1
|
Lecce E, Conti A, Del Vecchio A, Felici F, Scotto di Palumbo A, Sacchetti M, Bazzucchi I. Cross-education: motor unit adaptations mediate the strength increase in non-trained muscles following 8 weeks of unilateral resistance training. Front Physiol 2025; 15:1512309. [PMID: 39839528 PMCID: PMC11747592 DOI: 10.3389/fphys.2024.1512309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Early increases in muscle strength following unilateral resistance training are typically accompanied by strength gains in the contralateral untrained muscles, a phenomenon known as cross-education. However, the specific motor unit adaptations responsible for this gain transfer remain poorly understood. To address this gap, we recorded myoelectrical activity from the biceps brachii using high-density electromyography. Methods Nine participants performed 8-week unilateral resistance training and were compared to nine control individuals who did no intervention. Discharge characteristics of longitudinally tracked motor units were assessed during maximal voluntary contractions and isometric ramp contractions at 35% and 70% of the maximal voluntary force (MVF) at baseline (T0), 4 weeks (T1), and 8 weeks (T2) post-intervention. Results MVF increased by 7% in untrained muscles at T1 and 10% at T2 (p < 0.05). These gains were accompanied by significant decreases in motor unit recruitment thresholds (p < 0.01) and higher net discharge rate (i.e., gain in discharge rate from recruitment to peak) following intervention (p < 0.05). Trained muscles presented greater MVF (+11%, T1; +19%, T2) with similar motor unit adaptations, including a lower recruitment threshold (p < 0.01) and a higher net discharge rate (p < 0.01). Discussion Our findings indicate that higher strength in untrained muscles is associated with a higher net discharge rate, implying a greater spinal motoneuron output to muscles. The present results underscore the role of motor unit adaptations in the transfer of strength gains to non-trained muscles, offering novel insights into the neural mechanisms underlying cross-education.
Collapse
Affiliation(s)
- Edoardo Lecce
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of “Foro Italico, Rome, Italy
| | - Alessandra Conti
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of “Foro Italico, Rome, Italy
| | - Alessandro Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Faculty of Engineering, Zentralinstitut für Medizintechnik (ZIMT), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Francesco Felici
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of “Foro Italico, Rome, Italy
| | - Alessandro Scotto di Palumbo
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of “Foro Italico, Rome, Italy
| | - Massimo Sacchetti
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of “Foro Italico, Rome, Italy
| | - Ilenia Bazzucchi
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of “Foro Italico, Rome, Italy
| |
Collapse
|
2
|
Duan T, He Z, Dai J, Xie L, Shi Y, Chen L, Song J, Li G, Zhang W. Effects of unilateral and bilateral contrast training on the lower limb sports ability of college basketball players. Front Physiol 2024; 15:1452751. [PMID: 39651433 PMCID: PMC11621075 DOI: 10.3389/fphys.2024.1452751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/28/2024] [Indexed: 12/11/2024] Open
Abstract
Objective: The purpose of this study was to compare the impact of unilateral (U) and bilateral (B) contrast training on lower limb explosiveness, agility, and balance in college basketball athletes. Methods: Twenty male college basketball players were randomly assigned to either a unilateral group (U, n = 10) or a bilateral group (B, n = 10). Both groups underwent an 8week strength training program, with sessions held twice a week. The unilateral group performed six Bulgarian split squats and ten reverse lunge jump squats, while the bilateral group performed six barbell rear squats and ten double-leg vertical jumps. To comprehensively assess the training effects, the study utilized one-repetition maximum (1RM), countermovement jump (CMJ), 20m sprint, and single-leg hop tests to evaluate explosive power; the 505 and t-test to assess change-of-direction ability; and the Y-balance test (YBT) to evaluate dynamic balance. Paired sample t-tests were used to evaluate within-group changes, and a 2 (pre- and post-) × 2 (experimental and control groups) repeated measures analysis of variance (ANOVA) was used to assess between-group differences. Results: Within-group comparisons indicated that both unilateral and bilateral contrast training significantly improved all performance metrics. Between-group comparisons revealed that bilateral training was superior to unilateral training in improvements in 1RM and CMJ (p > 0.05) (growth rate of 1RM: B: 8.4%, U: 5.15%; growth rate of CMJ: B: 15.63%, U: 6.74%). Unilateral training showed greater improvements in the 20m sprint, dominant leg single-leg hop, YBT left, and YBT right (p > 0.05) (growth rate of 20m sprint: B: 5.43%, U: 10.41%; growth rate of advantage foot touch high: B: 4.56%, U: 9.35%; growth rate of YBT left: B: 3.77%, U: 8.53%; growth rate of YBT right: B: 4.72%, U: 13.8%). Unilateral training also significantly outperformed bilateral training in non-dominant leg single-leg hop, t-test, 505 left, and 505 right improvements (p < 0.05). Conclusion: Unilateral contrast training may offer advantages for enhancing change-of-direction ability and explosive power in the non-dominant leg, and it may also provide benefits for improving short-distance sprinting ability, explosive power in the dominant leg, and dynamic balance. In contrast, bilateral contrast training appears to be more effective for enhancing bilateral explosive power and may be more advantageous for increasing maximal strength.
Collapse
Affiliation(s)
- Tianyu Duan
- Digitalized Performance Training Laboratory, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Zongwei He
- Digitalized Performance Training Laboratory, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Jing Dai
- Digitalized Performance Training Laboratory, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Lin Xie
- Digitalized Performance Training Laboratory, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Yuer Shi
- Digitalized Performance Training Laboratory, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Lunxin Chen
- Digitalized Performance Training Laboratory, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Junyi Song
- Graduate School, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Guoxing Li
- Sports Training Institute, Guangzhou Sport University, Guangzhou, Guangdong, China
| | - Wenfeng Zhang
- Sports Training Institute, Guangzhou Sport University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Human Sports Performance Science, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Ben Othman A, Hadjizadeh Anvar S, Aragão-Santos JC, Chaouachi A, Behm DG. Age, Sex, and Training Specific Effects on Cross-Education Training. Pediatr Exerc Sci 2024:1-9. [PMID: 39265978 DOI: 10.1123/pes.2024-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/27/2024] [Accepted: 07/07/2024] [Indexed: 09/14/2024]
Abstract
An extensive number of publications have examined cross-education effects with adults, primarily investigating contralateral homologous (same) muscles. There are far fewer investigations on cross-education effects on contralateral heterologous (different) muscles and age (youth vs adult) and no studies investigating sex differences. Hence, the objective was to compare cross-education in female and male youth and young adults to contralateral homologous (chest press [CP], elbow flexors and extensors, handgrip isometric strength, and shot put) and heterologous (leg press, knee extension isometric strength, and countermovement jump) muscles. Twenty-eight female adults, 28 female youth, 28 male adults, and 28 male youth (total: 112) were examined before and after an 8-week (3 sessions/wk) unilateral, dominant arm, CP training program. Unilateral testing assessed dominant and nondominant leg press and CP 1-repetition maximum, knee extensors, elbow extensors, elbow flexors, and handgrip maximum voluntary isometric contraction (MVIC) strength, as well as shot put distance and countermovement jump height. Unilateral CP training induced training specific (CP 1-repetition maximum) and nonspecific (elbow extensors, elbow flexors, handgrip MVIC force, and shot put distance) improvements (P < .04, η2: .45-.85) but no significant lower body improvements. There was evidence for testing limb specificity as the dominant arm provided significantly (P < .021, η2: .17-.75) greater training gains than the nondominant arm. Youth's training adaptations exceeded with unilateral CP 1-repetition maximum, elbow extensors MVIC force, and shot put distance (P < .049, η2: .14-.49). No sex main effect differences were apparent. In conclusion, cross-education was training specific (greatest gains with upper body and dominant limbs) with greater benefits for youth and generally no sex differences with the exception of elbow extensors MVIC.
Collapse
Affiliation(s)
- Aymen Ben Othman
- Tunisian Research Laboratory "Sport Performance Optimisation", National Center of Medicine and Science in Sports, Tunis,Tunisia
| | - Saman Hadjizadeh Anvar
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NF,Canada
| | - José Carlos Aragão-Santos
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NF,Canada
- Department of Physical Education, Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, RO,Brazil
| | - Anis Chaouachi
- Tunisian Research Laboratory "Sport Performance Optimisation", National Center of Medicine and Science in Sports, Tunis,Tunisia
- High Institute of Sport and Physical Education, Ksar-Said, Manouba University, Tunis,Tunisia
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland,New Zealand
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NF,Canada
| |
Collapse
|
4
|
Seo F, Clouette J, Huang Y, Potvin‐Desrochers A, Lajeunesse H, Parent‐L'Ecuyer F, Traversa C, Paquette C, Churchward‐Venne TA. Changes in brain functional connectivity and muscle strength independent of elbow flexor atrophy following upper limb immobilization in young females. Exp Physiol 2024; 109:1557-1571. [PMID: 38935545 PMCID: PMC11363139 DOI: 10.1113/ep091782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
Muscle disuse induces a decline in muscle strength that exceeds the rate and magnitude of muscle atrophy, suggesting that factors beyond the muscle contribute to strength loss. The purpose of this study was to characterize changes in the brain and neuromuscular system in addition to muscle size following upper limb immobilization in young females. Using a within-participant, unilateral design, 12 females (age: 20.6 ± 2.1 years) underwent 14 days of upper arm immobilization using an elbow brace and sling. Bilateral measures of muscle strength (isometric and isokinetic dynamometry), muscle size (magnetic resonance imaging), voluntary muscle activation capacity, corticospinal excitability, cortical thickness and resting-state functional connectivity were collected before and after immobilization. Immobilization induced a significant decline in isometric elbow flexion (-21.3 ± 19.2%, interaction: P = 0.0440) and extension (-19.9 ± 15.7%, interaction: P = 0.0317) strength in the immobilized arm only. There was no significant effect of immobilization on elbow flexor cross-sectional area (CSA) (-1.2 ± 2.4%, interaction: P = 0.466), whereas elbow extensor CSA decreased (-2.9 ± 2.9%, interaction: P = 0.0177) in the immobilized arm. Immobilization did not differentially alter voluntary activation capacity, corticospinal excitability, or cortical thickness (P > 0.05); however, there were significant changes in the functional connectivity of brain regions related to movement planning and error detection (P < 0.05). This study reveals that elbow flexor strength loss can occur in the absence of significant elbow flexor muscle atrophy, and that the brain represents a site of functional adaptation in response to upper limb immobilization in young females.
Collapse
Affiliation(s)
- Freddie Seo
- Department of Kinesiology and Physical EducationMcGill UniversityMontrealQCCanada
| | - Julien Clouette
- Department of Kinesiology and Physical EducationMcGill UniversityMontrealQCCanada
| | - Yijia Huang
- Department of Kinesiology and Physical EducationMcGill UniversityMontrealQCCanada
| | - Alexandra Potvin‐Desrochers
- Department of Kinesiology and Physical EducationMcGill UniversityMontrealQCCanada
- Centre for Interdisciplinary Research in Rehabilitation of Greater MontrealMontrealQCCanada
| | - Henri Lajeunesse
- Department of Kinesiology and Physical EducationMcGill UniversityMontrealQCCanada
| | | | - Claire Traversa
- Department of Kinesiology and Physical EducationMcGill UniversityMontrealQCCanada
| | - Caroline Paquette
- Department of Kinesiology and Physical EducationMcGill UniversityMontrealQCCanada
- Centre for Interdisciplinary Research in Rehabilitation of Greater MontrealMontrealQCCanada
| | - Tyler A. Churchward‐Venne
- Department of Kinesiology and Physical EducationMcGill UniversityMontrealQCCanada
- Division of Geriatric MedicineMcGill UniversityMontrealQCCanada
- Research Institute of the McGill University Health CentreMontrealQCCanada
| |
Collapse
|
5
|
Wong V, Song JS, Yamada Y, Kataoka R, Hammert WB, Spitz RW, Loenneke JP. Is there evidence for the asymmetrical transfer of strength to an untrained limb? Eur J Appl Physiol 2024; 124:2503-2510. [PMID: 38568258 PMCID: PMC11322193 DOI: 10.1007/s00421-024-05472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/18/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE The literature predominantly addresses cross-education of strength in the dominant limb rather than the non-dominant limb, guided by the hypothesis of an asymmetrical transfer of strength from unilateral training protocols. The purpose of the study was to review the literature and determine how much evidence was available to support this claim. A meta-analysis was performed to estimate the magnitude of this hypothesized asymmetrical transfer of strength. METHODS A literature search of all possible records was implemented using Cochrane Library, PubMed, and Scopus from February 2022 to May 2022. Comparison of randomized controlled trials was computed. The change scores and standard deviations of those change scores were extracted for each group. Only three studies met the criteria, from which a total of five effect sizes were extracted and further analyzed. RESULTS The overall effect of resistance training of the dominant limb on strength transfer to the non-dominant limb relative to the effects of resistance training the non-dominant limb on strength transfer to the dominant (non-training) limb was 0.46 (SE 0.42). The analysis from this study resulted in minimal support for the asymmetry hypothesis. Given the small number of studies available, we provide the effect but note that the estimate is unlikely to be stable. CONCLUSION Although it is repeatedly stated that there is an asymmetrical transfer of strength, our results find little support for that claim. This is not to say that it does not exist, but additional research implementing a control group and a direct comparison between limbs is needed to better understand this question.
Collapse
Affiliation(s)
- Vickie Wong
- Department of Sport and Health, Solent University, Southampton, Hampshire, SO14 0YN, UK
| | - Jun Seob Song
- Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, P.O. Box 1848, University, MS, 38677, USA
| | - Yujiro Yamada
- Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, P.O. Box 1848, University, MS, 38677, USA
| | - Ryo Kataoka
- Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, P.O. Box 1848, University, MS, 38677, USA
| | - William B Hammert
- Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, P.O. Box 1848, University, MS, 38677, USA
| | - Robert W Spitz
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jeremy P Loenneke
- Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, P.O. Box 1848, University, MS, 38677, USA.
| |
Collapse
|
6
|
Song JS, Hammert WB, Kataoka R, Yamada Y, Kang A, Wong V, Spitz RW, Kassiano W, Loenneke JP. Unilateral high-load resistance training induced a similar cross-education of strength between the dominant and non-dominant arm. J Sports Sci 2024; 42:1308-1312. [PMID: 39115420 DOI: 10.1080/02640414.2024.2388997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
It was previously hypothesized that the cross-education of strength is asymmetrical, where a greater transfer of strength is observed from the dominant to the non-dominant limb. The purpose of this study was to examine if the magnitude of cross-education of strength differed between dominant and non-dominant limbs following unilateral high-load resistance training. One hundred and twenty-two participants were randomized to one of the three groups: 1) training on the dominant arm (D-Only), 2) training on the non-dominant arm (ND-Only) and 3) a time-matched non-exercise control (Control). The training groups completed 6 weeks (18 sessions) of unilateral elbow flexion exercise. Each training session started with one-repetition maximum (1RM) training (≤ five attempts), followed by four sets of high-load exercise (i.e. 8-12RM). Strength changes of the untrained arm were compared between groups. Changes in the strength of the untrained arm were greater in D-Only (1.5 kg) and ND-Only (1.3 kg) compared to Control (-0.2 kg), without differences between D-Only and ND-Only. Unilateral resistance training increased strength in the opposite untrained arm, and the magnitude of this effect was similar regardless of which arm was trained. However, there is still considerable uncertainty on this topic and additional research is warranted to confirm the current findings.
Collapse
Affiliation(s)
- Jun Seob Song
- Department of Health, Exercise Science and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi, USA
| | - William B Hammert
- Department of Health, Exercise Science and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi, USA
| | - Ryo Kataoka
- Department of Health, Exercise Science and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi, USA
| | - Yujiro Yamada
- Department of Health, Exercise Science and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi, USA
| | - Anna Kang
- Department of Health, Exercise Science and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi, USA
| | - Vickie Wong
- Department of Sport and Health, Solent University, Southampton, UK
| | - Robert W Spitz
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Witalo Kassiano
- Department of Health, Exercise Science and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi, USA
| | - Jeremy P Loenneke
- Department of Health, Exercise Science and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, University, Mississippi, USA
| |
Collapse
|
7
|
Ben Othman A, Hadjizadeh Anvar S, Aragão-Santos JC, Behm DG, Chaouachi A. Relative Cross-Education Training Effects of Male Youth Exceed Male Adults. J Strength Cond Res 2024; 38:881-890. [PMID: 38219228 DOI: 10.1519/jsc.0000000000004724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
ABSTRACT Ben Othman, A, Anvar, SH, Aragão-Santos, JC, Behm, DG, and Chaouachi, A. Relative cross-education training effects of male youth exceed male adults. J Strength Cond Res 38(5): 881-890, 2024-Cross-education has been studied extensively with adults, examining the training effects on contralateral homologous muscles. There is less information on the cross-education effects on contralateral heterologous muscles and scant information comparing these responses between adults and youth. The objective was to compare cross-education training effects in male youth and adults to contralateral homologous and heterologous muscles. Forty-two male children (10-13-years) and 42 adults (18-21-years) were tested before and following an 8-week unilateral, dominant or nondominant arm, chest press (CP) training program or control group (14 subjects each). Unilateral testing assessed dominant and nondominant limb strength with leg press and CP 1 repetition maximum (1RM), knee extensors, elbow extensors (EE), elbow flexors, and handgrip maximum voluntary isometric contraction (MVIC) strength and shot put distance and countermovement jump height. Upper-body tests demonstrated large magnitude increases, with children overall exceeding adults ( p = 0.05- p < 0.0001, η2 : 0.51, 10.4 ± 11.1%). The dominant trained limb showed significantly higher training adaptations than the nondominant limb for the adults with CP 1RM ( p = 0.03, η2 : 0.26, 6.7 ± 11.5%) and EE ( p = 0.008, η2 : 0.27, 8.8 ± 10.3%) MVIC force. Unilateral CP training induced significantly greater training adaptations with the ipsilateral vs. contralateral limb ( p = 0.008, η2 : 0.93, 27.8 ± 12.7%). In conclusion, children demonstrated greater training adaptations than adults, upper-body strength increased with no significant lower-body improvements, and ipsilateral training effects were greater than contralateral training in adults.
Collapse
Affiliation(s)
- Ayem Ben Othman
- Tunisian Research Laboratory "Sport Performance Optimisation" National Center of Medicine and Science in Sports, Tunis, Tunisia
| | - Saman Hadjizadeh Anvar
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - José Carlos Aragão-Santos
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
- Department of Physical Education, Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Anis Chaouachi
- Tunisian Research Laboratory "Sport Performance Optimisation" National Center of Medicine and Science in Sports, Tunis, Tunisia
- High Institute of Sport and Physical Education, Ksar-Said, Manouba University, Tunis, Tunisia; and
- Sports Performance Research Institute New Zealand, AUT University, Auckland, New Zealand
| |
Collapse
|
8
|
Alenezi MM, Hayes A, Lawrence GP, Kubis HP. Influence of motor imagery training on hip abductor muscle strength and bilateral transfer effect. Front Physiol 2023; 14:1188658. [PMID: 37745234 PMCID: PMC10512955 DOI: 10.3389/fphys.2023.1188658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Motor imagery training could be an important treatment of reduced muscle function in patients and injured athletes. In this study, we investigated the efficacy of imagery training on maximal force production in a larger muscle group (hip abductors) and potential bilateral transfer effects. Healthy participants (n = 77) took part in two experimental studies using two imagery protocols (∼30 min/day, 5 days/week for 2 weeks) compared either with no practice (study 1), or with isometric exercise training (study 2). Maximal hip abduction isometric torque, electromyography amplitudes (trained and untrained limbs), handgrip strength, right shoulder abduction (strength and electromyography), and imagery capability were measured before and after the intervention. Post intervention, motor imagery groups of both studies exhibited significant increase in hip abductors strength (∼8%, trained side) and improved imagery capability. Further results showed that imagery training induced bilateral transfer effects on muscle strength and electromyography amplitude of hip abductors. Motor imagery training was effective in creating functional improvements in limb muscles of trained and untrained sides.
Collapse
Affiliation(s)
- Majid Manawer Alenezi
- Department of Sport and Exercise Sciences, School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom
- Northern Border Health Cluster, Academic Affairs and Training, Arar, Saudi Arabia
| | - Amy Hayes
- Department of Sport and Exercise Sciences, School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom
| | - Gavin P. Lawrence
- Department of Sport and Exercise Sciences, School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom
| | - Hans-Peter Kubis
- Department of Sport and Exercise Sciences, School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
9
|
Voskuil CC, Andrushko JW, Huddleston BS, Farthing JP, Carr JC. Exercise prescription and strategies to promote the cross-education of strength: a scoping review. Appl Physiol Nutr Metab 2023; 48:569-582. [PMID: 37156010 DOI: 10.1139/apnm-2023-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The cross-education of strength is moderated by exercise design and prescription in clinical and non-clinical populations. This review synthesizes the available evidence regarding exercise design strategies for unilateral resistance training and provides evidence-based recommendations for the prescription of unilateral training to maximize the cross-education of strength. Greater insights regarding the timing and effectiveness of cross-education interventions in clinical scenarios will strengthen the use of unilateral resistance training for individuals who may benefit from its use.
Collapse
Affiliation(s)
- Caleb C Voskuil
- Department of Kinesiology, Texas Christian University, Fort Worth TX, USA
| | - Justin W Andrushko
- Faculty of Medicine, Department of Physical Therapy, The University of British Columbia, Vancouver BC, Canada
| | - Boglarka S Huddleston
- Health Sciences Librarian, Mary C. Burnett Library, Texas Christian University, Fort Worth TX, USA
| | | | - Joshua C Carr
- Department of Kinesiology, Texas Christian University, Fort Worth TX, USA
- Department of Medical Education, Texas Christian University School of Medicine, Fort Worth TX, USA
| |
Collapse
|
10
|
Zhang W, Chen X, Xu K, Xie H, Li D, Ding S, Sun J. Effect of unilateral training and bilateral training on physical performance: A meta-analysis. Front Physiol 2023; 14:1128250. [PMID: 37123275 PMCID: PMC10133687 DOI: 10.3389/fphys.2023.1128250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Background: In Unilateral (UNI) exercises are more effective than bilateral (BI) exercises in improving athletic performance is debatable. Objectives: this meta-analysis investigated the effects of UNI and BI exercises on different effect indicators of jump ability, sprint ability, maximal force, change of direction ability, and balance ability. Data Sources: PubMed, Google Scholar, Web of science, CNKI, Proquest, Wan Fang Data. Study Eligibility Criteria: To be eligible for inclusion in the meta-analysis, the study had to be: 1) athletes; 2) UNI training and BI training; 3) the intervention period had to be more than 6 weeks and the intervention frequency had to be more than 2 times/week; 4) the outcome indicators were jumping ability, sprinting ability, maximum strength, and change of direction and balance. Study Appraisal and Synthesis Method: We used the random-effects model for meta-analyses. Effect sizes (standardized mean difference), calculated from measures of horizontally oriented performance, were represented by the standardized mean difference and presented alongside 95% confidence intervals (CI). Results: A total of 28 papers met the inclusion criteria, and Meta-analysis showed that UNI training was more effective than BI training in improving jumping ability (ES = 0.61.0.23 to 0.09; Z = 3.12, p = 0.002 < 0.01), sprinting ability (ES = -0.02, -0.03 to -0.01; Z = 2.73, p = 0.006 < 0.01), maximum strength (ES = 8.95,2.30 to 15.61; Z = 2.64, p = 0.008 > 0.05), change of direction ability (ES = -0.03, -0.06 to 0.00; Z = 1.90, p = 0.06 > 0.01) and balance ability (ES = 1.41,-0.62 to 3.44; Z = 1.36, p = 0.17 > 0.01). The results of the analysis of moderating variables showed that intervention period, intervention frequency and intervention types all had different indicators of effect on exercise performance. Conclusion: UNI training has a more significant effect on jumping and strength quality for unilateral power patterns, and BI training has a more significant effect on jumping and strength quality for bilateral power patterns.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian Sun
- *Correspondence: Jian Sun, ; Shicong Ding,
| |
Collapse
|
11
|
Lim H, Madhavan S. Effects of Cross-Education on Neural Adaptations Following Non-Paretic Limb Training in Stroke: A Scoping Review with Implications for Neurorehabilitation. J Mot Behav 2022; 55:111-124. [PMID: 35940590 DOI: 10.1080/00222895.2022.2106935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/22/2022] [Accepted: 07/22/2022] [Indexed: 02/02/2023]
Abstract
Current stroke rehabilitation interventions focus on intensive task specific training of the paretic limb, which may not be feasible for individuals with higher levels of impairment or in the early phase of stroke. Cross-education, a mechanism that improves strength or skill of the untrained limb following unilateral motor training, has high clinical relevance for stroke rehabilitation. Despite its potential benefits, our knowledge on the application and efficacy of cross-education in stroke is limited. We performed a scoping review to synthesize the current evidence regarding neurophysiological and motor effects of cross-education training in stroke. Low to strong evidence from five studies demonstrated strength gains ranging from 31-200% in the untrained paretic limb following non-paretic muscle training. Neurophysiological mechanisms underlying cross-education were unclear as the three studies that used transcranial magnetic stimulation to probe functional connectivity demonstrated mixed results in low sample size. Our review suggests that cross-education is a promising clinical approach in stroke, however high quality studies focusing on neurophysiological mechanisms are required to establish the efficacy and underlying mechanisms of cross-education in stroke. Recommendations regarding future directions and clinical utility are provided.
Collapse
Affiliation(s)
- Hyosok Lim
- Brain Plasticity Laboratory, Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
- Graduate Program in Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Laboratory, Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Pearcey GEP, Smith LA, Sun Y, Zehr EP. 1894 revisited: Cross-education of skilled muscular control in women and the importance of representation. PLoS One 2022; 17:e0264686. [PMID: 35298508 PMCID: PMC8929574 DOI: 10.1371/journal.pone.0264686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2022] [Indexed: 12/03/2022] Open
Abstract
In 1894 foundational work showed that training one limb for “muscular power” (i.e. strength) or “muscular control” (i.e. skill) improves performance in both limbs. Despite that the original data were exclusively from two female participants (“Miss Smith” and “Miss Brown”), in the decades that followed, such “cross-education” training interventions have focused predominantly on improving strength in men. Here, in a female cohort, we revisit that early research to underscore that training a task that requires precise movements in a timely fashion (i.e. “muscular control”) on one side of the body is transferred to the contralateral untrained limb. With unilateral practice, women reduced time to completion and the number of errors committed during the commercially available game of Operation® Iron Man 2 with both limbs. Modest reductions in bilateral Hoffmann (H-) reflex excitability evoked in the wrist flexors suggest that alterations in the spinal cord circuitry may be related to improvements in performance of a fine motor task. These findings provide a long overdue follow-up to the efforts of Miss Theodate L. Smith from more than 125 years ago, highlight the need to focus on female participants, and advocate more study of cross-education of skilled tasks.
Collapse
Affiliation(s)
- Gregory E P Pearcey
- Department of Physiology and Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America.,Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, British Columbia, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | - Lauren A Smith
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, British Columbia, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | - Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, British Columbia, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada.,Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, British Columbia, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
13
|
Maroto-Izquierdo S, Nosaka K, Blazevich AJ, González-Gallego J, de Paz JA. Cross-education effects of unilateral accentuated eccentric isoinertial resistance training on lean mass and function. Scand J Med Sci Sports 2021; 32:672-684. [PMID: 34851533 DOI: 10.1111/sms.14108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/20/2021] [Accepted: 11/27/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE We investigated the effects of three different unilateral isoinertial resistance training protocols with eccentric overload on changes in lean mass and muscle function of trained (TL) and contralateral non-trained (NTL) legs. METHODS Physically active university students were randomly assigned to one of three training groups or a control group (n = 10/group). Participants in the training groups performed dominant leg isoinertial squat training twice a week for 6 weeks (4 sets of 7 repetitions) using either an electric-motor device with an eccentric phase velocity of 100% (EM100) or 150% (EM150) of concentric phase velocity or a conventional flywheel device (FW) with the same relative inertial load. Changes in thigh lean mass, unilateral leg-press one-repetition maximum (1-RM), muscle power at 40-80% 1-RM, and unilateral vertical jump height before and after training were compared between the groups and between TL and NTL. RESULTS No changes in any variable were found for the control group. In TL, all training groups showed similar increases (p < 0.05) in 1-RM strength (22.4-30.2%), lean tissue mass (2.5-5.8%), muscle power (8.8-21.7%), and vertical jump height (9.1-32.9%). In NTL, 1-RM strength increased 22.0-27.8% without significant differences between groups; however, increases in lean mass (p < 0.001) were observed for EM150 (3.5%) and FW (3.8%) only. Unilateral vertical jump height (6.0-32.9%) and muscle power (6.8-17.5%) also increased in NTL without significant differences between training groups. CONCLUSION The three eccentric-overload resistance training modalities produced similar neuromuscular changes in both the trained and non-trained legs, suggesting that strong cross-education effects were induced by the eccentric-overload training.
Collapse
Affiliation(s)
| | - Kazunori Nosaka
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | | | - José A de Paz
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| |
Collapse
|
14
|
Calvert GHM, Carson RG. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. Neurosci Biobehav Rev 2021; 132:260-288. [PMID: 34801578 DOI: 10.1016/j.neubiorev.2021.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
CALVERT, G.H.M., and CARSON, R.G. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. NEUROSCI BIOBEHAV REV 21(1) XXX-XXX, 2021. - Cross education (CE) is the process whereby a regimen of unilateral limb training engenders bilateral improvements in motor function. The contralateral gains thus derived may impart therapeutic benefits for patients with unilateral deficits arising from orthopaedic injury or stroke. Despite this prospective therapeutic utility, there is little consensus concerning its mechanistic basis. The precise means through which the neuroanatomical structures and cellular processes that mediate CE may be influenced by age-related neurodegeneration are also almost entirely unknown. Notwithstanding the increased incidence of unilateral impairment in later life, age-related variations in the expression of CE have been examined only infrequently. In this narrative review, we consider several mechanisms which may mediate the expression of CE with specific reference to the ageing CNS. We focus on the adaptive potential of cellular processes that are subserved by a specific set of neuroanatomical pathways including: the corticospinal tract, corticoreticulospinal projections, transcallosal fibres, and thalamocortical radiations. This analysis may inform the development of interventions that exploit the therapeutic utility of CE training in older persons.
Collapse
Affiliation(s)
- Glenn H M Calvert
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland; School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
15
|
Fariñas J, Mayo X, Giraldez-García MA, Carballeira E, Fernandez-Del-Olmo M, Rial-Vazquez J, Kingsley JD, Iglesias-Soler E. Set Configuration in Strength Training Programs Modulates the Cross Education Phenomenon. J Strength Cond Res 2021; 35:2414-2420. [PMID: 31136543 DOI: 10.1519/jsc.0000000000003189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Fariñas, J, Mayo, X, Giraldez-García, MA, Carballeira, E, Fernandez-Del-Olmo, M, Rial-Vazquez, J, Kingsley, JD, and Iglesias-Soler, E. Set configuration in strength training programs modulates the cross education phenomenon. J Strength Cond Res 35(9): 2414-2420, 2021-This study aimed to compare the strength gains in the nontrained arm after 2 independent unilateral training programs differing in the set configuration. Thirty-five subjects were randomly assigned to 3 groups: traditional training (TT; n = 12), cluster training (CT; n = 11), or control (CON; n = 12). The experimental groups performed a 5-week training program of a unilateral biceps curl exercise with the dominant limb using the 10 repetition maximum (10RM) load. Traditional training performed 5 sets of 6 repetitions and 135 seconds of rest between sets. Cluster training completed 30 repetitions with 18.5 seconds of rest between each repetition. Anthropometry (ANT), muscle thickness (MT), 1RM, the number of repetitions with 10RM (n10RM), and isometric maximal voluntary contraction (MVC) were measured before and after the intervention. Regarding the nontrained arm, TT improved 1RM (7.3%, p < 0.001). No changes were observed in CT. Regarding the trained arm, TT improved 1RM (9.1%, p < 0.001), n10RM (p = 0.005), and MVC (p = 0.011), whereas CT only showed a trend for improvement of 1RM (3.4%, p = 0.052). These results suggest that when total volume and repetition-to-rest ratio are equated, a more fatiguing set configuration causes a higher effect on the non-trained limb.
Collapse
Affiliation(s)
- Juan Fariñas
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, Performance and Health Group, A Coruña, Spain
| | - Xian Mayo
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, Performance and Health Group, A Coruña, Spain
- Observatory of Healthy and Active Living of Spain Active Foundation, Center for Sport Studies, King Juan Carlos University, Madrid, Spain
| | - Manuel A Giraldez-García
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, Performance and Health Group, A Coruña, Spain
| | - Eduardo Carballeira
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, Performance and Health Group, A Coruña, Spain
| | - Miguel Fernandez-Del-Olmo
- Department of Physical Education and Sport Faculty of Sports Sciences and Physical Education, University of A Coruna Learning and Human Movement Control Group, A Coruña, Spain ; and
| | - Jessica Rial-Vazquez
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, Performance and Health Group, A Coruña, Spain
| | - J Derek Kingsley
- Cardiovascular Dynamics Laboratory, Exercise Physiology, Kent State University, Kent, Ohio
| | - Eliseo Iglesias-Soler
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, Performance and Health Group, A Coruña, Spain
| |
Collapse
|
16
|
Chronic resistance training: is it time to rethink the time course of neural contributions to strength gain? Eur J Appl Physiol 2021; 121:2413-2422. [PMID: 34052876 DOI: 10.1007/s00421-021-04730-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/22/2021] [Indexed: 10/20/2022]
Abstract
Resistance training enhances muscular force due to a combination of neural plasticity and muscle hypertrophy. It has been well documented that the increase in strength over the first few weeks of resistance training (i.e. acute) has a strong underlying neural component and further enhancement in strength with long-term (i.e. chronic) resistance training is due to muscle hypertrophy. For obvious reasons, collecting long-term data on how chronic-resistance training affects the nervous system not feasible. As a result, the effect of chronic-resistance training on neural plasticity is less understood and has not received systematic exploration. Thus, the aim of this review is to provide rationale for investigating neural plasticity beyond acute-resistance training. We use cross-sectional work to highlight neural plasticity that occurs with chronic-resistance training at sites from the brain to spinal cord. Specifically, intra-cortical circuitry and the spinal motoneuron seem to be key sites for this plasticity. We then urge the need to further investigate the differential effects of acute versus chronic-resistance training on neural plasticity, and the role of this plasticity in increased strength. Such investigations may help in providing a clearer definition of the continuum of acute and chronic-resistance training, how the nervous system is altered during this continuum and the causative role of neural plasticity in changes in strength over the continuum of resistance training.
Collapse
|
17
|
Manca A, Hortobágyi T, Carroll TJ, Enoka RM, Farthing JP, Gandevia SC, Kidgell DJ, Taylor JL, Deriu F. Contralateral Effects of Unilateral Strength and Skill Training: Modified Delphi Consensus to Establish Key Aspects of Cross-Education. Sports Med 2021; 51:11-20. [PMID: 33175329 PMCID: PMC7806569 DOI: 10.1007/s40279-020-01377-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Background Cross-education refers to increased motor output (i.e., force generation, skill) of the opposite, untrained limb following a period of unilateral exercise training. Despite extensive research, several aspects of the transfer phenomenon remain controversial. Methods A modified two-round Delphi online survey was conducted among international experts to reach consensus on terminology, methodology, mechanisms of action, and translational potential of cross-education, and to provide a framework for future research. Results Through purposive sampling of the literature, we identified 56 noted experts in the field, of whom 32 completed the survey, and reached consensus (75% threshold) on 17 out of 27 items. Conclusion Our consensus-based recommendations for future studies are that (1) the term ‘cross-education’ should be adopted to refer to the transfer phenomenon, also specifying if transfer of strength or skill is meant; (2) functional magnetic resonance imaging, short-interval intracortical inhibition and interhemispheric inhibition appear to be promising tools to study the mechanisms of transfer; (3) strategies which maximize cross-education, such as high-intensity training, eccentric contractions, and mirror illusion, seem worth being included in the intervention plan; (4) study protocols should be designed to include at least 13–18 sessions or 4–6 weeks to produce functionally meaningful transfer of strength, and (5) cross-education could be considered as an adjuvant treatment particularly for unilateral orthopedic conditions and sports injuries. Additionally, a clear gap in views emerged between the research field and the purely clinical field. The present consensus statement clarifies relevant aspects of cross-education including neurophysiological, neuroanatomical, and methodological characteristics of the transfer phenomenon, and provides guidance on how to improve the quality and usability of future cross-education studies. Electronic supplementary material The online version of this article (10.1007/s40279-020-01377-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Manca
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | - T Hortobágyi
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - T J Carroll
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - R M Enoka
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, USA
| | - J P Farthing
- University of Saskatchewan College of Kinesiology, Saskatoon, SK, Canada
| | - S C Gandevia
- Neuroscience Research Australia (NeuRA), The University of New South Wales, Sydney, Australia
| | - D J Kidgell
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - J L Taylor
- School of Medical and Health Sciences, Edit Cowan University, Joondalup, Australia
| | - F Deriu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy.
| |
Collapse
|
18
|
Mendonca GV, Vila-Chã C, Teodósio C, Goncalves AD, Freitas SR, Mil-Homens P, Pezarat-Correia P. Contralateral training effects of low-intensity blood-flow restricted and high-intensity unilateral resistance training. Eur J Appl Physiol 2021; 121:2305-2321. [PMID: 33982187 DOI: 10.1007/s00421-021-04708-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Determine whether unilateral low-intensity blood-flow restricted (LIBFR) exercise is as effective as high-intensity (HI) resistance training for improving contralateral muscle strength. METHODS Thirty healthy adults (20-30 years) were randomly allocated to the following dynamic plantar-flexion training interventions: HI [75% of one-repetition maximum (1RM), 4 sets, 10 reps] and LIBFR [20% of 1RM, 4 sets, 30 + 15 + 15 + 15 reps]. Evoked V-wave and H-reflex recruitment curves, as well as maximal voluntary contraction (MVC) and panoramic ultrasound assessments of the trained and untrained soleus muscles were obtained pre-training, post-4 weeks of training and post-4 weeks of detraining. RESULTS Both interventions failed to increase contralateral MVC and muscle cross-sectional area (CSA). Yet, contralateral rate of torque development (RTD) was enhanced by both regimens (12-26%) and this was accompanied by heightened soleus EMG within the first milliseconds of the rising torque-time curve (14-22%; p < 0.05). These improvements were dissipated after detraining. Contralateral adaptations were not accompanied by changes in V-wave or H-reflex excitability. Conversely, LIBFR and HI elicited a similar magnitude of ipsilateral increase in MVC, RTD and CSA post-training (10-18%). Improvements in V-wave amplitude and soleus EMG were limited to the trained leg assigned to LIBFR training (p < 0.05). While gains in strength and CSA remained preserved post-4 weeks of detraining, this did not occur with RTD. CONCLUSION Since gains in RTD were similar between interventions, our findings indicate that both training regimens can be used interchangeably for improving contralateral rapid torque production. Ultimately, this may be beneficial in circumstances of limb immobilization after injury or surgery.
Collapse
Affiliation(s)
- Goncalo V Mendonca
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, Dafundo, 1499-002, Lisbon, Portugal. .,CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, 1499-002, Dafundo, Portugal.
| | - Carolina Vila-Chã
- Polytechnic Institute of Guarda, Av. Dr. Francisco Sá Carneiro, n. 50, 6300-559, Guarda, Portugal.,Research Center in Sports Sciences, Health and Human Development (CIDESD), Vila-Real, Portugal
| | - Carolina Teodósio
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, Dafundo, 1499-002, Lisbon, Portugal
| | - André D Goncalves
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, Dafundo, 1499-002, Lisbon, Portugal
| | - Sandro R Freitas
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, Dafundo, 1499-002, Lisbon, Portugal.,CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, 1499-002, Dafundo, Portugal
| | - Pedro Mil-Homens
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, Dafundo, 1499-002, Lisbon, Portugal.,CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, 1499-002, Dafundo, Portugal
| | - Pedro Pezarat-Correia
- Neuromuscular Research Lab, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, Dafundo, 1499-002, Lisbon, Portugal.,CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, 1499-002, Dafundo, Portugal
| |
Collapse
|
19
|
Ipsilateral Lower-to-Upper Limb Cross-Transfer Effect on Muscle Strength, Mechanical Power, and Lean Tissue Mass after Accentuated Eccentric Loading. ACTA ACUST UNITED AC 2021; 57:medicina57050445. [PMID: 34064370 PMCID: PMC8147780 DOI: 10.3390/medicina57050445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023]
Abstract
Background and Objectives: To investigate the effects of unilateral accentuated eccentric loading (AEL) on changes in lean mass and function of leg trained (TL) and ipsilateral non-trained arm (NTA) in young men and women. Materials and Methods: In a prospective trial, 69 Physically active university students (20.2 ± 2.2 years) were randomly placed into a training group (n = 46; 27 men, 19 women) or a control group without training (n = 23; 13 men, 10 women). Participants in the training group performed unilateral AEL in the leg press exercise of the dominant leg twice a week for 10 weeks. An electric motor device-generated isotonic resistance at different intensities for both concentric (30% of 1-RM) and eccentric contractions (105% of 1-RM). Changes in thigh and arm lean tissue mass, unilateral leg press and unilateral elbow flexion maximal concentric (1-RM) and isometric strength (MVIC), and unilateral muscle power at 40, 60, and 80% 1-RM for both leg press and elbow flexion exercises before and after intervention were compared between groups, between sexes and between TL and NTA. Results: Both men and women in the training group showed increases (p < 0.05) in lean tissue mass, 1-RM, MVIC, and muscle power for TL. In NTA, 1-RM, MVIC, and muscle power increased without significant differences between sexes, but neither in men nor women changes in lean tissue mass were observed. In addition, men showed greater changes in TL, but changes in NTA were similar between sexes. No gains in any variable were found for the control group. Conclusions: AEL protocol produced similar neuromuscular changes in TL and ipsilateral NTA, which suggests that strong ipsilateral lower-to-upper limb cross-transfer effects were induced by the eccentric-overload training. However, early ipsilateral increases in muscle force and power were not associated with lean mass gains. Both men and women experienced similar changes in NTA; however, men showed greater changes in TL.
Collapse
|
20
|
Colomer-Poveda D, Romero-Arenas S, Hortobagyi T, Márquez G. Does ipsilateral corticospinal excitability play a decisive role in the cross-education effect caused by unilateral resistance training? A systematic review. NEUROLOGÍA (ENGLISH EDITION) 2021. [DOI: 10.1016/j.nrleng.2017.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
21
|
Gould L, Kress S, Neudorf J, Gibb K, Persad A, Meguro K, Norton J, Borowsky R. An fMRI, DTI and Neurophysiological Examination of Atypical Organization of Motor Cortex in Ipsilesional Hemisphere Following Post-Stroke Recovery. J Stroke Cerebrovasc Dis 2021; 30:105593. [PMID: 33434816 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/17/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES We report a 61-year-old woman who developed left hemiparesis following a right frontal stroke. She underwent rehabilitation and regained function of the left side of her body. Three years after her first stroke, she developed a large left subdural hematoma and again presented with left hemiparesis. MATERIALS AND METHODS Prior to the cranioplasty, an fMRI scan involving left and right hand movement, arm movement, and foot peddling were conducted in order to determine whether the patient showed ipsilateral activation for the motor tasks, thus explaining the left hemiparesis following the left subdural hematoma. Diffusion tensor imaging (DTI) tractography was also collected to visualize the motor and sensory tracts. RESULTS The fMRI results revealed activation in the expected contralateral left primary motor cortex (M1) for the right-sided motor tasks, and bilateral M1 activation for the left-sided motor tasks. Intraoperative neurophysiology confirmed these findings, whereby electromyography revealed left-sided (i.e., ipsilateral) responses for four of the five electrode locations. The DTI results indicated that the corticospinal tracts and spinothalamic tracts were within normal limits and showed no displacement or disorganization. CONCLUSIONS These results suggest that there may have been reorganization of the M1 following her initial stroke, and that the left hemisphere may have become involved in moving the left side of the body thereby leading to left hemiparesis following the left subdural hematoma. The findings suggest that cortical reorganization may occur in stroke patients recovering from hemiparesis, and specifically, that components of motor processing subserved by M1 may be taken over by ipsilateral regions.
Collapse
Affiliation(s)
- Layla Gould
- Division of Neurosurgery, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada.
| | - Shaylyn Kress
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada.
| | - Josh Neudorf
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada.
| | - Katherine Gibb
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada.
| | - Amit Persad
- Division of Neurosurgery, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada.
| | - Kotoo Meguro
- Division of Neurosurgery, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada.
| | - Jonathan Norton
- Division of Neurosurgery, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada.
| | - Ron Borowsky
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK S7N 5A5, Canada.
| |
Collapse
|
22
|
Hortobágyi T, Granacher U, Fernandez-Del-Olmo M, Howatson G, Manca A, Deriu F, Taube W, Gruber M, Márquez G, Lundbye-Jensen J, Colomer-Poveda D. Functional relevance of resistance training-induced neuroplasticity in health and disease. Neurosci Biobehav Rev 2020; 122:79-91. [PMID: 33383071 DOI: 10.1016/j.neubiorev.2020.12.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 01/13/2023]
Abstract
Repetitive, monotonic, and effortful voluntary muscle contractions performed for just a few weeks, i.e., resistance training, can substantially increase maximal voluntary force in the practiced task and can also increase gross motor performance. The increase in motor performance is often accompanied by neuroplastic adaptations in the central nervous system. While historical data assigned functional relevance to such adaptations induced by resistance training, this claim has not yet been systematically and critically examined in the context of motor performance across the lifespan in health and disease. A review of muscle activation, brain and peripheral nerve stimulation, and imaging data revealed that increases in motor performance and neuroplasticity tend to be uncoupled, making a mechanistic link between neuroplasticity and motor performance inconclusive. We recommend new approaches, including causal mediation analytical and hypothesis-driven models to substantiate the functional relevance of resistance training-induced neuroplasticity in the improvements of gross motor function across the lifespan in health and disease.
Collapse
Affiliation(s)
- Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen, University Medical CenterGroningen, Groningen, Netherlands.
| | - Urs Granacher
- Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany
| | - Miguel Fernandez-Del-Olmo
- Area of Sport Sciences, Faculty of Sports Sciences and Physical Education, Center for Sport Studies, King Juan Carlos University, Madrid, Spain
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, UK; Water Research Group, North West University, Potchefstroom, South Africa
| | - Andrea Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Wolfgang Taube
- Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland
| | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruña, A Coruña, Spain
| | - Jesper Lundbye-Jensen
- Movement & Neuroscience, Department of Nutrition, Exercise & Sports Department of Neuroscience, University of Copenhagenk, Faculty of Health Science, Universidad Isabel I, Burgos, Spain
| | | |
Collapse
|
23
|
Goldenkoff ER, McGregor HR, Mergos J, Gholizadeh P, Bridenstine J, Brown MJN, Vesia M. Reversal of Visual Feedback Modulates Somatosensory Plasticity. Neuroscience 2020; 452:335-344. [PMID: 33220339 DOI: 10.1016/j.neuroscience.2020.10.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/22/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022]
Abstract
Reversed visual feedback during unimanual training increases transfer of skills to the opposite untrained hand and modulates plasticity in motor areas of the brain. However, it is unclear if unimanual training with reversed visual feedback also affects somatosensory areas. Here we manipulated visual input during unimanual training using left-right optical reversing spectacles and tested whether unimanual training with reversed vision modulates somatosensory cortical excitability to facilitate motor performance. Thirty participants practiced a unimanual ball-rotation task using the right hand with either left-right reversed vision (incongruent visual and somatosensory feedback) or direct vision (congruent feedback) of the moving hand. We estimated cortical excitability in primary somatosensory cortex (S1) before and after unimanual training by measuring somatosensory evoked potentials (SEPs). This was done by electrically stimulating the median nerve in the wrist while participants rested, and recording potentials over both hemispheres using electroencephalography. Performance of the ball-rotation task improved for both the right (trained) and left (untrained) hand after training across both direct and reversed vision conditions. Participants with direct vision of the right hand during training showed SEPs amplitudes increased bilaterally. In contrast, participants in the reversed visual condition showed attenuated SEPs following training. The results suggest that cortical suppression of S1 activity supports skilled motor performance after unimanual training with reversed vision, presumably by sensory gating of afferent signals from the movement. This finding provides insight into the mechanisms by which visual input interacts with the sensorimotor system and induces neuroplastic changes in S1 to support skilled motor performance.
Collapse
Affiliation(s)
- Elana R Goldenkoff
- School of Kinesiology, Brain Behavior Lab, University of Michigan, Ann Arbor, USA
| | - Heather R McGregor
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Joshua Mergos
- School of Kinesiology, Intraoperative Neuromonitoring Program, University of Michigan, Ann Arbor, USA
| | - Puyan Gholizadeh
- School of Kinesiology, Brain Behavior Lab, University of Michigan, Ann Arbor, USA; School of Kinesiology, Intraoperative Neuromonitoring Program, University of Michigan, Ann Arbor, USA
| | - John Bridenstine
- School of Kinesiology, Brain Behavior Lab, University of Michigan, Ann Arbor, USA; School of Kinesiology, Intraoperative Neuromonitoring Program, University of Michigan, Ann Arbor, USA
| | - Matt J N Brown
- Department of Kinesiology, California State University Sacramento, Sacramento, USA
| | - Michael Vesia
- School of Kinesiology, Brain Behavior Lab, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
24
|
Lim H, Iyer PC, Luciano C, Madhavan S. Game-based movement facilitates acute priming effect in stroke. Somatosens Mot Res 2020; 38:83-89. [PMID: 33190568 DOI: 10.1080/08990220.2020.1846513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Cortical priming is an emerging strategy to enhance motor recovery after stroke, however, limited information exists on the neuromodulatory effects of lower limb movement-based priming to facilitate corticomotor excitability after stroke. In this study, we investigated the feasibility and effectiveness of game-based ankle movement priming using the DIG-I-PRIME™ on corticomotor excitability and motor performance in chronic stroke survivors. METHODS Nineteen stroke survivors participated in a 20-min session of game-based priming. A period of rest served as a control for the priming condition. Transcranial magnetic stimulation (TMS) was used to measure corticomotor excitability of the paretic and non-paretic tibialis anterior (TA) muscle representations. Motor performance was quantified by assessing the accuracy to track a sinusoidal target wave with paretic dorsiflexion and plantarflexion. RESULTS Ipsilesional corticomotor excitability increased by 25% after game-based movement priming (p = 0.02) while changes were not observed after the control condition. No change in motor performance was noted. CONCLUSION Game-based ankle movement priming demonstrated a significant acute priming effect on the ipsilesional lower limb M1. These data provide preliminary evidence for the potential benefits of game-based priming to promote functional recovery after stroke.
Collapse
Affiliation(s)
- Hyosok Lim
- Brain Plasticity Laboratory, Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA.,Graduate Program in Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Pooja C Iyer
- Brain Plasticity Laboratory, Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA.,Graduate Program in Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Cristian Luciano
- Mixed Reality Laboratory, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Laboratory, Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
25
|
Park C, Son H, Yeo B. The effects of lower extremity cross-training on gait and balance in stroke patients: a double-blinded randomized controlled trial. Eur J Phys Rehabil Med 2020; 57:4-12. [PMID: 32891079 DOI: 10.23736/s1973-9087.20.06183-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Cross-training is an indirect intervention to promote muscle activity on the affected side by applying resistance exercise to stronger parts of the body. Indirect interventions are useful for treating patients who have difficulty with direct interventions. Previous studies have focused on measuring increased muscle strength and muscle activity in healthy individuals. AIM This study aimed to investigate the effects of cross-training on gait and balance in hemiplegic patients when applied to the affected and unaffected lower extremities. DESIGN Double-blinded randomised controlled trial. SETTING In-patients attending the rehabilitation treatment room of a single center. POPULATION Fifty-two stroke patients were randomly allocated to a control group (N.=19), affected side cross-training group (N.=15), and unaffected side cross-training group (N.=18). METHODS Patients were administered general neurological physiotherapy for 30 mins, twice daily, 5 days/week for 4 weeks. The two intervention groups underwent 30 mins of cross-training instead of general neurological physiotherapy once daily, 3 days/week for 4 weeks (postintervention). For data analysis, one-way ANOVA for between-group comparisons and paired t-tests were performed for within-group comparisons between pre- and postintervention groups (significance level of 0.05). RESULTS In the Timed Up and Go Test (TUG), comparing pre- and postintervention, the control group showed no significant change (P>0.05), while the affected side and unaffected side cross-training groups showed significant improvements in function (P<0.05). In the 10-meter Walk Test, the control group showed no significant change (P>0.05), while the affected side and unaffected side cross-training groups showed significant increases in speed (P<0.05). In balance testing, the limits of stability showed a significantly increase in all three groups (P<0.05). There were no pre- or postintervention differences in gait or balance between the groups (P>0.05). CONCLUSIONS Gait and balance improved in hemiplegic stroke patients who participated in cross-training, regardless of the intervention applied to the affected or unaffected side. CLINICAL REHABILITATION IMPACT In clinical settings, for patients who experience difficulties with direct interventions on the affected side, we propose indirect interventions to improve gait and balance.
Collapse
Affiliation(s)
- Chanhyun Park
- Department of Physical Therapy, Team of Rehabilitation, Keunsol Medical Hospital, Busan, South Korea
| | - Hohee Son
- Department of Physical Therapy, College of Health Science, Catholic University of Pusan, Busan, South Korea -
| | - Bokgi Yeo
- Department of Physical Therapy, Team of Rehabilitation, Keunsol Medical Hospital, Busan, South Korea
| |
Collapse
|
26
|
Chaouachi A, Ben Othman A, Chaouachi M, Hechmi A, Farthing JP, Granacher U, Behm DG. Comparison of Cross-Education and Global Training Effects in Adults and Youth After Unilateral Strength Training. J Strength Cond Res 2020; 36:2121-2131. [PMID: 32833889 DOI: 10.1519/jsc.0000000000003766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chaouachi, A, Ben Othman, A, Chaouachi, M, Hechmi, A, Farthing, JP, Granacher, U, and Behm, DG. Comparison of cross-education and global training effects in adults and youth after unilateral strength training. J Strength Cond Res XX(X): 000-000, 2020-Youth strength training research examining contralateral, homologous (cross-education), and heterologous (global training) effects after unilateral training have provided mixed results and the relationship to adults has not been compared. The objective was to compare adult and youth cross-education and global training effects on dominant and nondominant limb testing. Initially, 15 men and 15 prepubertal boys volunteered for each unilateral chest press (CP), handgrip training, and control groups (n = 89). Individuals trained their dominant limb 3 times per week for 8 weeks and had their dominant and nondominant limbs tested for CP and leg press 1 repetition maximum (1RM), handgrip, knee extension and flexion, and elbow extension and flexion maximum voluntary isometric contractions (MVICs). Adult CP training gains were significantly greater than youth with lower-body testing (p = 0.002-0.06), whereas youth CP training gains exceeded adults with upper-body tests (p = 0.03-0.07). Training specificity was evident with greater CP 1RM increases with CP vs. handgrip training for both youth (p < 0.0001) and adults (p < 0.0001). Handgrip training elicited greater gains in handgrip MVICs compared with other strength tests (p < 0.0001). In conclusion, only contralateral CP 1RM showed a training advantage for unilateral CP over unilateral handgrip training. Adults showed greater gains with lower-body testing, whereas youth showed greater gains with upper-body testing.
Collapse
Affiliation(s)
- Anis Chaouachi
- Tunisian Research Laboratory "Sport Performance Optimisation," National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia.,AUT University, Sports Performance Research Institute New Zealand, Auckland, New Zealand
| | - Aymen Ben Othman
- Tunisian Research Laboratory "Sport Performance Optimisation," National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - Mehdi Chaouachi
- Tunisian Research Laboratory "Sport Performance Optimisation," National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia.,Movement Sport and Health Sciences Laboratory, University of Rennes 2-ENS Cachan, Rennes, France
| | - Abderraouf Hechmi
- Tunisian Research Laboratory "Sport Performance Optimisation," National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - Jonathan P Farthing
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Urs Granacher
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
27
|
Manca A, Peruzzi A, Aiello E, Cereatti A, Martinez G, Deriu F, Della Croce U. Gait changes following direct versus contralateral strength training: A randomized controlled pilot study in individuals with multiple sclerosis. Gait Posture 2020; 78:13-18. [PMID: 32171169 DOI: 10.1016/j.gaitpost.2020.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Contralateral strength training (CST) is increasingly investigated and employed as a non-conventional way to induce an indirect gain in strength in the weakened untrained limb. However, its effects on gait performance are more controversial. RESEARCH QUESTION To assess and compare the effects of contralateral (CST) and direct (DST) strength training on spatio-temporal parameters, kinematic and kinetic descriptors of gait in persons with relapsing-remitting multiple sclerosis (PwMS). METHODS Twenty-eight PwMS (EDSS 2.0-5.5) with inter-side difference in ankle dorsiflexors' strength ≥ 20 % and moderate gait impairment (walking speed 0.70-0.94 m/s), were randomly assigned to a CST (undergoing training of the less-affected dorsiflexors) or DST group (where the most-affected dorsiflexors were trained). Before and after a 6-week high-intensity resistance training (three 25-minute sessions/week), PwMS underwent bilateral measurements of dorsiflexors' maximal strength and assessment of gait spatio-temporal parameters, lower limb joint kinematics and kinetics. RESULTS AND SIGNIFICANCE Following the training period, muscle strength increased significantly in both groups (on average, CST + 29.5 %, p < 0.0005; DST + 15.7 %, p = 0.001) with no difference between the two interventions. Significant changes in gait speed (+16.5 %; p < 0.0001) and stride length (+6.0 %; p = 0.04) were detected only after DST, while no difference was detected in the CST group. Ankle moment and ROM were unaffected by the training. In PwMS with mild to moderate disability and lower limb dorsiflexors' strength asymmetry, CST was not inferior to DST in inducing significant strength gains in the untrained most-affected limb. However, only DST significantly improved gait performance and, specifically, walking speed. Even though CST did not worsen asymmetry, data suggest that contralateral approaches should not be recommended straightaway if the training goal is to improve outcomes other than strength and, specifically, walking speed.
Collapse
Affiliation(s)
- A Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - A Peruzzi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - E Aiello
- Department of Medical, Surgical and Experimental Sciences, Italy
| | - A Cereatti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - G Martinez
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - F Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| | - U Della Croce
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
28
|
Cabibel V, Hordacre B, Perrey S. Implication of the ipsilateral motor network in unilateral voluntary muscle contraction: the cross-activation phenomenon. J Neurophysiol 2020; 123:2090-2098. [DOI: 10.1152/jn.00064.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Voluntary force production requires that the brain produces and transmits a motor command to the muscles. It is widely acknowledged that motor commands are executed from the primary motor cortex (M1) located in the contralateral hemisphere. However, involvement of M1 located in the ipsilateral hemisphere during moderate to high levels of unilateral muscle contractions (>30% of the maximum) has been disclosed in recent years. This phenomenon has been termed cross-activation. The activation of the ipsilateral M1 relies on complex inhibitory and excitatory interhemispheric interactions mediated via the corpus callosum and modulated according to the contraction level. The regulatory mechanisms underlying these interhemispheric interactions, especially excitatory ones, remain vague, and contradictions exist in the literature. In addition, very little is known regarding the possibility that other pathways could also mediate the cross-activation. In the present review, we will therefore summarize the concept of cross-activation during unilateral voluntary muscle contraction and explore the associated mechanisms and other nervous system pathways underpinning this response. A broader knowledge of these mechanisms would consequently allow a better comprehension of the motor system as a whole, as distant brain networks working together to produce the motor command.
Collapse
Affiliation(s)
- Vincent Cabibel
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, Montpellier, France
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| | - Stéphane Perrey
- EuroMov Digital Health in Motion, University of Montpellier, IMT Mines Ales, Montpellier, France
| |
Collapse
|
29
|
Kaviani M, Shaw K, Chilibeck PD. Benefits of Creatine Supplementation for Vegetarians Compared to Omnivorous Athletes: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093041. [PMID: 32349356 PMCID: PMC7246861 DOI: 10.3390/ijerph17093041] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022]
Abstract
Background: Creatine monohydrate is a nutritional supplement often consumed by athletes in anaerobic sports. Creatine is naturally found in most meat products; therefore, vegetarians have reduced creatine stores and may benefit from supplementation. Objective: to determine the effects of creatine supplementation on vegetarians. Data sources: PubMed and SPORTDiscus. Eligibility criteria: Randomized controlled trials (parallel group, cross-over studies) or prospective studies. Participants: Vegetarians. Intervention: Creatine supplementation. Study appraisal and synthesis: A total of 64 records were identified, and eleven full-text articles (covering nine studies) were included in this systematic review. Results: Creatine supplementation in vegetarians increased total creatine, creatine, and phosphocreatine concentrations in vastus lateralis and gastrocnemius muscle, plasma, and red blood cells, often to levels greater than omnivores. Creatine supplementation had no effect on brain levels of phosphocreatine. Creatine supplementation increased lean tissue mass, type II fiber area, insulin-like growth factor-1, muscular strength, muscular endurance, Wingate mean power output, and brain function (memory and intelligence) in vegetarian participants. Studies were mixed on whether creatine supplementation improved exercise performance in vegetarians to a greater extent compared to omnivores. Limitations: Studies that were reviewed had moderate–high risk of bias. Conclusions: Overall, it appears vegetarian athletes are likely to benefit from creatine supplementation.
Collapse
Affiliation(s)
- Mojtaba Kaviani
- School of Nutrition and Dietetics, Faculty of Pure & Applied Science, Acadia University, Wolfville, NB B4P 2R6, Canada
- Correspondence: (M.K.); (P.D.C.); Tel.: +1-902-585-1884 (M.K.); +1-306-966-1072 (P.D.C.)
| | - Keely Shaw
- College of Kinesiology, University of Saskatchewan, 87 Campus Dr, Saskatoon, SK S7N 5B2, Canada;
| | - Philip D. Chilibeck
- College of Kinesiology, University of Saskatchewan, 87 Campus Dr, Saskatoon, SK S7N 5B2, Canada;
- Correspondence: (M.K.); (P.D.C.); Tel.: +1-902-585-1884 (M.K.); +1-306-966-1072 (P.D.C.)
| |
Collapse
|
30
|
Barss TS, Klarner T, Sun Y, Inouye K, Zehr EP. Effects of enhanced cutaneous sensory input on interlimb strength transfer of the wrist extensors. Physiol Rep 2020; 8:e14406. [PMID: 32222042 PMCID: PMC7101283 DOI: 10.14814/phy2.14406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
The relative contribution of cutaneous sensory feedback to interlimb strength transfer remains unexplored. Therefore, this study aimed to determine the relative contribution of cutaneous afferent pathways as a substrate for cross-education by directly assessing how "enhanced" cutaneous stimulation alters ipsilateral and contralateral strength gains in the forearm. Twenty-seven right-handed participants were randomly assigned to 1-of-3 training groups and completed 6 sets of 8 repetitions 3x/week for 5 weeks. Voluntary training (TRAIN) included unilateral maximal voluntary contractions (MVCs) of the wrist extensors. Cutaneous stimulation (STIM), a sham training condition, included cutaneous stimulation (2x radiating threshold; 3sec; 50Hz) of the superficial radial (SR) nerve at the wrist. TRAIN + STIM training included MVCs of the wrist extensors with simultaneous SR stimulation. Two pre- and one posttraining session assessed the relative increase in force output during MVCs of isometric wrist extension, wrist flexion, and handgrip. Maximal voluntary muscle activation was simultaneously recorded from the flexor and extensor carpi radialis. Cutaneous reflex pathways were evaluated through stimulation of the SR nerve during graded ipsilateral contractions. Results indicate TRAIN increased force output compared with STIM in both trained (85.0 ± 6.2 Nm vs. 59.8 ± 6.1 Nm) and untrained wrist extensors (73.9 ± 3.5 Nm vs. 58.8 Nm). Providing 'enhanced' sensory input during training (TRAIN + STIM) also led to increases in strength in the trained limb compared with STIM (79.3 ± 6.3 Nm vs. 59.8 ± 6.1 Nm). However, in the untrained limb no difference occurred between TRAIN + STIM and STIM (63.0 ± 3.7 Nm vs. 58.8 Nm). This suggests when 'enhanced' input was provided independent of timing with active muscle contraction, interlimb strength transfer to the untrained wrist extensors was blocked. This indicates that the sensory volley may have interfered with the integration of appropriate sensorimotor cues required to facilitate an interlimb transfer, highlighting the importance of appropriately timed cutaneous feedback.
Collapse
Affiliation(s)
- Trevor S. Barss
- Rehabilitation Neuroscience LaboratoryUniversity of VictoriaVictoriaBCCanada
- Human Discovery ScienceInternational Collaboration on Repair Discoveries (ICORD)VancouverBCCanada
- Centre for Biomedical ResearchUniversity of VictoriaVictoriaBCCanada
| | - Taryn Klarner
- Rehabilitation Neuroscience LaboratoryUniversity of VictoriaVictoriaBCCanada
- Human Discovery ScienceInternational Collaboration on Repair Discoveries (ICORD)VancouverBCCanada
- Centre for Biomedical ResearchUniversity of VictoriaVictoriaBCCanada
- School of KinesiologyLakehead UniversityThunder BayONUSA
| | - Yao Sun
- Rehabilitation Neuroscience LaboratoryUniversity of VictoriaVictoriaBCCanada
- Human Discovery ScienceInternational Collaboration on Repair Discoveries (ICORD)VancouverBCCanada
- Centre for Biomedical ResearchUniversity of VictoriaVictoriaBCCanada
| | - Kristy Inouye
- Rehabilitation Neuroscience LaboratoryUniversity of VictoriaVictoriaBCCanada
| | - E. Paul Zehr
- Rehabilitation Neuroscience LaboratoryUniversity of VictoriaVictoriaBCCanada
- Human Discovery ScienceInternational Collaboration on Repair Discoveries (ICORD)VancouverBCCanada
- Centre for Biomedical ResearchUniversity of VictoriaVictoriaBCCanada
- Division of Medical SciencesUniversity of VictoriaBCCanada
- Zanshin Consulting Inc.VictoriaBCCanada
| |
Collapse
|
31
|
Unilateral Elbow Flexion and Leg Press Training Induce Cross-Education But Not Global Training Gains in Children. Pediatr Exerc Sci 2020; 32:36-47. [PMID: 31653801 DOI: 10.1123/pes.2019-0079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/12/2019] [Accepted: 08/07/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE Whereas cross-education has been extensively investigated with adults, there are far fewer youth investigations. Two studies suggested that children had greater global responses to unilateral knee extensor fatigue and training, respectively, than adults. The objective of this study was to compare global training responses and cross-education effects after unilateral elbow flexion (EFlex) and leg press (LP) training. METHODS Forty-three prepubertal youths (aged 10-13 y) were randomly allocated into dominant LP (n = 15), EFlex (n = 15) training groups, or a control (n = 13). Experimental groups trained 3 times per week for 8 weeks and were tested pretraining and posttraining for ipsilateral and contralateral 1-repetition maximum LP; knee extensor, knee flexors, elbow flexors; and handgrip maximum voluntary isometric contractions (MVIC), and countermovement jump. RESULTS In comparison to no significant changes with the control group, dominant elbow flexors training demonstrated significant ( P < .001) improvements only with ipsilateral and contralateral upper body testing (EFlex MVIC [15.9-21.5%], EFlex 1-repetition maximum [22.9-50.8%], handgrip MVIC [5.5-13.8%]). Dominant LP training similarly exhibited only significant ( P < .001) improvements for ipsilateral and contralateral lower body testing (LP 1-repetition maximum [59.6-81.8%], knee extensor MVIC [12.4-18.3%], knee flexor MVIC [7.9-22.3%], and countermovement jump [11.1-18.1%]). CONCLUSIONS The ipsilateral and contralateral training adaptations in youth were specific to upper or lower body training, respectively.
Collapse
|
32
|
Witkowski M, Bojkowski Ł, Karpowicz K, Konieczny M, Bronikowski M, Tomczak M. Effectiveness and Durability of Transfer Training in Fencing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030849. [PMID: 32013174 PMCID: PMC7038032 DOI: 10.3390/ijerph17030849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/12/2020] [Accepted: 01/20/2020] [Indexed: 11/24/2022]
Abstract
This paper reports the results of an experiment that aimed to study transfer training in fencing. Fencers from the experimental group underwent six-week transfer training while those from the control group underwent regular fencing training. The fencers’ performance was analyzed thrice: before the experimental training (pretest), immediately after it (posttest), and four weeks after it (retention test). Using a device that simulates fencing moves and analyzes the accuracy of such performance, participants completed, with both hands, three tests related to straight thrust accuracy. While no differences in hand grip strength was observed between the two groups across the three tests, significant differences occurred in terms of their performance on the device. The groups did not differ in the pretests and the retention tests. However, the fencers from the experimental group generally performed better in postests than prestests. These results show that bilateral transfer can be effective in foil fencing training, although its positive effects are short-term. In order to be effective, transfer training should be used as a regular training tool.
Collapse
Affiliation(s)
- Mateusz Witkowski
- Adam Mickiewicz University in Poznań, Zagajnikowa 9, 60-568 Poznań, Poland
| | - Łukasz Bojkowski
- Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznań, Poland
- Correspondence:
| | - Krzysztof Karpowicz
- Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznań, Poland
| | - Mariusz Konieczny
- Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland
| | - Michał Bronikowski
- Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznań, Poland
| | - Maciej Tomczak
- Poznan University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznań, Poland
| |
Collapse
|
33
|
Dilek B, Ayhan C, Yagci G, Yakut Y. Effectiveness of the graded motor imagery to improve hand function in patients with distal radius fracture: A randomized controlled trial. J Hand Ther 2019; 31:2-9.e1. [PMID: 29122370 DOI: 10.1016/j.jht.2017.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 02/09/2023]
Abstract
STUDY DESIGN Single-blinded randomized controlled trial. INTRODUCTION Pain management is essential in the early stages of the rehabilitation of distal radius fractures (DRFx). Pain intensity at the acute stage is considered important for determining the individual recovery process, given that higher pain intensity and persistent pain duration negatively affect the function and cortical activity of pain response. Graded motor imagery (GMI) and its components are recent pain management strategies, established on a neuroscience basis. PURPOSE OF THE STUDY To investigate the effectiveness of GMI in hand function in patients with DRFx. METHODS Thirty-six participants were randomly allocated to either GMI (n = 17; 52.59 [9.8] years) or control (n = 19; 47.16 [10.5] years) groups. The GMI group received imagery treatment in addition to traditional rehabilitation, and the control group received traditional rehabilitation for 8 weeks. The assessments included pain at rest and during activity using the visual analog scale, wrist and forearm active range of motion (ROM) with universal goniometer, grip strength with the hydraulic dynamometer (Jamar; Bolingbrook, IL), and upper extremity functional status using the Disability of the Arm, Shoulder and Hand Questionnaire, and the Michigan Hand Questionnaire. Assessments were performed twice at baseline and at the end of the eighth week. RESULTS The GMI group showed greater improvement in pain intensity (during rest, 2.24; activity, 6.18 points), wrist ROM (flexion, -40.59; extension, -45.59; radial deviation, -25.59; and ulnar deviation, -26.77 points) and forearm ROM (supination, -43.82 points), and functional status (Disability of the Arm, Shoulder and Hand Questionnaire, 38.00; Michigan Hand Questionnaire, -32.53 points) when compared with the control group (for all, P < .05). CONCLUSION The cortical model of pathological pain suggests new strategies established on a neuroscience basis. These strategies aim to normalize the cortical proprioceptive representation and reduce pain. One of these recent strategies, GMI appears to provide beneficial effects to control pain, improve grip strength, and increase upper extremity functions in patients with DRFx.
Collapse
Affiliation(s)
- Burcu Dilek
- Department of Physical Therapy and Rehabilitation, Istanbul Medipol University, Istanbul, Turkey.
| | - Cigdem Ayhan
- Physiotherapy and Rehabilitation Department, Hacettepe University Faculty of Health Sciences, Ankara, Turkey
| | - Gozde Yagci
- Physiotherapy and Rehabilitation Department, Hacettepe University Faculty of Health Sciences, Ankara, Turkey
| | - Yavuz Yakut
- Department of Physical Therapy and Rehabilitation, Hasan Kalyoncu University, Gaziantep, Turkey
| |
Collapse
|
34
|
Effects of acute and chronic unilateral resistance training variables on ipsilateral motor cortical excitability and cross-education: A systematic review. Phys Ther Sport 2019; 40:143-152. [DOI: 10.1016/j.ptsp.2019.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 07/09/2019] [Accepted: 09/16/2019] [Indexed: 12/26/2022]
|
35
|
Psilander N, Eftestøl E, Cumming KT, Juvkam I, Ekblom MM, Sunding K, Wernbom M, Holmberg HC, Ekblom B, Bruusgaard JC, Raastad T, Gundersen K. Effects of training, detraining, and retraining on strength, hypertrophy, and myonuclear number in human skeletal muscle. J Appl Physiol (1985) 2019; 126:1636-1645. [PMID: 30991013 DOI: 10.1152/japplphysiol.00917.2018] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previously trained mouse muscles acquire strength and volume faster than naïve muscles; it has been suggested that this is related to increased myonuclear density. The present study aimed to determine whether a previously strength-trained leg (mem-leg) would respond better to a period of strength training than a previously untrained leg (con-leg). Nine men and 10 women performed unilateral strength training (T1) for 10 wk, followed by 20 wk of detraining (DT) and a 5-wk bilateral retraining period (T2). Muscle biopsies were taken before and after each training period and analyzed for myonuclear number, fiber volume, and cross-sectional area (CSA). Ultrasound and one repetition of maximum leg extension were performed to determine muscle thickness (MT) and strength. CSA (~17%), MT (~10%), and strength (~20%) increased during T1 in the mem-leg. However, the myonuclear number and fiber volume did not change. MT and CSA returned to baseline values during DT, but strength remained elevated (~60%), supporting previous findings of a long-lasting motor learning effect. MT and strength increased similarly in the mem-leg and con-leg during T2, whereas CSA, fiber volume, and myonuclear number remained unaffected. In conclusion, training response during T2 did not differ between the mem-leg and con-leg. However, this does not discount the existence of human muscle memory, since no increase in the number of myonuclei was detected during T1 and no clear detraining effect was observed for cell size during DT; thus, the present data did not allow for a rigorous test of the muscle memory hypothesis. NEW & NOTEWORTHY If a long-lasting intramuscular memory exists in humans, this will affect strength-training advice for both athletes and the public. Based on animal experiments, we hypothesized that such a memory exists and that it is related to the myonuclear number. However, a period of unilateral strength training, followed by detraining, did not increase the myonuclear number. The training response, during a subsequent bilateral retraining period, was not enhanced in the previously trained leg.
Collapse
Affiliation(s)
- Niklas Psilander
- Department of Sport Performance and Training, The Swedish School of Sport and Health Sciences , Stockholm , Sweden
| | - Einar Eftestøl
- Department of Biosciences, University of Oslo , Oslo , Norway
| | | | - Inga Juvkam
- Department of Biosciences, University of Oslo , Oslo , Norway
| | - Maria M Ekblom
- Department of Sport Performance and Training, The Swedish School of Sport and Health Sciences , Stockholm , Sweden
| | - Kerstin Sunding
- Stockholm Sport Trauma Research Center, Karolinska Institutet , Stockholm , Sweden
| | - Mathias Wernbom
- Department of Food and Nutrition and Sport Science, Center for Health and Performance, University of Gothenburg , Gothenburg , Sweden
| | - Hans-Christer Holmberg
- Department of Health Sciences, Swedish Winter Sports Research Centre, Mid Sweden University, Östersund, Sweden
| | - Björn Ekblom
- Department of Sport Performance and Training, The Swedish School of Sport and Health Sciences , Stockholm , Sweden
| | - Jo C Bruusgaard
- Department of Biosciences, University of Oslo , Oslo , Norway.,Department of Health Sciences, Kristiania University College , Oslo , Norway
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences , Oslo , Norway
| | | |
Collapse
|
36
|
Carr JC, Ye X, Stock MS, Bemben MG, DeFreitas JM. The time course of cross-education during short-term isometric strength training. Eur J Appl Physiol 2019; 119:1395-1407. [PMID: 30949806 DOI: 10.1007/s00421-019-04130-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE This study examined the time course of contralateral adaptations in maximal isometric strength (MVC), rate of force development (RFD), and rate of electromyographic (EMG) rise (RER) during 4 weeks of unilateral isometric strength training with the non-dominant elbow flexors. METHODS Twenty participants were allocated to strength training (n = 10, three female, two left hand dominant) or control (n = 10, three female, two left hand dominant) groups. Both groups completed testing at baseline and following each week of training to evaluate MVC strength, EMG amplitude, RFD and RER at early (RFD50, RER50) and late (RFD200, RER200) contraction phases for the dominant 'untrained' elbow flexors. The training group completed 11 unilateral isometric training sessions across 4 weeks. RESULTS The contralateral improvements for MVC strength (P < 0.01) and RFD200 (P = 0.017) were evidenced after 2 weeks, whereas RFD50 (P < 0.01) and RER50 (P = 0.02) showed significant improvements after 3 weeks. Each of the dependent variables was significantly (P < 0.05) greater than baseline values at the end of the training intervention for the trained arm. No changes in any of the variables were observed for the control group (P > 0.10). CONCLUSIONS Unilateral isometric strength training for 2-3 weeks can produce substantial increases in isometric muscle strength and RFD for both the trained and untrained arms. These data have implications for rehabilitative exercise design and prescription.
Collapse
Affiliation(s)
- Joshua C Carr
- Department of Health & Exercise Science, University of Oklahoma, 1401 Asp Ave, Room 104, Norman, OK, 73019, USA.
| | - Xin Ye
- Department of Health, Exercise Science, & Recreation Management, University of Mississippi, University, MS, USA
| | - Matt S Stock
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
| | - Michael G Bemben
- Department of Health & Exercise Science, University of Oklahoma, 1401 Asp Ave, Room 104, Norman, OK, 73019, USA
| | - Jason M DeFreitas
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
37
|
Ben Othman A, Chaouachi A, Chaouachi M, Makhlouf I, Farthing JP, Granacher U, Behm DG. Dominant and nondominant leg press training induce similar contralateral and ipsilateral limb training adaptations with children. Appl Physiol Nutr Metab 2019; 44:973-984. [PMID: 30664382 DOI: 10.1139/apnm-2018-0766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cross-education has been extensively investigated with adults. Adult studies report asymmetrical cross-education adaptations predominately after dominant limb training. The objective of the study was to examine unilateral leg press (LP) training of the dominant or nondominant leg on contralateral and ipsilateral strength and balance measures. Forty-two youth (10-13 years) were placed (random allocation) into a dominant (n = 15) or nondominant (n = 14) leg press training group or nontraining control (n = 13). Experimental groups trained 3 times per week for 8 weeks and were tested pre-/post-training for ipsilateral and contralateral 1-repetition maximum (RM) horizontal LP, maximum voluntary isometric contraction (MVIC) of knee extensors (KE) and flexors (KF), countermovement jump (CMJ), triple hop test (THT), MVIC strength of elbow flexors (EF) and handgrip, as well as the stork and Y balance tests. Both dominant and nondominant LP training significantly (p < 0.05) increased both ipsilateral and contralateral lower body strength (LP 1RM (dominant: 59.6%-81.8%; nondominant: 59.5%-96.3%), KE MVIC (dominant: 12.4%-18.3%; nondominant: 8.6%-18.6%), KF MVIC (dominant: 7.9%-22.3%; nondominant: nonsignificant-3.8%), and power (CMJ: dominant: 11.1%-18.1%; nondominant: 7.7%-16.6%)). The exception was that nondominant LP training demonstrated a nonsignificant change with the contralateral KF MVIC. Other significant improvements were with nondominant LP training on ipsilateral EF 1RM (6.2%) and THT (9.6%). There were no significant changes with EF and handgrip MVIC. The contralateral leg stork balance test was impaired following dominant LP training. KF MVIC exhibited the only significant relative post-training to pretraining (post-test/pre-test) ratio differences between dominant versus nondominant LP cross-education training effects. In conclusion, children exhibit symmetrical cross-education or global training adaptations with unilateral training of dominant or nondominant upper leg.
Collapse
Affiliation(s)
- Aymen Ben Othman
- Tunisian Research Laboratory "Sport Performance Optimisation", National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - Anis Chaouachi
- Tunisian Research Laboratory "Sport Performance Optimisation", National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia.,AUT University, Sports Performance Research Institute New Zealand, 17 Antares Place, Rosedale, Auckland 0632, New Zealand.,PVF Football Academy, Hang Yen, Vietnam
| | - Mehdi Chaouachi
- Tunisian Research Laboratory "Sport Performance Optimisation", National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia.,Movement Sport and Health Sciences Laboratory, Université Rennes 2-ENS, 35170 Bruz, France
| | - Issam Makhlouf
- Tunisian Research Laboratory "Sport Performance Optimisation", National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - Jonathan P Farthing
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| | - Urs Granacher
- Division of Training and Movement Science, University of Potsdam, Campus Am Neuen Palais, Am Neuen Palais 10, D-14469 Potsdam, Germany
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
38
|
Harput G, Ulusoy B, Yildiz TI, Demirci S, Eraslan L, Turhan E, Tunay VB. Cross-education improves quadriceps strength recovery after ACL reconstruction: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc 2019; 27:68-75. [PMID: 29959448 DOI: 10.1007/s00167-018-5040-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/26/2018] [Indexed: 01/22/2023]
Abstract
PURPOSE The aim of this study was to investigate the effects of concentric and eccentric cross-education (CE) on quadriceps strength and knee function recoveries after anterior cruciate ligament (ACL) reconstruction. METHODS Forty-eight patients (age: 29.5 ± 6.8 years, body mass index: 26.1 ± 3.2 kg/m2) who had undergone ACL reconstruction with hamstring tendon autograft were included in the study. The patients were randomly divided into three groups when they reached four weeks post surgery: (1) concentric CE (n = 16); (2) eccentric CE (n = 16); and (3) control (n = 16). All groups followed the same post-surgical rehabilitation program for their reconstructed limb. Additionally, the two experimental groups followed eight weeks of isokinetic training for the uninjured knee at 60°/s for 3 days per week. Quadriceps maximum voluntary isometric strength (MVIC) was measured during the 4th week (pre-training), 12th week (post training), and 24th week post surgery. The single-leg hop distance and International Knee Documentary Committee (IKDC) scores were also evaluated during the 24th week post surgery. Analysis of variance was used for statistical analysis. RESULTS Group-by-time interaction was significant for quadriceps MVICs for reconstructed and healthy limbs (p = 0.02). Quadriceps strength of both knees was greater in concentric and eccentric CE groups compared to control group during the 12th- and 24th weeks post surgery (p < 0.05). Strength gain was 28% and 31% in concentric and eccentric CE groups, respectively, when compared with the control group. Concentric and eccentric CE had similar effects on quadriceps strength recovery (n.s.). IKDC score, and single-leg hop distances were not significantly different among groups (n.s.). CONCLUSIONS Concentric and eccentric quadricep strengthening of healthy limbs in early phases of ACL rehabilitation improved post-surgical quadriceps strength recovery of the reconstructed limb. CE should be integrated into ACL reconstruction rehabilitation, especially in the early rehabilitative phases to restore quadriceps strength. LEVEL OF EVIDENCE Randomized controlled trial, Level I.
Collapse
Affiliation(s)
- Gulcan Harput
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Hacettepe University, Samanpazari, 06100, Ankara, Turkey.
| | - Burak Ulusoy
- Department of Physiotherapy and Rehabilitation, Karatekin University, Çankırı, Turkey
| | - Taha Ibrahim Yildiz
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Hacettepe University, Samanpazari, 06100, Ankara, Turkey
| | - Serdar Demirci
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Hacettepe University, Samanpazari, 06100, Ankara, Turkey
| | - Leyla Eraslan
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Hacettepe University, Samanpazari, 06100, Ankara, Turkey
| | - Egemen Turhan
- Department of Orthopedics and Traumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Volga Bayrakci Tunay
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Hacettepe University, Samanpazari, 06100, Ankara, Turkey
| |
Collapse
|
39
|
Green LA, Gabriel DA. The effect of unilateral training on contralateral limb strength in young, older, and patient populations: a meta-analysis of cross education. PHYSICAL THERAPY REVIEWS 2018. [DOI: 10.1080/10833196.2018.1499272] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lara A. Green
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - David A. Gabriel
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
40
|
Barss TS, Klarner T, Pearcey GEP, Sun Y, Zehr EP. Time course of interlimb strength transfer after unilateral handgrip training. J Appl Physiol (1985) 2018; 125:1594-1608. [PMID: 30188797 DOI: 10.1152/japplphysiol.00390.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
"Cross-education" is the increase in strength or functional performance of an untrained limb after unilateral training. A major limitation for clinical translation from unilateral injury includes knowledge on the minimum time for the emergence of crossed effects. Therefore, the primary purpose was to characterize the time course of bilateral strength changes during both "traditional" ( n = 11) and "daily" ( n = 8) unilateral handgrip training in neurologically intact participants. Traditional training included five sets of five maximal voluntary handgrip contractions 3 times/wk for 6 wk whereas daily training included the same number of sessions and contractions but over 18 consecutive days. Three pre- and one posttest session evaluated strength, muscle activation, and reflex excitability bilaterally. Time course information was assessed by recording handgrip force for every contraction in the trained limb and from a single contraction on every third training session in the untrained limb. Six weeks of traditional training increased handgrip strength in the trained limb after the 9th session whereas the untrained limb was stronger after the 12th session. This was accompanied by increased peak muscle activation and bilateral alterations in Hoffmann reflex excitability. Daily training revealed a similar number of sessions (15) were required to induce significant strength gains in the untrained limb (7.8% compared with 12.5%) in approximately half the duration of traditional training. Therefore, minimizing rest days may improve the efficiency of unilateral training when the trained limb is not the focus. Establishing a "dose" for the time course of adaptation to strength training is paramount for effective translation to rehabilitative interventions. NEW & NOTEWORTHY Unilateral handgrip training using a "traditional" protocol (3 times/wk; 6 wk) increased strength bilaterally after 9 (trained arm) and 12 (untrained arm) sessions. "Daily" training (18 consecutive days) increased strength in the untrained limb in a similar number of training sessions, which was accomplished in approximately half the time. Within clinical populations when the focus is on the untrained limb, reducing rest days may optimize the recovery of strength.
Collapse
Affiliation(s)
- Trevor S Barss
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada
| | - Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada.,School of Kinesiology, Lakehead University , Thunder Bay, Ontario , Canada
| | - Gregory E P Pearcey
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada
| | - Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada.,Division of Medical Sciences, University of Victoria , Victoria, British Columbia , Canada
| |
Collapse
|
41
|
Green LA, Gabriel DA. The cross education of strength and skill following unilateral strength training in the upper and lower limbs. J Neurophysiol 2018. [PMID: 29668382 DOI: 10.1152/jn.00116.2018.-cross] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
UNLABELLED Cross education is the strength gain or skill improvement transferred to the contralateral limb following unilateral training or practice. The present study examined the transfer of both strength and skill following a strength training program. Forty participants (20M, 20F) completed a 6-wk unilateral training program of dominant wrist flexion or dorsiflexion. Strength, force variability, and muscle activity were assessed pretraining, posttraining, and following 6 wk of detraining (retention). Analyses of covariance compared the experimental limb (trained or untrained) to the control (dominant or nondominant). There were no sex differences in the training response. Cross education of strength at posttraining was 6% ( P < 0.01) in the untrained arm and 13% ( P < 0.01) in the untrained leg. Contralateral strength continued to increase following detraining to 15% in the arm ( P < 0.01) and 14% in the leg ( P < 0.01). There was no difference in strength gains between upper and lower limbs ( P > 0.05). Cross education of skill (force variability) demonstrated greater improvements in the untrained limbs compared with the control limbs during contractions performed without concurrent feedback. Significant increases in V-wave amplitude ( P = 0.02) and central activation ( P < 0.01) were highly correlated with contralateral strength gains. There was no change in agonist amplitude or motor unit firing rates in the untrained limbs ( P > 0.05). The neuromuscular mechanisms mirrored the force increases at posttraining and retention supporting central drive adaptations of cross education. The continued strength increases at retention identified the presence of motor learning in cross education, as confirmed by force variability. NEW & NOTEWORTHY We examined cross education of strength and skill following 6 wk of unilateral training and 6 wk of detraining. A novel finding was the continued increase in contralateral strength following both training and detraining. Neuromuscular adaptations were highly correlated with strength gains in the trained and contralateral limbs. Motor learning was evident in the trained and contralateral limbs during contractions performed without concurrent feedback.
Collapse
Affiliation(s)
- Lara A Green
- Department of Kinesiology, Brock University , St. Catharines, Ontario , Canada
| | - David A Gabriel
- Department of Kinesiology, Brock University , St. Catharines, Ontario , Canada
| |
Collapse
|
42
|
Frazer AK, Pearce AJ, Howatson G, Thomas K, Goodall S, Kidgell DJ. Determining the potential sites of neural adaptation to cross-education: implications for the cross-education of muscle strength. Eur J Appl Physiol 2018; 118:1751-1772. [PMID: 29995227 DOI: 10.1007/s00421-018-3937-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
Abstract
Cross-education describes the strength gain in the opposite, untrained limb following a unilateral strength training program. Since its discovery in 1894, several studies now confirm the existence of cross-education in contexts that involve voluntary dynamic contractions, eccentric contraction, electrical stimulation, whole-body vibration and, more recently, following mirror feedback training. Although many aspects of cross-education have been established, the mediating neural mechanisms remain unclear. Overall, the findings of this review show that the neural adaptations to cross-education of muscle strength most likely represent a continuum of change within the central nervous system that involves both structural and functional changes within cortical motor and non-motor regions. Such changes are likely to be the result of more subtle changes along the entire neuroaxis which include, increased corticospinal excitability, reduced cortical inhibition, reduced interhemispheric inhibition, changes in voluntary activation and new regions of cortical activation. However, there is a need to widen the breadth of research by employing several neurophysiological techniques (together) to better understand the potential mechanisms mediating cross-education. This fundamental step is required in order to better prescribe targeted and effective guidelines for the clinical practice of cross-education. There is a need to determine whether similar cortical responses also occur in clinical populations where, perhaps, the benefits of cross-education could be best observed.
Collapse
Affiliation(s)
- Ashlyn K Frazer
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, School of Primary and Allied Health Care, Monash University, PO Box 527, Frankston, Melbourne, VIC, 3199, Australia.
| | - Alan J Pearce
- Discipline of Exercise Science, School of Allied Health, La Trobe University, Melbourne, Australia
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK.,Water Research Group, School of Biological Sciences, North West University, Potchefstroom, South Africa
| | - Kevin Thomas
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK
| | - Dawson J Kidgell
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, School of Primary and Allied Health Care, Monash University, PO Box 527, Frankston, Melbourne, VIC, 3199, Australia
| |
Collapse
|
43
|
Manca A, Hortobágyi T, Rothwell J, Deriu F. Neurophysiological adaptations in the untrained side in conjunction with cross-education of muscle strength: a systematic review and meta-analysis. J Appl Physiol (1985) 2018; 124:1502-1518. [DOI: 10.1152/japplphysiol.01016.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We reviewed the evidence from randomized controlled trials (RCTs) focusing on the neurophysiological adaptations in the untrained side associated with cross-education of strength (CE) and pooled data into definite effect estimates for neurophysiological variables assessed in chronic CE studies. Furthermore, scoping directions for future research were provided to enhance the homogeneity and comparability of studies investigating the neural responses to CE. The magnitude of CE was 21.1 ± 18.2% (mean ± SD; P < 0.0001) in 22 RCTs ( n = 467 subjects) that measured at least 1 neurophysiological variable in the untrained side, including the following: electromyography (EMG; 14 studies); motor evoked potential (MEP; 8 studies); short-interval intracortical inhibition (SICI), recruitment curve, and M wave (6 studies); cortical silent period (cSP; 5 studies); interhemispheric inhibition, intracortical facilitation (ICF), and H reflex (2 studies); and V wave, short-interval ICF, short-latency afferent inhibition, and long-latency afferent inhibition (1 study). Only EMG, MEP, ICF, cSP, and SICI could be included in the meta-analysis (18 studies, n = 387). EMG ( P = 0.26, n = 235) and MEP amplitude ( P = 0.11, n = 145) did not change in the untrained limb after CE. cSP duration ( P = 0.02, n = 114) and SICI ( P = 0.001, n = 95) decreased in the untrained hemisphere according to body region and type and intensity of training. The magnitude of CE did not correlate with changes in these transcranial magnetic stimulation (TMS) measures. The design of this meta-analytical study and the lack of correlations prevented the ability to link mechanistically the observed neurophysiological changes to CE. Notwithstanding the limited amount of data available for pooling, the use of TMS to assess the ipsilateral neurophysiological responses to unilateral training still confirms the central neural origin hypothesis of chronic CE induced by strength training. However, how these neural adaptations contribute to CE remains unclear.
Collapse
Affiliation(s)
- Andrea Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
44
|
Green LA, Gabriel DA. The cross education of strength and skill following unilateral strength training in the upper and lower limbs. J Neurophysiol 2018; 120:468-479. [PMID: 29668382 DOI: 10.1152/jn.00116.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cross education is the strength gain or skill improvement transferred to the contralateral limb following unilateral training or practice. The present study examined the transfer of both strength and skill following a strength training program. Forty participants (20M, 20F) completed a 6-wk unilateral training program of dominant wrist flexion or dorsiflexion. Strength, force variability, and muscle activity were assessed pretraining, posttraining, and following 6 wk of detraining (retention). Analyses of covariance compared the experimental limb (trained or untrained) to the control (dominant or nondominant). There were no sex differences in the training response. Cross education of strength at posttraining was 6% ( P < 0.01) in the untrained arm and 13% ( P < 0.01) in the untrained leg. Contralateral strength continued to increase following detraining to 15% in the arm ( P < 0.01) and 14% in the leg ( P < 0.01). There was no difference in strength gains between upper and lower limbs ( P > 0.05). Cross education of skill (force variability) demonstrated greater improvements in the untrained limbs compared with the control limbs during contractions performed without concurrent feedback. Significant increases in V-wave amplitude ( P = 0.02) and central activation ( P < 0.01) were highly correlated with contralateral strength gains. There was no change in agonist amplitude or motor unit firing rates in the untrained limbs ( P > 0.05). The neuromuscular mechanisms mirrored the force increases at posttraining and retention supporting central drive adaptations of cross education. The continued strength increases at retention identified the presence of motor learning in cross education, as confirmed by force variability. NEW & NOTEWORTHY We examined cross education of strength and skill following 6 wk of unilateral training and 6 wk of detraining. A novel finding was the continued increase in contralateral strength following both training and detraining. Neuromuscular adaptations were highly correlated with strength gains in the trained and contralateral limbs. Motor learning was evident in the trained and contralateral limbs during contractions performed without concurrent feedback.
Collapse
Affiliation(s)
- Lara A Green
- Department of Kinesiology, Brock University , St. Catharines, Ontario , Canada
| | - David A Gabriel
- Department of Kinesiology, Brock University , St. Catharines, Ontario , Canada
| |
Collapse
|
45
|
Andrushko JW, Gould LA, Farthing JP. Contralateral effects of unilateral training: sparing of muscle strength and size after immobilization. Appl Physiol Nutr Metab 2018; 43:1131-1139. [PMID: 29800529 DOI: 10.1139/apnm-2018-0073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The contralateral effects of unilateral strength training, known as cross-education of strength, date back well over a century. In the last decade, a limited number of studies have emerged demonstrating the preservation or "sparing" effects of cross-education during immobilization. Recently published evidence reveals that the sparing effects of cross-education show muscle site specificity and involve preservation of muscle cross-sectional area. The new research also demonstrates utility of training with eccentric contractions as a potent stimulus to preserve immobilized limb strength across multiple modes of contraction. The cumulative data in nonclinical settings suggest that cross-education can completely abolish expected declines in strength and muscle size in the range of ∼13% and ∼4%, respectively, after 3-4 weeks of immobilization of a healthy arm. The evidence hints towards the possibility that unique mechanisms may be involved in preservation effects of cross-education, as compared with those that lead to functional improvements under normal conditions. Cross-education effects after strength training appear to be larger in clinical settings, but there is still only 1 randomized clinical trial demonstrating the potential utility of cross-education in addition to standard treatment. More work is necessary in both controlled and clinical settings to understand the potential interaction of neural and muscle adaptations involved in the observed sparing effects, but there is growing evidence to advocate for the clinical utility of cross-education.
Collapse
Affiliation(s)
- Justin W Andrushko
- a College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| | - Layla A Gould
- a College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada.,b College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jonathan P Farthing
- a College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| |
Collapse
|
46
|
The ipsilateral corticospinal responses to cross-education are dependent upon the motor-training intervention. Exp Brain Res 2018; 236:1331-1346. [PMID: 29511785 DOI: 10.1007/s00221-018-5224-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/01/2018] [Indexed: 01/06/2023]
Abstract
This study aimed to identify the ipsilateral corticospinal responses of the contralateral limb following different types of unilateral motor-training. Three groups performing unilateral slow-paced strength training (SPST), non-paced strength training (NPST) or visuomotor skill training (VT) were compared to a control group. It was hypothesised that 4 weeks of unilateral SPST and VT, but not NPST, would increase ipsilateral corticospinal excitability (CSE) and reduce short-interval cortical inhibition (SICI), resulting in greater performance gains of the untrained limb. Tracking error of the untrained limb reduced by 29 and 41% following 2 and 4 weeks of VT. Strength of the untrained limb increased by 8 and 16% following 2 and 4 weeks of SPST and by 6 and 13% following NPST. There was no difference in cross-education of strength or tracking error. For the trained limb, SPST and NPST increased strength (28 and 26%), and VT improved by 47 and 58%. SPST and VT increased ipsilateral CSE by 89 and 71% at 2 weeks. Ipsilateral CSE increased 105 and 81% at 4 weeks following SPST and VT. The NPST group and control group showed no changes at 2 and 4 weeks. SPST and VT reduced ipsilateral SICI by 45 and 47% at 2 weeks; at 4 weeks, SPST and VT reduced SICI by 48 and 38%. The ipsilateral corticospinal responses are determined by the type of motor-training. There were no differences in motor performance between SPST, NPST and VT. The data suggests that the corticospinal responses to cross-education are different and determined by the type of motor-training.
Collapse
|
47
|
Colomer-Poveda D, Romero-Arenas S, Hortobagyi T, Márquez G. Does ipsilateral corticospinal excitability play a decisive role in the cross-education effect caused by unilateral resistance training? A systematic review. Neurologia 2018; 36:285-297. [PMID: 29305060 DOI: 10.1016/j.nrl.2017.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022] Open
Abstract
INTRODUCTION Unilateral resistance training has been shown to improve muscle strength in both the trained and the untrained limb. One of the most widely accepted theories is that this improved performance is due to nervous system adaptations, specifically in the primary motor cortex. According to this hypothesis, increased corticospinal excitability (CSE), measured with transcranial magnetic stimulation, is one of the main adaptations observed following prolonged periods of training. The principal aim of this review is to determine the degree of adaptation of CSE and its possible functional association with increased strength in the untrained limb. DEVELOPMENT We performed a systematic literature review of studies published between January 1970 and December 2016, extracted from Medline (via PubMed), Ovid, Web of Science, and Science Direct online databases. The search terms were as follows: (transcranial magnetic stimulation OR excitability) AND (strength training OR resistance training OR force) AND (cross transfer OR contralateral limb OR cross education). A total of 10 articles were found. CONCLUSION Results regarding increased CSE were inconsistent. Although the possibility that the methodology had a role in this inconsistency cannot be ruled out, the results appear to suggest that there may not be a functional association between increases in muscle strength and in CSE.
Collapse
Affiliation(s)
- D Colomer-Poveda
- Departamento de Ciencias de la Actividad Física y del Deporte, Facultad de Deporte-UCAM, Universidad Católica de Murcia, Murcia, España
| | - S Romero-Arenas
- Departamento de Ciencias de la Actividad Física y del Deporte, Facultad de Deporte-UCAM, Universidad Católica de Murcia, Murcia, España
| | - T Hortobagyi
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, Países Bajos
| | - G Márquez
- Departamento de Ciencias de la Actividad Física y del Deporte, Facultad de Deporte-UCAM, Universidad Católica de Murcia, Murcia, España.
| |
Collapse
|
48
|
Andrushko JW, Lanovaz JL, Björkman KM, Kontulainen SA, Farthing JP. Unilateral strength training leads to muscle-specific sparing effects during opposite homologous limb immobilization. J Appl Physiol (1985) 2017; 124:866-876. [PMID: 29357520 DOI: 10.1152/japplphysiol.00971.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cross education (CE) occurs after unilateral training whereby performance of the untrained contralateral limb is enhanced. A few studies have shown that CE can preserve or "spare" strength and size of an opposite immobilized limb, but the specificity (i.e., trained homologous muscle and contraction type) of these effects is unknown. The purpose was to investigate specificity of CE "sparing" effects with immobilization. The nondominant forearm of 16 participants was immobilized with a cast, and participants were randomly assigned to a resistance training (eccentric wrist flexion, 3 times/week) or control group for 4 weeks. Pre- and posttesting involved wrist flexors and extensors eccentric, concentric and isometric maximal voluntary contractions (via dynamometer), muscle thickness (via ultrasound), and forearm muscle cross-sectional area (MCSA; via peripheral quantitative computed tomography). Only the training group showed strength preservation across all contractions in the wrist flexors of the immobilized limb (training: -2.4% vs. control: -21.6%; P = 0.04), and increased wrist flexors strength of the nonimmobilized limb (training: 30.8% vs. control: -7.4%; P = 0.04). Immobilized arm MCSA was preserved for the training group only (training: 1.3% vs. control: -2.3%; P = 0.01). Muscle thickness differed between groups for the immobilized (training: 2.8% vs. control: -3.2%; P = 0.01) and nonimmobilized wrist flexors (training: 7.1% vs. control: -3.7%; P = 0.02). Strength preservation was nonspecific to contraction type ( P = 0.69, [Formula: see text] = 0.03) yet specific to the trained flexors muscle. These findings suggest that eccentric training of the nonimmobilized limb can preserve size of the immobilized contralateral homologous muscle and strength across multiple contraction types. NEW & NOTEWORTHY Unilateral strength training preserves strength, muscle thickness, and muscle cross-sectional area in an opposite immobilized limb. The preservation of size and strength was confined to the trained homologous muscle group. However, strength was preserved across multiple contraction types.
Collapse
Affiliation(s)
- Justin W Andrushko
- College of Kinesiology, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| | - Joel L Lanovaz
- College of Kinesiology, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| | - Kelsey M Björkman
- College of Kinesiology, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| | - Saija A Kontulainen
- College of Kinesiology, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| | - Jonathan P Farthing
- College of Kinesiology, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| |
Collapse
|
49
|
Tøien T, Unhjem R, Øren TS, Kvellestad ACG, Hoff J, Wang E. Neural Plasticity with Age: Unilateral Maximal Strength Training Augments Efferent Neural Drive to the Contralateral Limb in Older Adults. J Gerontol A Biol Sci Med Sci 2017; 73:596-602. [DOI: 10.1093/gerona/glx218] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/31/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tiril Tøien
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Runar Unhjem
- Faculty of Professional Studies, Nord University, Bodø, Norway
| | - Thomas Storehaug Øren
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ann Charlotte Gjertsen Kvellestad
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan Hoff
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Østmarka, Division of Mental Healthcare, St. Olav’s Hospital, Trondheim University Hospital, Norway
| | - Eivind Wang
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research and Development, St. Olav’s University Hospital, Trondheim, Norway
- Department of Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
50
|
Escamilla-Galindo VL, Estal-Martínez A, Adamczyk JG, Brito CJ, Arnaiz-Lastras J, Sillero-Quintana M. Skin temperature response to unilateral training measured with infrared thermography. J Exerc Rehabil 2017; 13:526-534. [PMID: 29114526 PMCID: PMC5667598 DOI: 10.12965/jer.1735046.523] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/12/2017] [Indexed: 11/22/2022] Open
Abstract
This study aimed to identify the skin temperature (Tsk) behavior to understand the acute cross-effect after unilateral training of lower-limbs. Seventeen healthy young men (weight, 75.2±5.5 kg; height, 1.8±0.1 m; age, 22.5±1.6 years) were divided into two groups: high-trained (n=8) and low-trained (n=9). All participants performed: (a) one-repetition maximum (1RM) testing protocol on the leg press, (b) a unilateral training protocol (4×10 repetitions at 70% of 1RM for leg press and 4×10 repetitions at 50% of 1RM for knee extension). Pre- and posttraining thermal images were recorded. The main results showed that independent of the limb (exercised vs. nonexercised), differences between low- and high-trained were observed for all regions of interest (ROI) except for the anterior knee: posttraining, 30-min and 60-min posttraining in nonexercised limb. The increase of contralateral Tsk was more than 50% on the ROIs corresponding to the exercises muscles 30-min post-training in low-trained but was not so high in high-trained (P<0.05). Low-trained subjects incremented more the Tsk than high-trained in both legs after exercise. In conclusion, we observed an acute contralateral Tsk effect to unilateral training on the Tsk of the nonexercised limb, reliant on the training level of the subject.
Collapse
Affiliation(s)
- Víctor L Escamilla-Galindo
- Physical Activity Laboratory, Department of Sports, Faculty of Physical Activity and Sport Sciences, Technic University of Madrid, Madrid, Spain
| | - Alejandro Estal-Martínez
- Physical Activity Laboratory, Department of Sports, Faculty of Physical Activity and Sport Sciences, Technic University of Madrid, Madrid, Spain.,University Centre of Health Sciences San Rafael-Nebrija, Faculty of Physiotherapy, Antonio de Nebrija University, Madrid, Spain
| | - Jakub G Adamczyk
- Theory of Sport Department, Faculty of Physical Education, University of Physical Education, Warsaw, Poland
| | - Ciro José Brito
- Department of Physical Education, Federal University of Juiz de Fora, Governador Valadares, Brazil
| | - Javier Arnaiz-Lastras
- Physical Activity Laboratory, Department of Sports, Faculty of Physical Activity and Sport Sciences, Technic University of Madrid, Madrid, Spain
| | - Manuel Sillero-Quintana
- Physical Activity Laboratory, Department of Sports, Faculty of Physical Activity and Sport Sciences, Technic University of Madrid, Madrid, Spain
| |
Collapse
|