui Zou
- Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases and Endoscopy Center, Shenzhen Children's Hospital, Shenzhen 518026, Guangdong Province, China
| | - Huan Wang
- Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases and Endoscopy Center, Shenzhen Children's Hospital, Shenzhen 518026, Guangdong Province, China
| | - Wen-Wen Li
- Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases and Endoscopy Center, Shenzhen Children's Hospital, Shenzhen 518026, Guangdong Province, China
| | - Dong-Ling Dai
- Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases and Endoscopy Center, Shenzhen Children's Hospital, Shenzhen 518026, Guangdong Province, China
| |
Collapse
|
9
|
Chou JY, Mansfield BC. Gene therapy and genome editing for type I glycogen storage diseases. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1167091. [PMID: 39086673 PMCID: PMC11285695 DOI: 10.3389/fmmed.2023.1167091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 08/02/2024]
Abstract
Type I glycogen storage diseases (GSD-I) consist of two major autosomal recessive disorders, GSD-Ia, caused by a reduction of glucose-6-phosphatase-α (G6Pase-α or G6PC) activity and GSD-Ib, caused by a reduction in the glucose-6-phosphate transporter (G6PT or SLC37A4) activity. The G6Pase-α and G6PT are functionally co-dependent. Together, the G6Pase-α/G6PT complex catalyzes the translocation of G6P from the cytoplasm into the endoplasmic reticulum lumen and its subsequent hydrolysis to glucose that is released into the blood to maintain euglycemia. Consequently, all GSD-I patients share a metabolic phenotype that includes a loss of glucose homeostasis and long-term risks of hepatocellular adenoma/carcinoma and renal disease. A rigorous dietary therapy has enabled GSD-I patients to maintain a normalized metabolic phenotype, but adherence is challenging. Moreover, dietary therapies do not address the underlying pathological processes, and long-term complications still occur in metabolically compensated patients. Animal models of GSD-Ia and GSD-Ib have delineated the disease biology and pathophysiology, and guided development of effective gene therapy strategies for both disorders. Preclinical studies of GSD-I have established that recombinant adeno-associated virus vector-mediated gene therapy for GSD-Ia and GSD-Ib are safe, and efficacious. A phase III clinical trial of rAAV-mediated gene augmentation therapy for GSD-Ia (NCT05139316) is in progress as of 2023. A phase I clinical trial of mRNA augmentation for GSD-Ia was initiated in 2022 (NCT05095727). Alternative genetic technologies for GSD-I therapies, such as gene editing, are also being examined for their potential to improve further long-term outcomes.
Collapse
Affiliation(s)
- Janice Y. Chou
- Section on Cellular Differentiation, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
10
|
Shimizu S, Sakamoto S, Yamada M, Fukuda A, Yanagi Y, Uchida H, Mimori K, Shoji K, Funaki T, Miyairi I, Nakano N, Haga C, Yoshioka T, Imadome KI, Horikawa R, Kasahara M. Immunological features and complications in patients with glycogen storage disease 1b after living donor liver transplantation. Pediatr Transplant 2021; 25:e14104. [PMID: 34339091 DOI: 10.1111/petr.14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/11/2021] [Accepted: 07/08/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND LT is an elective treatment choice for children diagnosed with GSD1b that can improve their quality of life and stabilize their glucose intolerance. However, careful attention should be paid to immunosuppression after LT due to the susceptibility to infection because of neutropenia and neutrophil dysfunction in GSD1b patients. This study revealed the immunological features and complications in the early post-LT period. METHODS We compared findings between 11 (1.9%) children with GSD1b and 273 children with BA. Analyses using the PSM were performed to overcome selection bias. RESULTS Despite persistent low tacrolimus trough levels in GSD1b patients, none of these children developed TCMR within 1 month after LDLT (GSD1b: 0/11 [0%] vs. BA: 86/273 [31.5%], p = .038). This result was also confirmed in PSM. The incidence of bloodstream infections was higher in GSD1b patients than in BA patients in the early phase of the post-transplant period (GSD1b: 4/11 [36.4%] vs. BA: 33/273 [12.1%], p = .041), but not reach statistical significance in PSM. In a phenotypic analysis, the ratio of CD8+ T cells in GSD1b recipients' peripheral blood mononuclear cell samples was lower than in recipients with BA through the first month after LDLT. CONCLUSIONS We found that GSD1b recipients were more likely to develop postoperative bloodstream infection than recipients with BA but did not experience TCMR despite low tacrolimus levels in the early post-LDLT period. A tailored immunosuppression protocol should be prepared for GSD1b recipients after LDLT.
Collapse
Affiliation(s)
- Seiichi Shimizu
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Seisuke Sakamoto
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masaki Yamada
- Department of Advanced Medicine for Viral Infections, National Center for Child Health and Development, Tokyo, Japan
| | - Akinari Fukuda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yusuke Yanagi
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Hajime Uchida
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kotaro Mimori
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kensuke Shoji
- Division of Infectious Diseases, National Center for Child Health and Development, Tokyo, Japan
| | - Takanori Funaki
- Division of Infectious Diseases, National Center for Child Health and Development, Tokyo, Japan
| | - Isao Miyairi
- Division of Infectious Diseases, National Center for Child Health and Development, Tokyo, Japan
| | - Noriyuki Nakano
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Chizuko Haga
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Ken-Ichi Imadome
- Department of Advanced Medicine for Viral Infections, National Center for Child Health and Development, Tokyo, Japan
| | - Reiko Horikawa
- Department of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
11
|
Du C, Li Z, Wei H, Zhang M, Hu M, Zhang C, Luo X, Liang Y. Clinical analysis and long-term treatment monitoring of 3 patients with glycogen storage disease type Ib. BMC Med Genomics 2021; 14:81. [PMID: 33731098 PMCID: PMC7972195 DOI: 10.1186/s12920-021-00936-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/09/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND To investigate the clinical and genetic characteristics of patients with glycogen storage disease type Ib (GSD Ib). CASE PRESENTATION This report retrospectively analyzed the clinical data of 3 patients with GSD Ib admitted into our hospital, and summarized their onset characteristics, clinical manifestations, related examinations and treatment as well as mutational spectrum. After gene sequencing, the diagnosis of GSD Ib was confirmed in all 3 patients. Five variants of SLC37A4 gene were detected, of which c. 572C > T was the common variant and c. 680G > A was a novel variant. The 3 cases of GSD Ib were mainly affected by liver enlargement, growth retardation, etc., and all had a history of repeated infections. At the onset, patients mainly manifested as mildly elevated alanine-aminotransferase (ALT), accompanied by decreased absolute neutrophil count (ANC), hypertriglyceridemia, and metabolic disorders (hypoglycemia, hyperlactic acidemia, metabolic acidosis, etc.). After long-term treatment by oral uncooked cornstarch, the abnormal liver enzymes gradually returned to normal, and metabolic abnormalities were basically controlled most of the time. With increasing age, ANC of 2 patients decreased progressively, whereas the times of infections was reduced. CONCLUSIONS We reported 3 cases with GSD Ib and a novel SLC37A4 variant. The possibility of GSD type Ib should be kept on alert when a patient suffers recurrent infections, accompanied by hepatomegaly, elevated liver enzymes, hypoglycemia, dyslipidemia, and metabolic disorders.
Collapse
Affiliation(s)
- Caiqi Du
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhuoguang Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Wei
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minghui Hu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Liang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Wang F, Wang F, Zhou X, Yi Y, Zhao J. A Novel Lipoprotein Lipase Mutation in an Infant With Glycogen Storage Disease Type-Ib and Severe Hypertriglyceridemia. Front Pediatr 2021; 9:671536. [PMID: 34485189 PMCID: PMC8416156 DOI: 10.3389/fped.2021.671536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Glycogen storage disease (GSD) Ib is a rare genetic metabolic disorder caused by gene mutation in the glucose 6-phosphate transport gene SLC37A4 (OMIM# 602671). This study aimed to explore the association between a novel lipoprotein lipase (LPL) mutation and severe hypertriglyceridemia in a GSD Ib infant with severe hypertriglyceridemia. A 5-month-old girl was admitted to our hospital because of repeated episodes of low-grade fever over the past month and because of neutropenia. The patient was diagnosed with GSD Ib and severe hypertriglyceridemia based on clinical manifestations and laboratory test results. Next-generation sequencing and Sanger sequencing were then applied to DNA from the peripheral blood of the patient and her parents to analyze gene mutations. Pathogenicity prediction analysis was performed using Sorting Intolerant From Tolerant (SIFT) and PolyPhen-2 platforms. The results revealed that this infant carried a compound heterozygous variation in the SLC37A4 gene, a c.1043T > C (p.L348P) mutation derived from her mother and a c.572C > T (p.P191L) mutation derived from her father. In addition, a novel c.483delA (p. A162Pfs*10) frameshift mutation was found in the patient's LPL gene exon 4, which was derived from the heterozygous carrier of her father. The SIFT and PolyPhen-2 prediction programs indicated that these mutations were likely harmful. Medium-chain triglyceride milk and granulocyte colony-stimulating factor subcutaneous injection alleviated the symptoms. Our findings identified a novel LPL gene frameshift mutation combined with SLC37A4 gene compound heterozygous mutations in a GSD Ib infant with severe hypertriglyceridemia.
Collapse
Affiliation(s)
- Fengyu Wang
- Department of Pediatrics, Zibo Central Hospital, Shandong First Medical University, Zibo, China
| | - Fengli Wang
- Department of Radiology, Zibo Central Hospital, Shandong First Medical University, Zibo, China
| | - Xiaojun Zhou
- Department of Pediatrics, Zibo Central Hospital, Shandong First Medical University, Zibo, China
| | - Yingjie Yi
- Department of Pediatrics, Zibo Central Hospital, Shandong First Medical University, Zibo, China
| | - Jie Zhao
- Department of Pediatrics, Zibo Central Hospital, Shandong First Medical University, Zibo, China
| |
Collapse
|
13
|
Xu Q, Tang H, Duan L, Zuo X, Shi X, Li Y, Zhao H, Zhang H. A novel SLC37A4 missense mutation in GSD-Ib without hepatomegaly causes enhanced leukocytes endoplasmic reticulum stress and apoptosis. Mol Genet Genomic Med 2020; 9:e1568. [PMID: 33280276 PMCID: PMC7963412 DOI: 10.1002/mgg3.1568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 11/19/2022] Open
Abstract
Background Glycogen storage disease (GSD) type Ib is an autosomal recessive disease caused by defects of glucose‐6‐phosphate transporter (G6PT), encoded by the SLC37A4 gene. To date, over 100 mutations have been revealed in the SLC37A4 gene. GSD‐Ib patients manifest a metabolic phenotype of impaired blood glucose homeostasis and also carry the additional complications of neutropenia and myeloid dysfunction. Methods Here, we present two daughters with an initial diagnosis of gout in a Chinese consanguineous family. Whole‐exome sequencing was performed to identify the mutations. The mechanism of leukocytopenia was investigated. Results Whole‐exome sequencing analysis of the proband identified a novel homozygous p.P119L mutation in SLC37A4, leading to a diagnosis of GSD‐Ib. We found that the potential pathogenic p.P119L mutation leads to an unusual phenotype characterized by gout at onset, and GSD‐Ib arising from this variant also manifests multiple metabolic abnormalities, leukocytopenia, and anemia, but no hepatomegaly. The leukocytes from the proband showed increased mRNA levels of sXBP‐1, BIP, and CHOP genes in the unfolded protein response pathway, and enhanced Bax mRNA and caspase‐3 activity, which might contribute to leukocytopenia. Conclusion Our findings broaden the variation spectrum of SLC37A4 and suggest no strict genotype–phenotype correlations in GSD‐Ib patients.
Collapse
Affiliation(s)
- Qianyun Xu
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China
| | - Haiyan Tang
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liping Duan
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoliu Shi
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yisha Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Hongjun Zhao
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China
| | - Huali Zhang
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China.,Sepsis Translational Medicine Key Laboratory of Hunan, Central South University, Changsha, China
| |
Collapse
|
14
|
Liang Y, Du C, Wei H, Zhang C, Zhang M, Hu M, Fang F, Luo X. Genotypic and clinical analysis of 49 Chinese children with hepatic glycogen storage diseases. Mol Genet Genomic Med 2020; 8:e1444. [PMID: 32772503 PMCID: PMC7549605 DOI: 10.1002/mgg3.1444] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Glycogen storage disease (GSD) is a relatively rare inborn metabolic disorder, our study aims to investigate the genotypic and clinical feature of hepatic GSDs in China. METHODS The clinical and genotypic data of 49 patients with hepatic GSDs were collected retrospectively and analyzed. RESULTS After gene sequencing, 49 patients were diagnosed as GSDs, including GSD Ia (24 cases), GSD IIIa (11 cases), GSD IXa (8 cases), GSD VI (3 cases) and GSD Ib (3 cases). About 45 gene variants of G6PC, AGL, PHKA2, PYGL, and SLC37A4 were detected; among which, 22 variants were unreported previously. c.648G>T (p. Leu216Leu) of G6PC exon 5 is the most common variant for GSD Ia patients (20/24,83.33%), splice variant c.1735+1G>T of AGL exon 13 is relatively common among GSD IIIa, while novel variant accounts for the majority of GSD IXa and GSD VI patients. As for clinical features, there was no significant difference in the onset age among group GSD Ia, GSD IIIa, and GSD IXa, but the age at diagnosis and average disease duration from diagnosis of GSD Ia were significantly higher than GSD IIIa and GSD IXa. Body weight of GSD patients was basically normal, but growth retardation was relatively common among them, especially for GSD Ia patients; and renomegaly was only found in GSD Ia. Besides, serum cholesterol, triglyceride, lactic acid, and uric acid in GSD Ia were significantly higher than those with GSD IIIa and IXa (p < 0.05); but ALT, AST, CK, and LDH of GSD III and GSD IXa were significantly higher when compared to GSD Ia (p < 0.05). CONCLUSIONS All hepatic GSDs patients share similarity in clinical and biochemical spectrum, but delayed diagnosis and biochemical metabolic abnormalities were common in GSD Ia. For family with GSD proband, pedigree analysis and genetic testing is strongly recommended.
Collapse
Affiliation(s)
- Yan Liang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caiqi Du
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wei
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghui Hu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Fang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Nagala M, Crocker PR. Towards understanding the cell surface phenotype, metabolic properties and immune functions of resident macrophages of the peritoneal cavity and splenic red pulp using high resolution quantitative proteomics. Wellcome Open Res 2020. [DOI: 10.12688/wellcomeopenres.16061.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background:Resident macrophages (Mϕs) are distributed throughout the body and are important for maintaining tissue homeostasis and for defence against infections. Tissue Mϕs are highly adapted to their microenvironment and thought to mediate tissue-specific functions involving metabolism and immune defence that are not fully elucidated. Methods:We have used high resolution quantitative proteomics to gain insights into the functions of two types of resident tissue Mϕs: peritoneal cavity Mϕs and splenic red pulp Mϕs. The cellular expression levels of many proteins were validated by flow cytometry and were consistently in agreement with the proteomics data.Results:Peritoneal and splenic red pulp macrophages displayed major differences in cell surface phenotype reflecting their adaptation to different tissue microenvironments and tissue-specific functions. Peritoneal Mϕs were shown to be enriched in a number of key enzymes and metabolic pathways normally associated with the liver, such as metabolism of fructose, detoxification, nitrogen homeostasis and the urea cycle. Supporting these observations, we show that peritoneal Mϕs are able to utilise glutamine and glutamate which are rich in peritoneum for urea generation. In comparison, splenic red pulp Mϕs were enriched in proteins important for adaptive immunity such as antigen presenting MHC molecules, in addition to proteins required for erythrocyte homeostasis and iron turnover. We also show that these tissue Mϕs may utilise carbon and nitrogen substrates for different metabolic fates to support distinct tissue-specific roles.Conclusions:This study provides new insights into the functions of tissue Mϕs in immunity and homeostasis. The comprehensive proteomics data sets are a valuable resource for biologists and immunologists.
Collapse
|
16
|
Abstract
The technological advances in diagnostics and therapy of primary immunodeficiency are progressing at a fast pace. This review examines recent developments in the field of inborn errors of immunity, from their definition to their treatment. We will summarize the challenges posed by the growth of next-generation sequencing in the clinical setting, touch briefly on the expansion of the concept of inborn errors of immunity beyond the classic immune system realm, and finally review current developments in targeted therapies, stem cell transplantation, and gene therapy.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.,Childhood Immunology, Department of Pediatrics, University Hospitals Leuven, ERN-RITA Core Member, Herestraat 49, Leuven, 3000, Belgium
| | - Isabelle Meyts
- Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.,Childhood Immunology, Department of Pediatrics, University Hospitals Leuven, ERN-RITA Core Member, Herestraat 49, Leuven, 3000, Belgium
| |
Collapse
|
17
|
Neutropenia in glycogen storage disease Ib: outcomes for patients treated with granulocyte colony-stimulating factor. Curr Opin Hematol 2020; 26:16-21. [PMID: 30451720 DOI: 10.1097/moh.0000000000000474] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Glycogen storage disease Ib (GSD Ib) is characterized by hepatomegaly, hypoglycemia, neutropenia, enterocolitis and recurrent bacterial infections. It is attributable to mutations in G6PT1, the gene for the glucose-6-phosphate transporter responsible for transport of glucose into the endoplasmic reticulum. Neutropenia in GSD Ib is now frequently treated with granulocyte colony-stimulating factor (G-CSF). We formed a cooperative group to review outcomes of the long-term treatment of GSD Ib patients treated with G-CSF. RECENT FINDINGS The study enrolled 103 patients (48 men and 55 women), including 47 currently adult patients. All of these patients were treated with G-CSF, starting at a median age of 3.8 years (range 0.04-33.9 years) with a median dose of 3.0 mcg/kg/day (range 0.01-93.1 mcg/kg/day) for a median of 10.3 years (range 0.01-29.3 years). Neutrophils increased in response to G-CSF in all patients (median values before G-CSF 0.2 × 10/l, on G-CSF 1.20 x 10/l). Treatment increased spleen size (before G-CSF, 47%, on treatment on G-CSF 76%), and splenomegaly was the dose-limiting adverse effect of treatment (pain and early satiety). Clinical observations and records attest to reduce frequency of infectious events and the severity of inflammatory bowel symptoms, but fever and recurrent infections remain a significant problem. In the cohort of patients followed carefully through the Severe Chronic Neutropenia International Registry, four patients have developed myelodysplasia or acute myeloid leukemia and we are aware of four other cases, (altogether seven on G-CSF, one never treated with G-CSF). Liver transplantation in five patients did not correct neutropenia. Four patients had hematopoietic stem cell transplantation; two adults and two children were transplanted; one adult and one child survived. SUMMARY GSD Ib is a complex disorder of glucose metabolism causing severe chronic neutropenia. G-CSF is effective to raise blood neutrophil counts and reduce fevers and infections in most patients. In conjunction with other therapies (salicylates, mesalamine sulfasalazine and prednisone), G-CSF ameliorates inflammatory bowel symptoms, but doses must be limited because it increases spleen size associated with abdominal pain.
Collapse
|
18
|
Shimizu S, Sakamoto S, Horikawa R, Fukuda A, Uchida H, Takeda M, Yanagi Y, Irie R, Yoshioka T, Kasahara M. Longterm Outcomes of Living Donor Liver Transplantation for Glycogen Storage Disease Type 1b. Liver Transpl 2020; 26:57-67. [PMID: 31587472 DOI: 10.1002/lt.25649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
Glycogen storage disease (GSD) type 1b (Online Mendelian Inheritance in Man [OMIM] 232220) is an autosomal recessive inborn error of carbohydrate metabolism caused by defects in glucose-6-phosphate translocase. GSD1b patients have severe hypoglycemia with several clinical manifestations of hepatomegaly, obesity, a doll-like face, and neutropenia. Liver transplantation (LT) has been indicated for severe glucose intolerance, poor metabolic control (PMC), and poor growth (PG). We retrospectively reviewed 11 children with GSD1b who underwent living donor liver transplantation (LDLT) at the National Center for Child Health and Development in Tokyo, Japan. Between November 2005 and December 2018, 495 children underwent LDLT with an overall 10-year patient and graft survival of 90.6% and 88.9%, respectively. Of these, LT was indicated for 11 patients with GSD1b. All patients are doing well with the stabilization of glucose intolerance and decreased hospitalization for infectious complications. Demand for granulocyte colony-stimulating factor significantly decreased. However, although LT stabilized the blood glucose level, the platelet function was not improved. The posttransplant developmental quotient (DQ) remained similar to the pretransplant DQ without deterioration. LDLT is a feasible procedure for GSD1b patients with regard to the longterm prognosis. LT should be considered for patients with severe glucose intolerance to protect the cognitive function against hypoglycemic encephalopathy and to ameliorate PMC and PG.
Collapse
Affiliation(s)
- Seiichi Shimizu
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Seisuke Sakamoto
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Reiko Horikawa
- Department of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | - Akinari Fukuda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Hajime Uchida
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masahiro Takeda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yusuke Yanagi
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Rie Irie
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
19
|
Aoun B, Sanjad S, Degheili JA, Barhoumi A, Bassyouni A, Karam PE. Kidney and Metabolic Phenotypes in Glycogen Storage Disease Type-I Patients. Front Pediatr 2020; 8:591. [PMID: 33042926 PMCID: PMC7518374 DOI: 10.3389/fped.2020.00591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022] Open
Abstract
Patients and Methods: A retrospective chart review of 32 GSD- I patients, followed at the American University of Beirut Medical Center, between 2007 and 2018 was conducted. Diagnosis was confirmed by enzymatic and/or genetic studies. Clinical presentation, growth, and kidney outcome were assessed. All patients were evaluated for body mass index, blood parameters of metabolic control including uric acid, alanine, lactic acid, and triglycerides in blood. Kidney evaluation included creatinine clearance, microalbuminuria, citraturia, and calciuria as well as urine microalbumin/creatinine ratio. Results: Almost one third of GSD-I patients developed microalbuminuria. This was detected below 7 months of age in 36% of patients who required early treatment with ACEI with significant reduction in albuminuria. Kidney stones were present in 6% and were associated with hypercalciuria and hypocitraturia. Poor metabolic control reflected by hyperuricemia, lactic acidosis, and hyperalaninemia were noted only in patients who developed microalbuminuria. Conclusion: Glomerular injury may appear in early infancy in poorly controlled patients. Adequate metabolic control and ACEI therapy may improve kidney outcome in GSD I patients. Plasma alanine appears to be a promising and reliable marker reflecting metabolic control in GSD-I patients.
Collapse
Affiliation(s)
- Bilal Aoun
- Division of Pediatric Nephrology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sami Sanjad
- Division of Pediatric Nephrology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jad A Degheili
- Division of Urology, Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Abir Barhoumi
- Department of Nutrition, American University of Beirut Medical Center, Beirut, Lebanon
| | - Amina Bassyouni
- Inherited Metabolic Diseases Program, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Pascale E Karam
- Inherited Metabolic Diseases Program, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
20
|
Zhang Y, Sun H, Wan N. Mutation analysis of SLC37A4 in a patient with glycogen storage disease-type Ib. J Int Med Res 2019; 47:5996-6003. [PMID: 31617422 PMCID: PMC7045669 DOI: 10.1177/0300060519867819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Objective The aim of the study was to investigate the relationship between SLC37A4 gene mutation and clinical phenotype in a patient with glycogen storage disease-type I. Methods The clinical data of one patient with glycogen storage disease-type I accumulation syndrome and the results of SLC37A4 gene testing were analyzed. DNA from peripheral blood was used to analyze the SLC37A4 mutations of the patient and his parents. Results The patient carried a compound heterozygous mutation of SLC37A4, his mother was heterozygous for the c.572C > T (p.P191L) mutation, and his father was heterozygous for the c.359C > T (p.P120L) mutation. Conclusion The patient had two gene mutations: c.359C > T (p.P120L), which is closely related to glycogen storage disease-type I, and c.572C > T (p.P191L), which is a known mutation in the disease.
Collapse
Affiliation(s)
- Yamei Zhang
- Department of Pediatrics, Beijing Jishuitan Hospital, Beijing, China
| | - Huihui Sun
- Department of Pediatrics, Beijing Jishuitan Hospital, Beijing, China
| | - Naijun Wan
- Department of Pediatrics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
21
|
In vitro and in vivo translational models for rare liver diseases. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1003-1018. [DOI: 10.1016/j.bbadis.2018.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
|