1
|
Zhang H, Kuang Q, Li R, Song Z, She S, Zheng Y. Association between homotopic connectivity and clinical symptoms in first-episode schizophrenia. Heliyon 2024; 10:e30347. [PMID: 38707391 PMCID: PMC11066690 DOI: 10.1016/j.heliyon.2024.e30347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Background Abnormal functional connectivity (FC) in the brain has been observed in schizophrenia patients. However, studies on FC between homotopic brain regions are limited, and the results of these studies are inconsistent. The aim of this study was to compare homotopic connectivity between first-episode schizophrenia (FES) patients and healthy subjects and assess its correlation with clinical symptoms. Methods Thirty-one FES patients and thirty-three healthy controls (HC) were included in the study. The voxel-mirrored homotopic connectivity (VMHC) method of resting-state functional magnetic resonance imaging (rs-fMRI) was used to analyse the changes in homotopic connectivity between the two groups. The 5-factor PANSS model was used to quantitatively evaluate the severity of symptoms in FES patients. Partial correlation analysis was used to assess the correlation between homotopic connectivity changes and clinical symptoms. Results Compared to those in the HC group, VMHC values were decreased in the paracentral lobule (PL), thalamus, and superior temporal gyrus (STG) in the FES group (P < 0.05, FDR correction). No significant differences in white matter volume (WMV) within the subregion of the corpus callosum or in brain regions associated with reduced VMHC were observed between the two groups. Partial correlation analyses revealed that VMHC in the bilateral STG of FES patients was positively correlated with negative symptoms (rleft = 0.46, p < 0.05; rright = 0.47, p < 0.05), and VMHC in the right thalamus was negatively correlated with disorganized/concrete symptoms (rright = 0.45, p < 0.05). Conclusion Our study revealed that homotopic connectivity is altered in the resting-state brain of FES patients and correlates with the severity of negative symptoms; this change may be independent of structural changes in white matter. These findings may contribute to the development of the abnormal connectivity hypothesis in schizophrenia patients.
Collapse
Affiliation(s)
| | | | - Ruikeng Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Zhen Song
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Shenglin She
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510370, China
| |
Collapse
|
2
|
The Impact of Antipsychotic Treatment on Neurological Soft Signs in Patients with Predominantly Negative Symptoms of Schizophrenia. Biomedicines 2022; 10:biomedicines10112939. [PMID: 36428507 PMCID: PMC9687986 DOI: 10.3390/biomedicines10112939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Schizophrenia is a complex and incompletely elucidated pathology that affects sensorimotor function and also produces numerous therapeutic challenges. The aims of this cross-sectional study were to identify the profile of neurological soft signs (NSS) in patients with predominantly negative symptoms of schizophrenia (PNS) compared with patients with schizophrenia who do not present a predominance of negative symptoms (NPNS) and also to objectify the impact of treatment on the neurological function of these patients. Ninety-nine (n = 99; 56 females and 43 males) patients diagnosed with schizophrenia according to DSM-V were included; these patients were undergoing antipsychotic (4 typical antipsychotics, 86 atypical antipsychotics, and 9 combinations of two atypical antipsychotics) or anticholinergic treatment (24 out of 99) at the time of evaluation, and the PANSS was used to identify the patients with predominantly negative symptoms (n = 39), the Neurological Evaluation Scale (NES) was used for the evaluation of neurological soft signs (NSS), and the SAS was used for the objectification of the extrapyramidal side effects induced by the neuroleptic treatment, which was converted to chlorpromazine equivalents (CPZE). The study's main finding was that, although the daily dose of CPZE did not represent a statistically significant variable, in terms of neurological soft signs, patients with PNS had higher rates of NSS.
Collapse
|
3
|
Samson GD, Lahti AC, Kraguljac NV. The neural substrates of neurological soft signs in schizophrenia: a systematic review. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:42. [PMID: 35853869 PMCID: PMC9261110 DOI: 10.1038/s41537-022-00245-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/11/2022] [Indexed: 06/01/2023]
Abstract
Neurological soft signs (NSS) are common in patients with schizophrenia. However, the neural substrates of NSS remain poorly understood. Using legacy PubMed, we performed a systematic review and included studies that assessed NSS and obtained neuroimaging data in patients with a schizophrenia spectrum disorder published up to June 2020. We systematically reviewed 35 relevant articles. Studies consistently implicate the basal ganglia and cerebellum as structural substrates of NSS and suggest that somatomotor and somatosensory regions as well as areas involved in visual processing and spatial orientation may underlie NSS in psychosis spectrum disorders. Additionally, dysfunction of frontoparietal and cerebellar networks has been implicated in the pathophysiology of NSS. The current literature outlines several structural and functional brain signatures that are relevant for NSS in schizophrenia spectrum disorder. The majority of studies assessed gray matter structure, but only a few studies leveraged other imaging methods such as diffusion weighted imaging, or molecular imaging. Due to this, it remains unclear if white matter integrity deficits or neurometabolic alterations contribute to NSS in the illness. While a substantial portion of the literature has been conducted in patients in the early illness stages, mitigating confounds of illness chronicity, few studies have been conducted in antipsychotic medication-naïve patients, which is a clear limitation. Furthermore, only little is known about the temporal evolution of NSS and associated brain signatures. Future studies addressing these pivotal gaps in our mechanistic understanding of NSS will be important.
Collapse
Affiliation(s)
- Genelle D Samson
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina V Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Pizem D, Novakova L, Gajdos M, Rektorova I. Is the vertex a good control stimulation site? Theta burst stimulation in healthy controls. J Neural Transm (Vienna) 2022; 129:319-329. [PMID: 35076779 DOI: 10.1007/s00702-022-02466-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/16/2022] [Indexed: 01/02/2023]
|
5
|
Wolf RC, Werler F, Wittemann M, Schmitgen MM, Kubera KM, Wolf ND, Reith W, Hirjak D. Structural correlates of sensorimotor dysfunction in heavy cannabis users. Addict Biol 2021; 26:e13032. [PMID: 33951262 DOI: 10.1111/adb.13032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/21/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Sensorimotor dysfunction has been previously reported in persons with cannabis dependence. Such individuals can exhibit increased levels of neurological soft signs (NSS), particularly involving motor coordination and sensorimotor integration. Whether such abnormalities may also apply to non-dependent individuals with heavy cannabis use (HCU) is unknown, as much as the neural correlates underlying such deficits. In this study, we investigated associations between NSS and gray matter volume (GMV) in males with HCU and male controls. Twenty-four persons with HCU and 17 controls were examined using standardized assessment of NSS and structural magnetic resonance imaging (MRI) at 3 T. GMV was calculated using voxel-based morphometry algorithms provided by the Computational Anatomy Toolbox (CAT12). Individuals with HCU showed higher NSS total scores compared to controls. In particular, significant NSS-subdomain effects were found for "motor coordination" (MoCo), "complex motor tasks" (CoMT), and "hard signs" (HS) expression in HCU (p < 0.05, Bonferroni-corrected). Compared to controls, persons with HCU showed significant NSS/GMV interactions in putamen and inferior frontal cortex (MoCo), right cerebellum (CoMT) and middle and superior frontal cortices, and bilateral precentral cortex and thalamus (HS). In between-group analyses, individuals with HCU showed lower GMV in the right anterior orbital and precentral gyrus, as well as higher GMV in the right superior frontal gyrus and left supplementary motor cortex compared to controls. The data support the notion of abnormal sensorimotor performance associated with HCU. The data also provide a neuromechanistic understanding of such deficits, particularly with respect to aberrant cortical-thalamic-cerebellar-cortical circuit.
Collapse
Affiliation(s)
- Robert Christian Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Heidelberg Germany
| | - Florian Werler
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Heidelberg Germany
| | - Miriam Wittemann
- Department of Psychiatry and Psychotherapy Saarland University Saarbrücken Germany
| | - Mike M. Schmitgen
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Heidelberg Germany
| | - Katharina M. Kubera
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Heidelberg Germany
| | - Nadine D. Wolf
- Department of General Psychiatry at the Center for Psychosocial Medicine Heidelberg University Heidelberg Germany
| | - Wolfgang Reith
- Department of Neuroradiology Saarland University Saarbrücken Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim Heidelberg University Mannheim Germany
| |
Collapse
|
6
|
Reduced cortical thickness of the paracentral lobule in at-risk mental state individuals with poor 1-year functional outcomes. Transl Psychiatry 2021; 11:396. [PMID: 34282119 PMCID: PMC8289863 DOI: 10.1038/s41398-021-01516-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Although widespread cortical thinning centered on the fronto-temporal regions in schizophrenia has been reported, the findings in at-risk mental state (ARMS) patients have been inconsistent. In addition, it remains unclear whether abnormalities of cortical thickness (CT) in ARMS individuals, if present, are related to their functional decline irrespective of future psychosis onset. In this multicenter study in Japan, T1-weighted magnetic resonance imaging was performed at baseline in 107 individuals with ARMS, who were subdivided into resilient (77, good functional outcome) and non-resilient (13, poor functional outcome) groups based on the change in Global Assessment of Functioning scores during 1-year follow-up, and 104 age- and sex-matched healthy controls recruited at four scanning sites. We measured the CT of the entire cortex and performed group comparisons using FreeSurfer software. The relationship between the CT and cognitive functioning was examined in an ARMS subsample (n = 70). ARMS individuals as a whole relative to healthy controls exhibited a significantly reduced CT, predominantly in the fronto-temporal regions, which was partly associated with cognitive impairments, and an increased CT in the left parietal and right occipital regions. Compared with resilient ARMS individuals, non-resilient ARMS individuals exhibited a significantly reduced CT of the right paracentral lobule. These findings suggest that ARMS individuals partly share CT abnormalities with patients with overt schizophrenia, potentially representing general vulnerability to psychopathology, and also support the role of cortical thinning in the paracentral lobule as a predictive biomarker for short-term functional decline in the ARMS population.
Collapse
|
7
|
Cai XL, Wang YM, Wang Y, Zhou HY, Huang J, Wang Y, Lui SSY, Møller A, Hung KSY, Mak HKF, Sham PC, Cheung EFC, Chan RCK. Neurological Soft Signs Are Associated With Altered Cerebellar-Cerebral Functional Connectivity in Schizophrenia. Schizophr Bull 2021; 47:1452-1462. [PMID: 33479738 PMCID: PMC8379549 DOI: 10.1093/schbul/sbaa200] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cerebellar dysfunction is associated with neurological soft signs (NSS), which is a promising endophenotype for schizophrenia spectrum disorders. However, the relationship between cerebellar-cerebral resting-state functional connectivity (rsFC) and NSS is largely unexplored. Moreover, both NSS and cerebellar-cerebral rsFC have been found to be correlated with negative symptoms of schizophrenia. Here, we investigated the correlations between NSS and cerebellar-cerebral rsFC, explored their relationship with negative symptoms in a main dataset, and validated the significant findings in a replication dataset. Both datasets comprised schizophrenia patients and healthy controls. In schizophrenia patients, we found positive correlations between NSS and rsFC of the cerebellum with the inferior frontal gyrus and the precuneus, and negative correlations between NSS and rsFC of the cerebellum with the inferior temporal gyrus. In healthy controls, NSS scores were positively correlated with rsFC of the cerebellum with the superior frontal gyrus and negatively correlated with rsFC between the cerebellum and the middle occipital gyrus. Cerebellar-prefrontal rsFC was also positively correlated with negative symptoms in schizophrenia patients. These findings were validated in the replication dataset. Our results suggest that the uncoupling of rsFC between the cerebellum and the cerebral cortex may underlie the expression of NSS in schizophrenia. NSS-related cerebellar-prefrontal rsFC may be a potential neural pathway for possible neural modulation to alleviate negative symptoms.
Collapse
Affiliation(s)
- Xin-Lu Cai
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
| | - Yong-Ming Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Han-Yu Zhou
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jia Huang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ya Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Simon S Y Lui
- Castle Peak Hospital, Hong Kong Special Administrative Region, China
- Department of Psychiatry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Arne Møller
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
- Centre of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Karen S Y Hung
- Castle Peak Hospital, Hong Kong Special Administrative Region, China
| | - Henry K F Mak
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Pak C Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Center for PanorOmic Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Eric F C Cheung
- Castle Peak Hospital, Hong Kong Special Administrative Region, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
- To whom correspondence should be addressed; 16 Lincui Road, Beijing 100101, China; tel: +86(0)10-64836274, fax: 86(0)10-64836274, e-mail:
| |
Collapse
|
8
|
Wolf RC, Rashidi M, Schmitgen MM, Fritze S, Sambataro F, Kubera KM, Hirjak D. Neurological Soft Signs Predict Auditory Verbal Hallucinations in Patients With Schizophrenia. Schizophr Bull 2020; 47:433-443. [PMID: 33097950 PMCID: PMC7965075 DOI: 10.1093/schbul/sbaa146] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurological soft signs (NSS) are well documented in individuals with schizophrenia (SZ), yet so far, the relationship between NSS and specific symptom expression is unclear. We studied 76 SZ patients using magnetic resonance imaging (MRI) to determine associations between NSS, positive symptoms, gray matter volume (GMV), and neural activity at rest. SZ patients were hypothesis-driven stratified according to the presence or absence of auditory verbal hallucinations (AVH; n = 34 without vs 42 with AVH) according to the Brief Psychiatric Rating Scale. Structural MRI data were analyzed using voxel-based morphometry, whereas intrinsic neural activity was investigated using regional homogeneity (ReHo) measures. Using ANCOVA, AVH patients showed significantly higher NSS in motor and integrative functions (IF) compared with non-hallucinating (nAVH) patients. Partial correlation revealed that NSS IF were positively associated with AVH symptom severity in AVH patients. Such associations were not confirmed for delusions. In region-of-interest ANCOVAs comprising the left middle and superior temporal gyri, right paracentral lobule, and right inferior parietal lobule (IPL) structure and function, significant differences between AVH and nAVH subgroups were not detected. In a binary logistic regression model, IF scores and right IPL ReHo were significant predictors of AVH. These data suggest significant interrelationships between sensorimotor integration abilities, brain structure and function, and AVH symptom expression.
Collapse
Affiliation(s)
- Robert C Wolf
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany,To whom correspondence should be addressed; Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Voßstraße 4, 69115 Heidelberg, Germany; tel: +49-6221-564405, fax: +49-6221-564481, e-mail:
| | - Mahmoud Rashidi
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany,Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mike M Schmitgen
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padua, Italy,Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Katharina M Kubera
- Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
9
|
Rathod B, Kaur A, Basavanagowda DM, Mohan D, Mishra N, Fuad S, Nosher S, Alrashid ZA, Heindl SE. Neurological Soft Signs and Brain Abnormalities in Schizophrenia: A Literature Review. Cureus 2020; 12:e11050. [PMID: 33224647 PMCID: PMC7676438 DOI: 10.7759/cureus.11050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Neurological soft signs (NSS) are subtle neurological impairments in sensory integration, motor coordination, balance, and sequencing of complex motor acts. The prevalence of NSS is well over 50% in schizophrenic patients compared to about 5% in healthy controls. About 30% of schizophrenia patients are resistant to treatment. The main reason for not finding better pharmaceutical agents is the inability to elicit the underlying neurophysiological and neuroanatomical basis of schizophrenia. The most common NSS can be divided into three domains: motor coordination, sequencing of complex motor acts, and sensory integration. Here, the neuroimaging correlates of the abovementioned NSS are reviewed. Most of the studies found a negative correlation of NSS subs cores motor coordination and complex motor tasks with the cerebellum, inferior frontal gyrus, and postcentral gyrus. There was a negative correlation between cortical thickness and NSS total scores in the left paracentral lobule, precuneus, middle frontal cortex, right inferior temporal cortex, left/right superior parietal cortex. Instead of considering NSS as a mere trait or state markers, its active inclusion in patient management is required to improve patients' quality of life. Future studies on larger cohorts, combining different imaging modalities are needed to elucidate how these factors might relate to each other and contribute to NSS.
Collapse
Affiliation(s)
- Bindu Rathod
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Arveen Kaur
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Deepak M Basavanagowda
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Devyani Mohan
- Surgery, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Nupur Mishra
- Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Sehrish Fuad
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Sadia Nosher
- Family Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Zaid A Alrashid
- Neurology, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Stacey E Heindl
- Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA.,Medicine, Avalon University School of Medicine, Willemstad, CUW
| |
Collapse
|
10
|
Sambataro F, Fritze S, Rashidi M, Topor CE, Kubera KM, Wolf RC, Hirjak D. Moving forward: distinct sensorimotor abnormalities predict clinical outcome after 6 months in patients with schizophrenia. Eur Neuropsychopharmacol 2020; 36:72-82. [PMID: 32522386 DOI: 10.1016/j.euroneuro.2020.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 01/24/2023]
Abstract
Despite substantial efforts in the last decades, objective measures that can predict clinical outcome in patients with schizophrenia (SZ) after an acute psychotic episode are still lacking. Here, we introduced a comprehensive assessment of sensorimotor function to predict mid-term clinical outcome following an acute psychotic episode. This naturalistic follow-up of 43 patients with DSM-IV-TR diagnosis of SZ examined sensorimotor abnormalities (i.e. Neurological Soft Signs (NSS), parkinsonism, akathisia, catatonia and acute dyskinesia), psychopathology, cognition and psychosocial functioning using well-established instruments. A collection of statistical methods was used to examine the relationship between sensorimotor domain, psychopathology, cognition and psychosocial functioning. We also tested the clinical feasibility of this relationship when predicting clinical outcome after an acute psychotic episode. Longitudinal data were collected on 43 individuals after a follow-up period of >6 months. At follow-up, patients showed significantly reduced general symptom severity, as well as decreased levels of NSS, parkinsonism and catatonia. Further, NSS scores at baseline predicted PANSS negative scores and cognitive functioning at baseline. Finally, NSS scores at baseline predicted symptom change (reduction of PANSS positive and negative scores) at follow-up. In conclusion, our results suggest that NSS are significant predictors of poor clinical outcome in SZ at baseline and >6 months after an acute psychotic episode. These findings propose sensorimotor domain as state biomarker of SZ and support its predictive power with respect to treatment outcome.
Collapse
Affiliation(s)
- Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padova, Italy
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, D-68159, Germany
| | - Mahmoud Rashidi
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, D-68159, Germany; Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany
| | - Cristina E Topor
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, D-68159, Germany
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, D-68159, Germany.
| |
Collapse
|
11
|
Takayanagi Y, Sasabayashi D, Takahashi T, Furuichi A, Kido M, Nishikawa Y, Nakamura M, Noguchi K, Suzuki M. Reduced Cortical Thickness in Schizophrenia and Schizotypal Disorder. Schizophr Bull 2020; 46:387-394. [PMID: 31167030 PMCID: PMC7406196 DOI: 10.1093/schbul/sbz051] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Schizotypal disorder is characterized by odd behavior and attenuated forms of schizophrenic features without the manifestation of overt and sustained psychoses. Past studies suggest that schizotypal disorder shares biological and psychological commonalties with schizophrenia. Structural magnetic resonance imaging (MRI) studies have demonstrated both common and distinct regional gray matter changes between schizophrenia and schizotypal disorder. However, no study has compared cortical thickness, which is thought to be a specific indicator of cortical atrophy, between schizophrenia and schizotypal disorder. The subjects consisted of 102 schizophrenia and 46 schizotypal disorder patients who met the International Classification of Diseases, 10th edition criteria and 79 gender- and age-matched healthy controls. Each participant underwent a T1-weighted 3-D MRI scan using a 1.5-Tesla scanner. Cortical thickness was estimated using FreeSurfer. Consistent with previous studies, schizophrenia patients exhibited wide-spread cortical thinning predominantly in the frontal and temporal regions as compared with healthy subjects. Patients with schizotypal disorder had a significantly reduced cortical thickness in the left fusiform and parahippocampal gyri, right medial superior frontal gyrus, right inferior frontal gyrus, and right medial orbitofrontal cortex as compared with healthy controls. Schizophrenia patients had thinner cortices in the left precentral and paracentral gyri than those with schizotypal disorder. Common cortical thinning patterns observed in schizophrenia and schizotypal disorder patients may be associated with vulnerability to psychosis. Our results also suggest that distinct cortical changes in schizophrenia and schizotypal disorder may be associated with the differences in the manifestation of clinical symptoms among these disorders.
Collapse
Affiliation(s)
- Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Sugitani, Toyama, Japan,To whom correspondence should be addressed; tel: +81-76-434-7323, fax: +81-76-434-5030, e-mail:
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Sugitani, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Sugitani, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Sugitani, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Sugitani, Toyama, Japan
| | - Yumiko Nishikawa
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Sugitani, Toyama, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Sugitani, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Sugitani, Toyama, Japan
| |
Collapse
|
12
|
Rohleder C, Koethe D, Fritze S, Topor CE, Leweke FM, Hirjak D. Neural correlates of binocular depth inversion illusion in antipsychotic-naïve first-episode schizophrenia patients. Eur Arch Psychiatry Clin Neurosci 2019; 269:897-910. [PMID: 29556734 DOI: 10.1007/s00406-018-0886-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 03/13/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Binocular depth inversion illusion (BDII), a visual, 'top-down'-driven information process, is impaired in schizophrenia and particularly in its early stages. BDII is a sensitive measure of impaired visual information processing and represents a valid diagnostic tool for schizophrenia and other psychotic disorders. However, neurobiological underpinnings of aberrant BDII in first-episode schizophrenia are largely unknown at present. METHODS In this study, 22 right-handed, first-episode, antipsychotic-naïve schizophrenia patients underwent BDII assessment and MRI scanning at 1.5 T. The surface-based analysis via new version of Freesurfer (6.0) enabled calculation of cortical thickness and surface area. BDII total and faces scores were related to the two distinct cortical measurements. RESULTS We found a significant correlation between BDII performance and cortical thickness in the inferior frontal gyrus and middle temporal gyrus (p < 0.003, Bonferroni corr.), as well as superior parietal gyrus, postcentral gyrus, supramarginal gyrus, and precentral gyrus (p < 0.05, CWP corr.), respectively. BDII performance was significantly correlated with surface area in the superior parietal gyrus and right postcentral gyrus (p < 0.003, Bonferroni corr.). CONCLUSION BDII performance may be linked to cortical thickness and surface area variations in regions involved in "adaptive" or "top-down" modulation and stimulus processing, i.e., frontal and parietal lobes. Our results suggest that cortical features of distinct evolutionary and genetic origin differently contribute to BDII performance in first-episode, antipsychotic-naïve schizophrenia patients.
Collapse
Affiliation(s)
- Cathrin Rohleder
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.,Institute of Radiochemistry and Experimental Molecular Imaging, University Hospital of Cologne, Cologne, Germany
| | - Dagmar Koethe
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Cristina E Topor
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - F Markus Leweke
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.,Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
13
|
Wang X, Herold CJ, Kong L, Schroeder J. Associations between brain structural networks and neurological soft signs in healthy adults. Psychiatry Res Neuroimaging 2019; 293:110989. [PMID: 31634787 DOI: 10.1016/j.pscychresns.2019.110989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 01/10/2023]
Abstract
Neurological soft signs (NSS), as minor neurological deficits, have been identified in several psychiatric disorders, especially in schizophrenia. However, it's unclear how the neuropathological processes of the disease affect NSS related brain morphological changes and whether it is confounded by the use of medication. As NSS also exist in healthy people, the potential confounding effects of psychopathology or medication will be excluded if NSS are investigated in healthy people. Therefore, we applied a novel multivariate approach, source-based morphometry (SBM), to study structural networks in relation to NSS in healthy adults based on structural magnetic resonance imaging (MRI) data. The Heidelberg Scale was applied to evaluate NSS. Using SBM, we constructed structural networks and investigated their associations with NSS in healthy adults. Six grey matter (GM) structural networks were identified. Sensory integration subscores were associated with the cerebellar component and the cortico-basal ganglia-thalamic component. Motor coordination subscores and total NSS scores were associated with the sensorimotor component. The present findings indicated that structural network abnormalities in cerebellar, subcortical and cortical sensorimotor areas contribute to NSS performance in healthy adults.
Collapse
Affiliation(s)
- Xingsong Wang
- College of Education, Shanghai Normal University, No. 100 Guilin Road, 200234, Shanghai, China
| | - Christina J Herold
- Section of Geriatric Psychiatry, Department of Psychiatry, University of Heidelberg, Vossstrasse 4, DE-69115 Heidelberg, Germany
| | - Li Kong
- College of Education, Shanghai Normal University, No. 100 Guilin Road, 200234, Shanghai, China.
| | - Johannes Schroeder
- Section of Geriatric Psychiatry, Department of Psychiatry, University of Heidelberg, Vossstrasse 4, DE-69115 Heidelberg, Germany.
| |
Collapse
|
14
|
Hirjak D, Rashidi M, Fritze S, Bertolino AL, Geiger LS, Zang Z, Kubera KM, Schmitgen MM, Sambataro F, Calhoun VD, Weisbrod M, Tost H, Wolf RC. Patterns of co-altered brain structure and function underlying neurological soft signs in schizophrenia spectrum disorders. Hum Brain Mapp 2019; 40:5029-5041. [PMID: 31403239 DOI: 10.1002/hbm.24755] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/28/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
Neurological soft signs (NSS) comprise a broad range of subtle neurological deficits and are considered to represent external markers of sensorimotor dysfunction frequently found in mental disorders of presumed neurodevelopmental origin. Although NSS frequently occur in schizophrenia spectrum disorders (SSD), specific patterns of co-altered brain structure and function underlying NSS in SSD have not been investigated so far. It is unclear whether gray matter volume (GMV) alterations or aberrant brain activity or a combination of both, are associated with NSS in SSD. Here, 37 right-handed SSD patients and 37 matched healthy controls underwent motor assessment and magnetic resonance imaging (MRI) at 3 T. NSS were examined on the Heidelberg NSS scale. We used a multivariate data fusion technique for multimodal MRI data-multiset canonical correlation and joint independent component analysis (mCCA + jICA)-to investigate co-altered patterns of GMV and intrinsic neural fluctuations (INF) in SSD patients exhibiting NSS. The mCCA + jICA model indicated two joint group-discriminating components (temporoparietal/cortical sensorimotor and frontocerebellar/frontoparietal networks) and one modality-specific group-discriminating component (p < .05, FDR corrected). NSS motor score was associated with joint frontocerebellar/frontoparietal networks in SSD patients. This study highlights complex neural pathomechanisms underlying NSS in SSD suggesting aberrant structure and function, predominantly in cortical and cerebellar systems that critically subserve sensorimotor dynamics and psychomotor organization.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mahmoud Rashidi
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Alina L Bertolino
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lena S Geiger
- Department of Psychiatry and Psychotherapy, Research Group Systems Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Zhenxiang Zang
- Department of Psychiatry and Psychotherapy, Research Group Systems Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Mike M Schmitgen
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padova, Padova, Italy
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, New Mexico.,Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, New Mexico.,Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia
| | - Matthias Weisbrod
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany.,Department of Adult Psychiatry, SRH-Klinikum, Karlsbad-Langensteinbach, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Research Group Systems Neuroscience in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
15
|
Viher PV, Docx L, Van Hecke W, Parizel PM, Sabbe B, Federspiel A, Walther S, Morrens M. Aberrant fronto-striatal connectivity and fine motor function in schizophrenia. Psychiatry Res Neuroimaging 2019; 288:44-50. [PMID: 31075716 DOI: 10.1016/j.pscychresns.2019.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/20/2022]
Abstract
Abnormal fine motor function is a frequent finding in schizophrenia and has been linked to structural and functional brain alterations. However, whether fine motor function is related to functional alterations within the motor system remains unclear. The aim of this study was to assess whether abnormalities in resting-state functional connectivity are present in schizophrenia patients and to investigate how these abnormalities may be related to fine motor function. We examined 19 schizophrenia patients and 16 healthy controls using resting-state functional connectivity for 11 bilateral regions of interest. Fine motor function was assessed on a set of copying tasks and the Symbol-Digit-Substitution Test. We found significantly reduced functional connectivity between the left caudate nucleus and bilateral dorsolateral prefrontal cortex (DLPFC) and between the left putamen and bilateral supplementary motor area (SMA) proper in patients compared to controls. Altered connectivity from DLPFC to caudate nucleus was related to fine motor tasks, which are sensitive to psychomotor speed, whereas aberrant connectivity between the SMA proper and putamen was associated to both, fine motor task, which are sensitive to psychomotor speed and to speed of information processing. Our findings emphasize the role of fronto-striatal connections in the pathogenesis of fine motor impairments in schizophrenia.
Collapse
Affiliation(s)
- Petra V Viher
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland.
| | - Lise Docx
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium; Multiversum, Boechout, Belgium
| | - Wim Van Hecke
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Paul M Parizel
- Department of Radiology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Bernard Sabbe
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium; University Psychiatric Hospital Antwerp, Campus Duffel, Belgium
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), University of Antwerp, Antwerp, Belgium; University Psychiatric Hospital Antwerp, Campus Duffel, Belgium
| |
Collapse
|
16
|
Kong L, Cui H, Zhang T, Wang Y, Huang J, Zhu Y, Tang Y, Herold CJ, Schröder J, Cheung EFC, Chan RCK, Wang J. Neurological soft signs and grey matter abnormalities in individuals with ultra-high risk for psychosis. Psych J 2018; 8:252-260. [PMID: 30515993 DOI: 10.1002/pchj.258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 01/27/2023]
Abstract
Neurological soft signs (NSSs), conventionally defined as subtle neurological abnormalities, are frequently found in individuals with schizophrenia. Many neuroimaging studies have also reported that NSSs are associated with grey matter changes in patients with schizophrenia at different stages of the illness. However, these findings may be confounded by the effect of antipsychotic medications, chronicity, and duration of untreated psychosis. Examining NSSs in individuals with ultra-high risk (UHR) for psychosis may help to identify the neuroanatomical substrates of NSSs related to the illness itself and to avoid these potential confounding effects. A sample of 21 individuals with UHR were included in the present study. NSSs were rated using the abridged version of the Cambridge Neurological Inventory. Grey matter volume was assessed using optimized voxel-based morphometry on images acquired by a high-resolution 3-T magnetic resonance imaging scanner. We found that higher NSS scores in individuals with UHR were associated with decreased grey matter volume at the superior and medial frontal cortex, the rectal cortex, the pre- and post-central cortex, the insula, the caudate, and the cerebellum. Our results suggest that these brain structural characteristics may represent the neuroanatomical substrate of NSSs in individuals with UHR. These findings contribute to the understanding of the intrinsic features of psychosis associated with NSSs and may provide insights into pre-schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Li Kong
- College of Education, Shanghai Normal University, Shanghai, China.,Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Huiru Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ya Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Jia Huang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yikang Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Christina J Herold
- Section of Geriatric Psychiatry, Department of Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Johannes Schröder
- Section of Geriatric Psychiatry, Department of Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Eric F C Cheung
- Department of Adult Psychiatry, Castle Peak Hospital, Hong Kong, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Newton R, Rouleau A, Nylander AG, Loze JY, Resemann HK, Steeves S, Crespo-Facorro B. Diverse definitions of the early course of schizophrenia-a targeted literature review. NPJ SCHIZOPHRENIA 2018; 4:21. [PMID: 30323274 PMCID: PMC6189105 DOI: 10.1038/s41537-018-0063-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 01/07/2023]
Abstract
Schizophrenia is a debilitating psychiatric disorder and patients experience significant comorbidity, especially cognitive and psychosocial deficits, already at the onset of disease. Previous research suggests that treatment during the earlier stages of disease reduces disease burden, and that a longer time of untreated psychosis has a negative impact on treatment outcomes. A targeted literature review was conducted to gain insight into the definitions currently used to describe patients with a recent diagnosis of schizophrenia in the early course of disease ('early' schizophrenia). A total of 483 relevant English-language publications of clinical guidelines and studies were identified for inclusion after searches of MEDLINE, MEDLINE In-Process, relevant clinical trial databases and Google for records published between January 2005 and October 2015. The extracted data revealed a wide variety of terminology and definitions used to describe patients with 'early' or 'recent-onset' schizophrenia, with no apparent consensus. The most commonly used criteria to define patients with early schizophrenia included experience of their first episode of schizophrenia or disease duration of less than 1, 2 or 5 years. These varied definitions likely result in substantial disparities of patient populations between studies and variable population heterogeneity. Better agreement on the definition of early schizophrenia could aid interpretation and comparison of studies in this patient population and consensus on definitions should allow for better identification and management of schizophrenia patients in the early course of their disease.
Collapse
Affiliation(s)
- Richard Newton
- Austin Health, University of Melbourne, Melbourne, VIC, Australia.,Peninsula Health, Frankston, VIC, Australia
| | | | | | | | | | | | - Benedicto Crespo-Facorro
- Department of Medicine & Psychiatry, University Hospital Marqués de Valdecilla, IDIVAL, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain
| |
Collapse
|
18
|
Hirjak D, Kubera KM, Thomann PA, Wolf RC. Motor dysfunction as an intermediate phenotype across schizophrenia and other psychotic disorders: Progress and perspectives. Schizophr Res 2018; 200:26-34. [PMID: 29074330 DOI: 10.1016/j.schres.2017.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 02/07/2023]
Abstract
Primary motor abnormalities (PMA), as found in patients with schizophrenia, are quantitatively and qualitatively distinct markers of motor system abnormalities. PMA have been often referred to phenomena that are present across schizophrenia-spectrum disorders. A dysfunction of frontoparietal and subcortical networks has been proposed as core pathophysiological mechanism underlying the expression of PMA. However, it is unclear at present if such mechanisms are a common within schizophrenia and other psychotic disorders. To address this question, we review recent neuroimaging studies investigating the neural substrates of PMA in schizophrenia and so-called "nonschizophrenic nonaffective psychoses" (NSNAP) such as schizophreniform, schizoaffective, brief psychotic, and other unspecified psychotic disorders. Although the extant data in patients with schizophrenia suggests that further investigation is warranted, MRI findings in NSNAP are less persuasive. It is unclear so far which PMA, if any, are characteristic features of NSNAP or, possibly even specific for these disorders. Preliminary data suggest a relationship between relapsing-remitting PMA in hyper-/hypokinetic cycloid syndromes and neurodegenerative disorders of the basal ganglia, likely reflecting the transnosological relevance of subcortical abnormalities. Despite this evidence, neural substrates and mechanisms underlying PMA that are common in schizophrenia and NSNAP cannot be clearly delineated at this stage of research. PMA and their underlying brain circuits could be promising intermediate phenotype candidates for psychotic disorders, but future multimodal neuroimaging studies in schizophrenia and NSNAP patients and their unaffected first-degree relatives are needed to answer fundamental transnosologic questions.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany.
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany
| | - Philipp A Thomann
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany; Center for Mental Health, Odenwald District Healthcare Center, Erbach, Germany
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany
| |
Collapse
|
19
|
Ciufolini S, Ponteduro MF, Reis-Marques T, Taylor H, Mondelli V, Pariante CM, Bonaccorso S, Chan R, Simmons A, David A, Di Forti M, Murray RM, Dazzan P. Cortical thickness correlates of minor neurological signs in patients with first episode psychosis. Schizophr Res 2018; 200:104-111. [PMID: 29785932 DOI: 10.1016/j.schres.2018.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 01/09/2023]
Abstract
Neurological soft signs (NSS) are subtle abnormalities of motor and sensory function that are present in the absence of localized brain pathological lesions. In psychoses they have been consistently associated with a distinct pattern of cortical and subcortical brain structural alterations at the level of the heteromodal cortex and basal ganglia. However, a more specific and accurate evaluation of the cytoarchitecture of the cortical mantle could further advance our understanding of the neurobiological substrate of psychosis. We investigated the relationship between brain structure and NSS in a sample of 66 patients at their first episode of psychosis. We used the Neurological Evaluation Scale for neurological assessment and high-resolution MRI and Freesurfer to explore cortical thickness and surface area. Higher rates of NSS were associated with a reduction of cortical thickness in the precentral and postcentral gyri, inferior-parietal, superior temporal, and fusiform gyri. Higher rates of NSS were also associated with smaller surface areas of superior temporal gyrus and frontal regions (including middle frontal, superior and orbito-frontal gyri). Finally, more sensory integration signs were also associated with larger surface area of the latero-occipital region. We conclude that the presence of NSS in psychosis is associated with distinct but widespread changes in cortical thickness and surface area, in areas crucial for sensory-motor integration and for the fluid execution of movement. Studying these morphological correlates with advanced neuroimaging techniques can continue to improve our knowledge on the neurobiological substrate of these important functional correlates of psychosis.
Collapse
Affiliation(s)
- Simone Ciufolini
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| | - Maria Francesca Ponteduro
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Tiago Reis-Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Heather Taylor
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Stefania Bonaccorso
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Raymond Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Andy Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Anthony David
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Marta Di Forti
- Social Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, UK
| |
Collapse
|
20
|
Wang S, Zhang Y, Lv L, Wu R, Fan X, Zhao J, Guo W. Abnormal regional homogeneity as a potential imaging biomarker for adolescent-onset schizophrenia: A resting-state fMRI study and support vector machine analysis. Schizophr Res 2018; 192:179-184. [PMID: 28587813 DOI: 10.1016/j.schres.2017.05.038] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 05/04/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Structural and functional abnormalities have been reported in the brain of patients with adolescent-onset schizophrenia (AOS). The brain regional functional synchronization in patients with AOS remains unclear. METHODS We analyzed resting-state functional magnetic resonance scans in 48 drug-naive patients with AOS and 31 healthy controls by using regional homogeneity (ReHo), a measurement that reflects brain local functional connectivity or synchronization and indicates regional integration of information processing. Then, receiver operating characteristic curves and support vector machines were used to evaluate the effect of abnormal regional homogeneity in differentiating patients from controls. RESULTS Patients with AOS showed significantly increased ReHo values in the bilateral superior medial prefrontal cortex (MPFC) and significantly decreased ReHo values in the left superior temporal gyrus (STG), right precentral lobule, right inferior parietal lobule (IPL), and left paracentral lobule when compared with controls. A combination of the ReHo values in bilateral superior MPFC, left STG, and right IPL was able to discriminate patients from controls with the sensitivity of 88.24%, specificity of 91.89%, and accuracy of 90.14%. CONCLUSION The brain regional functional synchronization abnormalities exist in drug-naive patients with AOS. A combination of ReHo values in these abnormal regions might serve as potential imaging biomarker to identify patients with AOS.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Yan Zhang
- Henan Key Laboratory of Biological Psychiatry, Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Luxian Lv
- Henan Key Laboratory of Biological Psychiatry, Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Renrong Wu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China
| | - Xiaoduo Fan
- UMass Memorial Medical Center, UMass Medical School, Worcester, USA
| | - Jingping Zhao
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China; Henan Key Laboratory of Biological Psychiatry, Henan Mental Hospital, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| | - Wenbin Guo
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center on Mental Disorders, Changsha, China; National Technology Institute on Mental Disorders, Changsha, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.
| |
Collapse
|
21
|
Schäppi L, Stegmayer K, Viher PV, Walther S. Distinct Associations of Motor Domains in Relatives of Schizophrenia Patients-Different Pathways to Motor Abnormalities in Schizophrenia? Front Psychiatry 2018; 9:129. [PMID: 29740353 PMCID: PMC5924816 DOI: 10.3389/fpsyt.2018.00129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/26/2018] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Aberrant motor function is an integral part of schizophrenia. In fact, abnormalities are frequently found in patients, in populations at risk, and in unaffected relatives. Motor abnormalities are suspected to be relevant for the clinical outcome and could probably predict the conversion from at-risk individuals to schizophrenia. Furthermore, motor function has been argued as endophenotype of the disorder. Yet, which particular motor domain may classify as a potential endophenotype is unknown. We aimed to compare schizophrenia patients, unaffected first-degree relatives and healthy controls for different motor domains. We expected impairments in all domains in patients and in some domains in relatives. METHOD We included 43 schizophrenia patients, 34 unaffected first-degree relatives of schizophrenia patients, and 29 healthy control subjects, matched for age, gender, and education level. We compared motor function of four motor domains between the groups. The domains comprise neurological soft signs (NSS), abnormal involuntary movements (dyskinesia), Parkinsonism, and fine motor function including simple [finger tapping (FT)] and complex fine motor function, (i.e., dexterity as measured with the coin rotation test). Furthermore, we tested the association of motor function of the four domains with working memory, frontal lobe function, and nonverbal intelligence for each group separately using within-group bivariate correlations. RESULTS Schizophrenia patients showed poorer motor function in all tested domains compared to healthy controls. First-degree relatives had intermediate ratings with aberrant function in two motor domains. In detail, relatives had significantly more NSS and performed poorer in the FT task than controls. In contrast, complex fine motor function was intact in relatives. Relatives did not differ from controls in dyskinesia or Parkinsonism severity. DISCUSSION Taken together, schizophrenia patients have motor abnormalities in all tested domains. Thus, motor abnormalities are a key element of the disorder. Likewise, first-degree relatives presented motor deficits in two domains. A clear difference between relatives and healthy controls was found for NSS and FT. Thus, NSS and FT may be potential markers of vulnerability for schizophrenia. The lack of association between genetic risk and dyskinesia or Parkinsonism suggests distinct pathobiological mechanisms in the various motor abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Lea Schäppi
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | | | - Petra V Viher
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Hirjak D, Northoff G, Thomann PA, Kubera KM, Wolf RC. Genuine motorische Phänomene bei schizophrenen Psychosen. DER NERVENARZT 2017; 89:27-43. [DOI: 10.1007/s00115-017-0434-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Walther S, Stegmayer K, Federspiel A, Bohlhalter S, Wiest R, Viher PV. Aberrant Hyperconnectivity in the Motor System at Rest Is Linked to Motor Abnormalities in Schizophrenia Spectrum Disorders. Schizophr Bull 2017; 43:982-992. [PMID: 28911049 PMCID: PMC5581901 DOI: 10.1093/schbul/sbx091] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Motor abnormalities are frequently observed in schizophrenia and structural alterations of the motor system have been reported. The association of aberrant motor network function, however, has not been tested. We hypothesized that abnormal functional connectivity would be related to the degree of motor abnormalities in schizophrenia. In 90 subjects (46 patients) we obtained resting stated functional magnetic resonance imaging (fMRI) for 8 minutes 40 seconds at 3T. Participants further completed a motor battery on the scanning day. Regions of interest (ROI) were cortical motor areas, basal ganglia, thalamus and motor cerebellum. We computed ROI-to-ROI functional connectivity. Principal component analyses of motor behavioral data produced 4 factors (primary motor, catatonia and dyskinesia, coordination, and spontaneous motor activity). Motor factors were correlated with connectivity values. Schizophrenia was characterized by hyperconnectivity in 3 main areas: motor cortices to thalamus, motor cortices to cerebellum, and prefrontal cortex to the subthalamic nucleus. In patients, thalamocortical hyperconnectivity was linked to catatonia and dyskinesia, whereas aberrant connectivity between rostral anterior cingulate and caudate was linked to the primary motor factor. Likewise, connectivity between motor cortex and cerebellum correlated with spontaneous motor activity. Therefore, altered functional connectivity suggests a specific intrinsic and tonic neural abnormality in the motor system in schizophrenia. Furthermore, altered neural activity at rest was linked to motor abnormalities on the behavioral level. Thus, aberrant resting state connectivity may indicate a system out of balance, which produces characteristic behavioral alterations.
Collapse
Affiliation(s)
- Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland;,To whom correspondence should be addressed; Translational Research Center, University Hospital of Psychiatry, University of Bern, Murtenstrasse 21, 3008 Bern, Switzerland; tel: +41-31-632-8841, fax: +41-31-632-8950, e-mail:
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | | | - Roland Wiest
- Support Center of Advanced Neuroimaging, Institute of Neuroradiology, University of Bern, Bern, Switzerland
| | - Petra V Viher
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
24
|
Abstract
OBJECTIVES The time required in completing the 26 items of neurological examinations in the standard Neurological Evaluation Scale (NES) may limit its utility in pragmatic clinical situations. We propose the Short Neurological Evaluation Scale (S-NES) for use in busy clinical settings, and in research. METHODS Using confirmatory factor analyses, we identified 12 items of neurological examination showing significant overlap with previously reported theoretical and empirical categories of neurological soft signs (NSS) in schizophrenia. This provided justification for the development of a shorter version of the NES based on the empirically identified NSS. In the present study, we relied on existing data to present an initial validation of the S-NES against the referent standard 26-item NES. We determined sensitivity, specificity, and likelihood ratios. Posterior-test probability was estimated using a Bayesian nomogram plot. RESULTS Using data derived from 84 unmedicated or minimally treated patients with first-episode schizophrenia, 12 empirically determined items of neurological examinations showed high agreement with the 26 items in the standard NES battery (sensitivity=96.3%, specificity=100%, and posterior-test probability=100%). CONCLUSIONS Within limitations of validity estimates derived from existing data, the present results suggest that the design of the S-NES based on empirically identified 12 items of neurological examination is a logical step. If successful, the S-NES will be useful for rapid screening of NSS in busy clinical settings, and also in research.
Collapse
|
25
|
Hirjak D, Northoff G, Thomann PA, Kubera KM, Wolf RC. Genuine motorische Phänomene bei schizophrenen Psychosen. DER NERVENARZT 2017; 89:44-50. [PMID: 28687870 DOI: 10.1007/s00115-017-0375-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
26
|
Abboud R, Noronha C, Diwadkar VA. Motor system dysfunction in the schizophrenia diathesis: Neural systems to neurotransmitters. Eur Psychiatry 2017. [PMID: 28641214 DOI: 10.1016/j.eurpsy.2017.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Motor control is a ubiquitous aspect of human function, and from its earliest origins, abnormal motor control has been proposed as being central to schizophrenia. The neurobiological architecture of the motor system is well understood in primates and involves cortical and sub-cortical components including the primary motor cortex, supplementary motor area, dorsal anterior cingulate cortex, the prefrontal cortex, the basal ganglia, and cerebellum. Notably all of these regions are associated in some manner to the pathophysiology of schizophrenia. At the molecular scale, both dopamine and γ-Aminobutyric Acid (GABA) abnormalities have been associated with working memory dysfunction, but particularly relating to the basal ganglia and the prefrontal cortex respectively. As evidence from multiple scales (behavioral, regional and molecular) converges, here we provide a synthesis of the bio-behavioral relevance of motor dysfunction in schizophrenia, and its consistency across scales. We believe that the selective compendium we provide can supplement calls arguing for renewed interest in studying the motor system in schizophrenia. We believe that in addition to being a highly relevant target for the study of schizophrenia related pathways in the brain, such focus provides tractable behavioral probes for in vivo imaging studies in the illness. Our assessment is that the motor system is a highly valuable research domain for the study of schizophrenia.
Collapse
Affiliation(s)
- R Abboud
- College of Osteopathic Medicine, Michigan State University Lansing, MI, USA
| | - C Noronha
- School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - V A Diwadkar
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Suite 5A, Tolan Park Medical Building, 3901 Chrysler Service Drive, 48201 Detroit, MI, USA.
| |
Collapse
|
27
|
Xiao B, Wang S, Liu J, Meng T, He Y, Luo X. Abnormalities of localized connectivity in schizophrenia patients and their unaffected relatives: a meta-analysis of resting-state functional magnetic resonance imaging studies. Neuropsychiatr Dis Treat 2017; 13:467-475. [PMID: 28243099 PMCID: PMC5317331 DOI: 10.2147/ndt.s126678] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE The localized dysfunction of specialized brain regions in schizophrenia patients and their unaffected relatives has been identified in a large-scale brain network; however, evidence is inconsistent. We aimed to identify abnormalities in the localized connectivity in schizophrenia patients and their relatives by conducting a meta-analysis of regional homogeneity (ReHo) studies. METHODS Fourteen studies on resting-state functional magnetic resonance imaging, with 316 schizophrenia patients, 342 healthy controls, and 66 unaffected relatives, were included in the meta-analysis. This analysis was performed using anisotropic effect-size-based signed differential mapping software. RESULTS Schizophrenia patients showed increased ReHo in right superior frontal gyrus and right superior temporal gyrus, as well as decreased ReHo in left fusiform gyrus, left superior temporal gyrus, left postcentral gyrus, and right precentral gyrus. Unaffected relatives showed decreased ReHo in right insula and right superior temporal gyrus. These results remained widely unchanged in both sensitivity and subgroup analyses. CONCLUSION Schizophrenia patients and their unaffected relatives had extensive abnormal localized connectivity in cerebrum, especially in superior temporal gyrus, which were the potential diagnostic markers and expounded the pathophysiological hypothesis for the disorder.
Collapse
Affiliation(s)
- Bo Xiao
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, People's Republic of China
| | - Shuai Wang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, People's Republic of China
| | - Jianbo Liu
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, People's Republic of China
| | - Tiantian Meng
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, People's Republic of China
| | - Yuqiong He
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, People's Republic of China
| | - Xuerong Luo
- Mental Health Institute of the Second Xiangya Hospital, Central South University, National Clinical Research Center on Mental Health Disorders, National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, People's Republic of China
| |
Collapse
|
28
|
Mild neurological impairment may indicate a psychomotor endophenotype in patients with borderline personality disorder. Psychiatry Res 2016; 245:22-26. [PMID: 27526313 DOI: 10.1016/j.psychres.2016.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 07/09/2016] [Accepted: 08/03/2016] [Indexed: 01/02/2023]
Abstract
The aim of the present study was to determine whether patients with borderline personality disorder (BPD) show any neurological soft signs compared to healthy controls. Furthermore we sought to examine the role of common symptoms related to BPD, such as depression, anxiety or impulsivity, in association with neurological soft signs. Thirty patients with borderline personality disorder and thirty hospital-based controls were examined for neurological soft signs. The total score of neurological soft signs in BPD was significantly higher than controls. In terms of subscales, patients had higher scores in Sensory Integration and Motor Coordination and other neurological soft signs compared to control group. Multiple regression analysis showed that the impulsivity score was the best significant predictor of neurological soft signs in BPD. The increase of neurological soft signs in patients with BPD may address a non-focal neurological dysfunction in borderline personality disorder.
Collapse
|
29
|
Kong L, Herold CJ, Lässer MM, Schmid LA, Hirjak D, Thomann PA, Essig M, Schröder J. Association of cortical thickness and neurological soft signs in patients with chronic schizophrenia and healthy controls. Neuropsychobiology 2016; 71:225-33. [PMID: 26277883 DOI: 10.1159/000382020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 03/30/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Neurological soft signs (NSS), i.e. subtle neurological abnormalities, have been frequently found in schizophrenia. Neuroimaging studies in schizophrenia have shown abnormal cortical thickness changes across the cortical mantle. However, few studies have examined relationships between NSS and cortical thickness abnormalities in schizophrenia. METHOD A sample of 18 patients with chronic schizophrenia and 20 age-matched healthy controls were included. Cortical thickness was assessed on high-resolution 3-tesla magnetic resonance imaging by using FreeSurfer software and NSS were rated on the Heidelberg Scale. RESULTS Significant negative correlations between NSS and cortical thickness were found in the prefrontal, inferior temporal, superior parietal, postcentral, and supramarginal cortices in the schizophrenia patients. In the controls, however, this negative correlation was found in the anterior cingulate, pericalcarine and superior/middle temporal regions. CONCLUSION Our results not only confirmed the association between NSS and cortical thickness in chronic schizophrenia but also indicated that patients and controls have different anatomical substrates of NSS.
Collapse
Affiliation(s)
- Li Kong
- College of Education, Shanghai Normal University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Cerebellar contributions to neurological soft signs in healthy young adults. Eur Arch Psychiatry Clin Neurosci 2016; 266:35-41. [PMID: 25708455 DOI: 10.1007/s00406-015-0582-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/08/2015] [Indexed: 12/13/2022]
Abstract
Neurological soft signs (NSS) are frequently found in psychiatric disorders of significant neurodevelopmental origin, e.g., in patients with schizophrenia and autism. Yet NSS are also present in healthy individuals suggesting a neurodevelopmental signature of motor function, probably as a continuum between health and disease. So far, little is known about the neural mechanisms underlying these motor phenomena in healthy persons, and it is even less known whether the cerebellum contributes to NSS expression. Thirty-seven healthy young adults (mean age = 23 years) were studied using high-resolution structural magnetic resonance imaging (MRI) and "resting-state" functional MRI at three Tesla. NSS levels were measured using the "Heidelberg Scale." Cerebellar gray matter volume was investigated using cerebellum-optimized voxel-based analysis methods. Cerebellar function was assessed using regional homogeneity (ReHo), a measure of local network strength. The relationship between cerebellar structure and function and NSS was analyzed using regression models. There was no significant relationship between cerebellar volume and NSS (p < 0.005, uncorrected for height, p < 0.05 corrected for spatial extent). Positive associations with cerebellar lobule VI activity were found for the "motor coordination" and "hard signs" NSS domains. A negative relationship was found between lobule VI activity and "complex motor task" domain (p < 0.005, uncorrected for height, p < 0.05 corrected for spatial extent). The data indicate that in healthy young adults, distinct NSS domains are related to cerebellar activity, specifically with activity of cerebellar subregions with known cortical somatomotor projections. In contrast, cerebellar volume is not predictive of NSS in healthy persons.
Collapse
|
31
|
Hirjak D, Wolf RC, Paternoga I, Kubera KM, Thomann AK, Stieltjes B, Maier-Hein KH, Thomann PA. Neuroanatomical Markers of Neurological Soft Signs in Recent-Onset Schizophrenia and Asperger-Syndrome. Brain Topogr 2015; 29:382-94. [DOI: 10.1007/s10548-015-0468-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/14/2015] [Indexed: 01/08/2023]
|
32
|
Hirjak D, Thomann PA, Kubera KM, Wolf ND, Sambataro F, Wolf RC. Motor dysfunction within the schizophrenia-spectrum: A dimensional step towards an underappreciated domain. Schizophr Res 2015; 169:217-233. [PMID: 26547881 DOI: 10.1016/j.schres.2015.10.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022]
Abstract
At the beginning of the 20th century, genuine motor abnormalities (GMA) were considered to be intricately linked to schizophrenia. Subsequently, however, GMA have been increasingly regarded as unspecific transdiagnostic phenomena or related to side effects of antipsychotic treatment. Despite possible medication confounds, within the schizophrenia spectrum GMA have been categorized into three broad categories, i.e. neurological soft signs, abnormal involuntary movements and catatonia. Schizophrenia patients show a substantial overlap across a broad range of distinct motor signs and symptoms suggesting a prominent involvement of the motor system in disease pathophysiology. There have been several attempts to increase reliability and validity in diagnosing schizophrenia based on behavior and neurobiology, yet relatively little attention has been paid to the motor domain in the past. Nevertheless, accumulating neuroscientific evidence suggests the possibility of a motor endophenotype in schizophrenia, and that GMA could represent a specific dimension within the schizophrenia-spectrum. Here, we review current neuroimaging research on GMA in schizophrenia with an emphasis on distinct and common mechanisms of brain dysfunction. Based on a dimensional approach we show that multimodal neuroimaging combined with fine-grained clinical examination can result in a comprehensive characterization of structural and functional brain changes that are presumed to underlie core GMA in schizophrenia. We discuss the possibility of a distinct motor domain, together with its implications for future research. Investigating GMA by means of multimodal neuroimaging can essentially contribute at identifying novel and biologically reliable phenotypes in psychiatry.
Collapse
Affiliation(s)
- Dusan Hirjak
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany.
| | - Philipp A Thomann
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Germany
| | - Nadine D Wolf
- Department of Psychiatry, Psychotherapy and Psychosomatics, Saarland University, Homburg, Germany
| | - Fabio Sambataro
- Department of Experimental and Clinical Medical Sciences (DISM), University of Udine, Udine, Italy
| | - Robert C Wolf
- Department of Psychiatry, Psychotherapy and Psychosomatics, Saarland University, Homburg, Germany
| |
Collapse
|
33
|
Hirjak D, Kubera KM, Wolf RC, Thomann AK, Hell SK, Seidl U, Thomann PA. Local brain gyrification as a marker of neurological soft signs in schizophrenia. Behav Brain Res 2015; 292:19-25. [DOI: 10.1016/j.bbr.2015.05.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/22/2015] [Accepted: 05/27/2015] [Indexed: 01/28/2023]
|
34
|
Walther S. Psychomotor symptoms of schizophrenia map on the cerebral motor circuit. Psychiatry Res 2015; 233:293-8. [PMID: 26319293 DOI: 10.1016/j.pscychresns.2015.06.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 11/13/2014] [Accepted: 06/24/2015] [Indexed: 12/29/2022]
Abstract
Schizophrenia is a devastating disorder thought to result mainly from cerebral pathology. Neuroimaging studies have provided a wealth of findings of brain dysfunction in schizophrenia. However, we are still far from understanding how particular symptoms can result from aberrant brain function. In this context, the high prevalence of motor symptoms in schizophrenia such as catatonia, neurological soft signs, parkinsonism, and abnormal involuntary movements is of particular interest. Here, the neuroimaging correlates of these motor symptoms are reviewed. For all investigated motor symptoms, neural correlates were found within the cerebral motor system. However, only a limited set of results exists for hypokinesia and neurological soft signs, while catatonia, abnormal involuntary movements and parkinsonian signs still remain understudied with neuroimaging methods. Soft signs have been associated with altered brain structure and function in cortical premotor and motor areas as well as cerebellum and thalamus. Hypokinesia is suggested to result from insufficient interaction of thalamocortical loops within the motor system. Future studies are needed to address the neural correlates of motor abnormalities in prodromal states, changes during the course of the illness, and the specific pathophysiology of catatonia, dyskinesia and parkinsonism in schizophrenia.
Collapse
Affiliation(s)
- Sebastian Walther
- University of Bern, University Hospital of Psychiatry, Bolligenstrasse 111, 3000 Bern 60, Bern, Switzerland.
| |
Collapse
|
35
|
Ahmed M, Cannon DM, Scanlon C, Holleran L, Schmidt H, McFarland J, Langan C, McCarthy P, Barker GJ, Hallahan B, McDonald C. Progressive Brain Atrophy and Cortical Thinning in Schizophrenia after Commencing Clozapine Treatment. Neuropsychopharmacology 2015; 40:2409-17. [PMID: 25829144 PMCID: PMC4538355 DOI: 10.1038/npp.2015.90] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 02/10/2015] [Accepted: 03/10/2015] [Indexed: 01/20/2023]
Abstract
Despite evidence that clozapine may be neuroprotective, there are few longitudinal magnetic resonance imaging (MRI) studies that have specifically explored an association between commencement of clozapine treatment for schizophrenia and changes in regional brain volume or cortical thickness. A total of 33 patients with treatment-resistant schizophrenia and 31 healthy controls matched for age and gender underwent structural MRI brain scans at baseline and 6-9 months after commencing clozapine. MRI images were analyzed using SIENA (Structural Image Evaluation, using Normalization, of Atrophy) and FreeSurfer to investigate changes over time in brain volume and cortical thickness respectively. Significantly greater reductions in volume were detected in the right and left medial prefrontal cortex and in the periventricular area in the patient group regardless of treatment response. Widespread further cortical thinning was observed in patients compared with healthy controls. The majority of patients improved symptomatically and functionally over the study period, and patients who improved were more likely to have less cortical thinning of the left medial frontal cortex and the right middle temporal cortex. These findings demonstrate on-going reductions in brain volume and progressive cortical thinning in patients with schizophrenia who are switched to clozapine treatment. It is possible that this gray matter loss reflects a progressive disease process irrespective of medication use or that it is contributed to by switching to clozapine treatment. The clinical improvement of most patients indicates that antipsychotic-related gray matter volume loss may not necessarily be harmful or reflect neurotoxicity.
Collapse
Affiliation(s)
- Mohamed Ahmed
- Clinical Neuroimaging Laboratory, Department of Psychiatry, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Dara M Cannon
- Clinical Neuroimaging Laboratory, Department of Psychiatry, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Cathy Scanlon
- Clinical Neuroimaging Laboratory, Department of Psychiatry, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Laurena Holleran
- Clinical Neuroimaging Laboratory, Department of Psychiatry, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Heike Schmidt
- Clinical Neuroimaging Laboratory, Department of Psychiatry, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland
| | - John McFarland
- Clinical Neuroimaging Laboratory, Department of Psychiatry, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Camilla Langan
- Clinical Neuroimaging Laboratory, Department of Psychiatry, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Peter McCarthy
- Department of Radiology, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Gareth J Barker
- Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, London, UK
| | - Brian Hallahan
- Clinical Neuroimaging Laboratory, Department of Psychiatry, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Colm McDonald
- Clinical Neuroimaging Laboratory, Department of Psychiatry, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
36
|
Abstract
Schizophrenia ranks among the leading causes of disability worldwide. The presence of neurological signs co-occurring with the psychiatric symptoms is indicative of an organic brain pathology. In the present article, we review the current literature on neurology issues in schizophrenia. Firstly, common neurological signs found in patients with schizophrenia (neurological soft signs and smell abnormalities) and their association with imaging findings are reviewed. Secondly, the significant association of schizophrenia with epilepsy and stroke is described as well as the absent association with other organic brain diseases such as multiple sclerosis. Thirdly, we discuss the potential role of NMDA receptor antibodies in schizophrenia. Fourthly, neurological side effects of antipsychotic drugs and their treatment are reviewed; and lastly, we discuss neurocognitive deficits in patients with schizophrenia and their treatment. The focus of the review remains on articles with relevance to the clinician.
Collapse
Affiliation(s)
- Katharina Hüfner
- Department of Psychiatry & Psychotherapy, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria,
| | | | | |
Collapse
|
37
|
Kim DW, Shim M, Song MJ, Im CH, Lee SH. Early visual processing deficits in patients with schizophrenia during spatial frequency-dependent facial affect processing. Schizophr Res 2015; 161:314-21. [PMID: 25553978 DOI: 10.1016/j.schres.2014.12.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
Abnormal facial emotion recognition is considered as one of the key symptoms of schizophrenia. Only few studies have considered deficits in the spatial frequency (SF)-dependent visual pathway leading to abnormal facial emotion recognition in schizophrenia. Twenty-one patients with schizophrenia and 19 matched healthy controls (HC) were recruited for this study. Event-related potentials (ERP) were measured during presentation of SF-modulated face stimuli and their source imaging was analyzed. The patients showed reduced P100 amplitude for low-spatial frequency (LSF) pictures of fearful faces compared with the HC group. The P100 amplitude for high-spatial frequency (HSF) pictures of neutral faces was increased in the schizophrenia group, but not in the HC group. The neural source activities of the LSF fearful faces and HSF neutral faces led to hypo- and hyperactivation of the frontal lobe of subjects from the schizophrenia group and HC group, respectively. In addition, patients with schizophrenia showed enhanced N170 activation in the right hemisphere in the LSF condition, while the HC group did not. Our results suggest that deficits in the LSF-dependent visual pathway, which involves magnocellular neurons, impair early visual processing leading to dysfunctional facial emotion recognition in schizophrenia. Moreover, it suggests impaired bottom-up processing rather than top-down dysfunction for facial emotion recognition in these patients.
Collapse
Affiliation(s)
- Do-Won Kim
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea; Clinical Emotion and Cognition Research Laboratory, Goyang, Korea
| | - Miseon Shim
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea; Clinical Emotion and Cognition Research Laboratory, Goyang, Korea
| | - Myeong Ju Song
- Clinical Emotion and Cognition Research Laboratory, Goyang, Korea; Department of Psychology, Korea University, Seoul, Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Goyang, Korea; Psychiatry Department, Ilsan Paik Hospital, Inje University, Goyang, Korea.
| |
Collapse
|
38
|
Hirjak D, Wolf RC, Kubera KM, Stieltjes B, Thomann PA. Multiparametric mapping of neurological soft signs in healthy adults. Brain Struct Funct 2014; 221:1209-21. [DOI: 10.1007/s00429-014-0964-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
|
39
|
Hirjak D, Wolf RC, Koch SC, Mehl L, Kelbel JK, Kubera KM, Traeger T, Fuchs T, Thomann PA. Neurological abnormalities in recent-onset schizophrenia and asperger-syndrome. Front Psychiatry 2014; 5:91. [PMID: 25147527 PMCID: PMC4123603 DOI: 10.3389/fpsyt.2014.00091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/14/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Neurological abnormalities including a variety of subtle deficits such as discrete impairments in sensory integration, motor coordination (MOCO), and sequencing of complex motor acts are frequently found in patients with schizophrenia (SZ) and commonly referred to as neurological soft signs (NSS). Asperger-syndrome (AS) is characterized by sensory-motor difficulties as well. However, the question whether the two disorders share a common or a disease-specific pattern of NSS remains unresolved. METHOD A total of 78 age- and education-matched participants [26 patients with recent-onset SZ, 26 individuals with AS, and 26 healthy controls (HC)] were recruited for the study. Analyses of covariance (ANCOVAs), with age, years of education, and medication included as covariates, were used to examine group differences on total NSS and the five subscale scores. Discriminant analyses were employed to identify the NSS subscales that maximally discriminate between the three groups. RESULTS Significant differences among the three groups were found in NSS total score and on the five NSS subscales. The clinical groups differed significantly in the NSS subscale MOCO. The correct discriminant rate between patients with SZ and individuals with AS was 61.5%. The correct discriminant rate was 92.3% between individuals with AS and HC, and 80.8% between SZ patients and HC, respectively. CONCLUSION Our findings provide new evidence for the presence of NSS in AS and lend further support to previously reported difficulties in movement control in this disorder. According to the present results, SZ and AS seem to be characterized by both quantitative and qualitative NSS expression.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Robert Christian Wolf
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Saarland University, Homburg, Germany
| | - Sabine C. Koch
- Department of Dance Movement Therapy, Faculty of Therapeutic Sciences, SRH University Heidelberg, Heidelberg, Germany
| | - Laura Mehl
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Janna K. Kelbel
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Katharina Maria Kubera
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Tanja Traeger
- Personality, Psychological Assessment, and Psychological Methods, Department of Psychology, University of Koblenz Landau, Landau, Germany
| | - Thomas Fuchs
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Philipp Arthur Thomann
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
40
|
Motor Abnormalities and Basal Ganglia in Schizophrenia: Evidence from Structural Magnetic Resonance Imaging. Brain Topogr 2014; 28:135-52. [DOI: 10.1007/s10548-014-0377-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 05/10/2014] [Indexed: 12/13/2022]
|
41
|
Levit-Binnun N, Davidovitch M, Golland Y. Sensory and motor secondary symptoms as indicators of brain vulnerability. J Neurodev Disord 2013; 5:26. [PMID: 24063566 PMCID: PMC3849186 DOI: 10.1186/1866-1955-5-26] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 09/04/2013] [Indexed: 01/20/2023] Open
Abstract
In addition to the primary symptoms that distinguish one disorder from the next, clinicians have identified, yet largely overlooked, another set of symptoms that appear across many disorders, termed secondary symptoms. In the emerging era of systems neuroscience, which highlights that many disorders share common deficits in global network features, the nonspecific nature of secondary symptoms should attract attention. Herein we provide a scholarly review of the literature on a subset of secondary symptoms––sensory and motor. We demonstrate that their pattern of appearance––across a wide range of psychopathologies, much before the full-blown disorder appears, and in healthy individuals who display a variety of negative symptoms––resembles the pattern of appearance of network abnormalities. We propose that sensory and motor secondary symptoms can be important indicators of underlying network aberrations and thus of vulnerable brain states putting individuals at risk for psychopathology following extreme circumstances.
Collapse
Affiliation(s)
- Nava Levit-Binnun
- Interdisciplinary Center (IDC), Sagol Unit for Applied Neuroscience, School of Psychology, POB 167, Herzliya 46150, Israel.
| | | | | |
Collapse
|