1
|
Aslan U, Akşahin MF. Detection of Alzheimer and mild cognitive impairment patients by Poincare and Entropy methods based on electroencephalography signals. Biomed Eng Online 2025; 24:47. [PMID: 40275232 PMCID: PMC12023449 DOI: 10.1186/s12938-025-01369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 11/11/2024] [Indexed: 04/26/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by deficits in cognition, behavior, and intellectual functioning, and Mild Cognitive Impairment (MCI) refers to individuals whose cognitive impairment deviates from what is expected for their age but does not significantly interfere with daily activities. Because there is no treatment for AD, early prediction of AD can be helpful to reducing the progression of this disease. This study examines the Electroencephalography (EEG) signal of 3 distinct groups, including AD, MCI, and healthy individuals. Recognizing the non-stationary nature of EEG signals, two nonlinear approaches, Poincare and Entropy, are employed for meaningful feature extraction. Data should be segmented into epochs to extract features from EEG signals, and feature extraction approaches should be implemented for each one. The obtained features are given to machine learning algorithms to classify the subjects. Extensive experiments were conducted to analyze the features comprehensively. The results demonstrate that our proposed method surpasses previous studies in terms of accuracy, sensitivity, and specificity, indicating its effectiveness in classifying individuals with AD, MCI, and those without cognitive impairment.
Collapse
Affiliation(s)
- Umut Aslan
- Department of Electrical and Electronic Engineering, Gazi University, Ankara, Turkey.
| | - Mehmet Feyzi Akşahin
- Department of Electrical and Electronic Engineering, Gazi University, Ankara, Turkey
| |
Collapse
|
2
|
Marissens Cueva V, Bougrain L, Lotte F, Rimbert S. Reliable predictor of BCI motor imagery performance using median nerve stimulation. J Neural Eng 2025; 22:026039. [PMID: 40127541 DOI: 10.1088/1741-2552/adc48d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 03/24/2025] [Indexed: 03/26/2025]
Abstract
Objective.Predicting performance in brain-computer interfaces (BCIs) is crucial for enhancing user experience, optimizing training and identifying the most efficient BCI approach for each individual.Approach.This study explores the use of median nerve stimulation (MNS) as a predictor of motor imagery (MI)-BCI performance. MNS induces event related (de)synchronization (ERD/ERS) patterns in the brain that are similar to those generated during MI tasks, providing a non-invasive, user-independent, and easy-to-setup method for performance prediction.Main results.Our proposed predictor, based on the minimum value of the ERD induced by the MNS, not only exhibits a robust correlation with the MI-BCI performance accuracy (rho = -0.71,p<0.001), but also effectively predicts this performance with a significant correlation (rho = 0.61, mean absolute error = 9.0,p<0.01). These results demonstrate its validity as a reliable predictor of MI-BCI performance.Significance.By systematically analyzing patterns induced by MNS and correlating them with subsequent MI-BCI task performance, we aim to establish a robust predictive method of motor activity to each individual only based on MNS, making it possible, among other things, to passively predict BCI deficiency or proficiency, and to potentially adapt BCI parameters for an efficient BCI experience or BCI-based recovery.
Collapse
Affiliation(s)
- Valérie Marissens Cueva
- Inria Center at the University of Bordeaux / LaBRI, Talence, France
- Université de Lorraine, CNRS, LORIA, F-54000 Nancy, France
| | | | - Fabien Lotte
- Inria Center at the University of Bordeaux / LaBRI, Talence, France
| | | |
Collapse
|
3
|
Aslan U, Akşahin MF. Enhancing multiple sclerosis diagnosis: A comparative study of electroencephalogram signal processing and entropy methods. Comput Biol Med 2025; 185:109615. [PMID: 39721414 DOI: 10.1016/j.compbiomed.2024.109615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
As one of the most common neurodegenerative diseases, Multiple sclerosis (MS) is a chronic immune-driven disorder that affects the central nervous system (CNS). Due to the variety of symptoms, accurately diagnosing MS demands rigorous attention to differential diagnosis, as various disorders can closely mimic its clinical and paraclinical features. Although MR imaging techniques are gold standards in diagnosing MS, the feasibility of advanced Electroencephalogram (EEG) signal processing methods is discussed in this study to detect patients with MS disorder. EEG signals from 50 individuals were evaluated through entropy-based methods. Sixteen distinct entropy methods were employed to extract features, which were used to train several machine-learning algorithms for classifying MS patients. Furthermore, each entropy method was individually evaluated to identify the most effective approach for MS diagnosis. A regional analysis of the EEG channels was conducted to determine the most informative regions for classification. The results indicated that the proposed method outperformed previous studies and achieved highly effective results in the classification of MS patients.
Collapse
Affiliation(s)
- Umut Aslan
- Department of Electrical and Electronic Engineering, Gazi University, Ankara, Turkey.
| | - Mehmet Feyzi Akşahin
- Department of Electrical and Electronic Engineering, Gazi University, Ankara, Turkey
| |
Collapse
|
4
|
Kapralov N, Jamshidi Idaji M, Stephani T, Studenova A, Vidaurre C, Ros T, Villringer A, Nikulin V. Sensorimotor brain-computer interface performance depends on signal-to-noise ratio but not connectivity of the mu rhythm in a multiverse analysis of longitudinal data. J Neural Eng 2024; 21:056027. [PMID: 39265614 DOI: 10.1088/1741-2552/ad7a24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
Objective.Serving as a channel for communication with locked-in patients or control of prostheses, sensorimotor brain-computer interfaces (BCIs) decode imaginary movements from the recorded activity of the user's brain. However, many individuals remain unable to control the BCI, and the underlying mechanisms are unclear. The user's BCI performance was previously shown to correlate with the resting-state signal-to-noise ratio (SNR) of the mu rhythm and the phase synchronization (PS) of the mu rhythm between sensorimotor areas. Yet, these predictors of performance were primarily evaluated in a single BCI session, while the longitudinal aspect remains rather uninvestigated. In addition, different analysis pipelines were used to estimate PS in source space, potentially hindering the reproducibility of the results.Approach.To systematically address these issues, we performed an extensive validation of the relationship between pre-stimulus SNR, PS, and session-wise BCI performance using a publicly available dataset of 62 human participants performing up to 11 sessions of BCI training. We performed the analysis in sensor space using the surface Laplacian and in source space by combining 24 processing pipelines in a multiverse analysis. This way, we could investigate how robust the observed effects were to the selection of the pipeline.Main results.Our results show that SNR had both between- and within-subject effects on BCI performance for the majority of the pipelines. In contrast, the effect of PS on BCI performance was less robust to the selection of the pipeline and became non-significant after controlling for SNR.Significance.Taken together, our results demonstrate that changes in neuronal connectivity within the sensorimotor system are not critical for learning to control a BCI, and interventions that increase the SNR of the mu rhythm might lead to improvements in the user's BCI performance.
Collapse
Affiliation(s)
- Nikolai Kapralov
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Mina Jamshidi Idaji
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- BIFOLD-Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Machine Learning Group, Technische Universität Berlin, Berlin, Germany
| | - Tilman Stephani
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Alina Studenova
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Carmen Vidaurre
- BIFOLD-Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Ikerbasque Science Foundation, Bilbao, Spain
- Basque Center on Cognition, Brain and Language, Basque Excellence Research Centre (BERC), San Sebastian, Spain
| | - Tomas Ros
- Department of Neuroscience and Psychiatry, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Geneva-Lausanne, Switzerland
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Vadim Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
5
|
Park H, Jun SC. Connectivity study on resting-state EEG between motor imagery BCI-literate and BCI-illiterate groups. J Neural Eng 2024; 21:046042. [PMID: 38986469 DOI: 10.1088/1741-2552/ad6187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Objective.Although motor imagery-based brain-computer interface (MI-BCI) holds significant potential, its practical application faces challenges such as BCI-illiteracy. To mitigate this issue, researchers have attempted to predict BCI-illiteracy by using the resting state, as this was found to be associated with BCI performance. As connectivity's significance in neuroscience has grown, BCI researchers have applied connectivity to it. However, the issues of connectivity have not been considered fully. First, although various connectivity metrics exist, only some have been used to predict BCI-illiteracy. This is problematic because each metric has a distinct hypothesis and perspective to estimate connectivity, resulting in different outcomes according to the metric. Second, the frequency range affects the connectivity estimation. In addition, it is still unknown whether each metric has its own optimal frequency range. Third, the way that estimating connectivity may vary depending upon the dataset has not been investigated. Meanwhile, we still do not know a great deal about how the resting state electroencephalography (EEG) network differs between BCI-literacy and -illiteracy.Approach.To address the issues above, we analyzed three large public EEG datasets using three functional connectivity and three effective connectivity metrics by employing diverse graph theory measures. Our analysis revealed that the appropriate frequency range to predict BCI-illiteracy varies depending upon the metric. The alpha range was found to be suitable for the metrics of the frequency domain, while alpha + theta were found to be appropriate for multivariate Granger causality. The difference in network efficiency between BCI-literate and -illiterate groups was constant regardless of the metrics and datasets used. Although we observed that BCI-literacy had stronger connectivity, no other significant constructional differences were found.Significance.Based upon our findings, we predicted MI-BCI performance for the entire dataset. We discovered that combining several graph features could improve the prediction's accuracy.
Collapse
Affiliation(s)
- Hanjin Park
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Sung Chan Jun
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
6
|
Yao B, Wu C, Zhang X, Yao J, Xue J, Zhao Y, Li T, Pu J. The EEG-Based Fusion Entropy-Featured Identification of Isometric Contraction Forces under the Same Action. SENSORS (BASEL, SWITZERLAND) 2024; 24:2323. [PMID: 38610534 PMCID: PMC11014078 DOI: 10.3390/s24072323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
This study explores the important role of assessing force levels in accurately controlling upper limb movements in human-computer interfaces. It uses a new method that combines entropy to improve the recognition of force levels. This research aims to differentiate between different levels of isometric contraction forces using electroencephalogram (EEG) signal analysis. It integrates eight different entropy measures: power spectrum entropy (PSE), singular spectrum entropy (SSE), logarithmic energy entropy (LEE), approximation entropy (AE), sample entropy (SE), fuzzy entropy (FE), alignment entropy (PE), and envelope entropy (EE). The findings emphasize two important advances: first, including a wide range of entropy features significantly improves classification efficiency; second, the fusion entropy method shows exceptional accuracy in classifying isometric contraction forces. It achieves an accuracy rate of 91.73% in distinguishing between 15% and 60% maximum voluntary contraction (MVC) forces, along with 69.59% accuracy in identifying variations across 15%, 30%, 45%, and 60% MVC. These results illuminate the efficacy of employing fusion entropy in EEG signal analysis for isometric contraction detection, heralding new opportunities for advancing motor control and facilitating fine motor movements through sophisticated human-computer interface technologies.
Collapse
Affiliation(s)
- Bo Yao
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; (B.Y.); (C.W.); (X.Z.); (J.Y.)
| | - Chengzhen Wu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; (B.Y.); (C.W.); (X.Z.); (J.Y.)
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Xing Zhang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; (B.Y.); (C.W.); (X.Z.); (J.Y.)
| | - Junjie Yao
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; (B.Y.); (C.W.); (X.Z.); (J.Y.)
| | - Jianchao Xue
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (J.X.)
| | - Yu Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (J.X.)
| | - Ting Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; (B.Y.); (C.W.); (X.Z.); (J.Y.)
| | - Jiangbo Pu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; (B.Y.); (C.W.); (X.Z.); (J.Y.)
| |
Collapse
|
7
|
Sieghartsleitner S, Sebastián-Romagosa M, Cho W, Grünwald J, Ortner R, Scharinger J, Kamada K, Guger C. Upper extremity training followed by lower extremity training with a brain-computer interface rehabilitation system. Front Neurosci 2024; 18:1346607. [PMID: 38500488 PMCID: PMC10944934 DOI: 10.3389/fnins.2024.1346607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/08/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction Brain-computer interfaces (BCIs) based on functional electrical stimulation have been used for upper extremity motor rehabilitation after stroke. However, little is known about their efficacy for multiple BCI treatments. In this study, 19 stroke patients participated in 25 upper extremity followed by 25 lower extremity BCI training sessions. Methods Patients' functional state was assessed using two sets of clinical scales for the two BCI treatments. The Upper Extremity Fugl-Meyer Assessment (FMA-UE) and the 10-Meter Walk Test (10MWT) were the primary outcome measures for the upper and lower extremity BCI treatments, respectively. Results Patients' motor function as assessed by the FMA-UE improved by an average of 4.2 points (p < 0.001) following upper extremity BCI treatment. In addition, improvements in activities of daily living and clinically relevant improvements in hand and finger spasticity were observed. Patients showed further improvements after the lower extremity BCI treatment, with walking speed as measured by the 10MWT increasing by 0.15 m/s (p = 0.001), reflecting a substantial meaningful change. Furthermore, a clinically relevant improvement in ankle spasticity and balance and mobility were observed. Discussion The results of the current study provide evidence that both upper and lower extremity BCI treatments, as well as their combination, are effective in facilitating functional improvements after stroke. In addition, and most importantly improvements did not stop after the first 25 upper extremity BCI sessions.
Collapse
Affiliation(s)
- Sebastian Sieghartsleitner
- g.tec Medical Engineering GmbH, Schiedlberg, Austria
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | | | - Woosang Cho
- g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | - Johannes Grünwald
- g.tec Medical Engineering GmbH, Schiedlberg, Austria
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | - Rupert Ortner
- g.tec Medical Engineering Spain S.L., Barcelona, Spain
| | - Josef Scharinger
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | | | - Christoph Guger
- g.tec Medical Engineering GmbH, Schiedlberg, Austria
- g.tec Medical Engineering Spain S.L., Barcelona, Spain
| |
Collapse
|
8
|
Jorajuria T, Nikulin VV, Kapralov N, Gomez M, Vidaurre C. MEAN SP: How Many Channels are Needed to Predict the Performance of a SMR-Based BCI? IEEE Trans Neural Syst Rehabil Eng 2023; 31:4931-4941. [PMID: 38051627 DOI: 10.1109/tnsre.2023.3339612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Predicting whether a particular individual would reach an adequate control of a Brain-Computer Interface (BCI) has many practical advantages. On the one hand, participants with low predicted performance could be trained with specifically designed sessions and avoid frustrating experiments; on the other hand, planning time and resources would be more efficient; and finally, the variables related to an accurate prediction could be manipulated to improve the prospective BCI performance. To this end, several predictors have been proposed in the literature, most of them based on the power estimation of EEG signals at the specific frequency bands. Many of these studies evaluate their predictors in relatively small datasets and/or using a relatively high number of channels. In this manuscript, we propose a novel predictor called [Formula: see text] to predict the performance of participants using BCIs that are based on the modulation of sensorimotor rhythms. This novel predictor has been positively evaluated using only 2, 3, 4 or 5 channels. [Formula: see text] has shown to perform as well as or better than other state-of-the-art predictors. The best sets of different number of channels are also provided, which have been tested in two different settings to prove their robustness. The proposed predictor has been successfully evaluated using two large-scale datasets containing 150 and 80 participants, respectively. We also discuss predictor thresholds for users to expect good performance in feedback experiments and show the advantages in comparison to a competing algorithm.
Collapse
|
9
|
Cui Y, Xie S, Fu Y, Xie X. Predicting Motor Imagery BCI Performance Based on EEG Microstate Analysis. Brain Sci 2023; 13:1288. [PMID: 37759889 PMCID: PMC10526389 DOI: 10.3390/brainsci13091288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Motor imagery (MI) electroencephalography (EEG) is natural and comfortable for controllers, and has become a research hotspot in the field of the brain-computer interface (BCI). Exploring the inter-subject MI-BCI performance variation is one of the fundamental problems in MI-BCI application. EEG microstates with high spatiotemporal resolution and multichannel information can represent brain cognitive function. In this paper, four EEG microstates (MS1, MS2, MS3, MS4) were used in the analysis of the differences in the subjects' MI-BCI performance, and the four microstate feature parameters (the mean duration, the occurrences per second, the time coverage ratio, and the transition probability) were calculated. The correlation between the resting-state EEG microstate feature parameters and the subjects' MI-BCI performance was measured. Based on the negative correlation of the occurrence of MS1 and the positive correlation of the mean duration of MS3, a resting-state microstate predictor was proposed. Twenty-eight subjects were recruited to participate in our MI experiments to assess the performance of our resting-state microstate predictor. The experimental results show that the average area under curve (AUC) value of our resting-state microstate predictor was 0.83, and increased by 17.9% compared with the spectral entropy predictor, representing that the microstate feature parameters can better fit the subjects' MI-BCI performance than spectral entropy predictor. Moreover, the AUC of microstate predictor is higher than that of spectral entropy predictor at both the single-session level and average level. Overall, our resting-state microstate predictor can help MI-BCI researchers better select subjects, save time, and promote MI-BCI development.
Collapse
Affiliation(s)
- Yujie Cui
- Shaanxi Joint International Research Center on Integrated Technique of Brain-Computer for Unmanned System, Northwestern Polytechnical University, Xi’an 710129, China; (Y.C.); (Y.F.); (X.X.)
| | - Songyun Xie
- Shaanxi Joint International Research Center on Integrated Technique of Brain-Computer for Unmanned System, Northwestern Polytechnical University, Xi’an 710129, China; (Y.C.); (Y.F.); (X.X.)
| | - Yingxin Fu
- Shaanxi Joint International Research Center on Integrated Technique of Brain-Computer for Unmanned System, Northwestern Polytechnical University, Xi’an 710129, China; (Y.C.); (Y.F.); (X.X.)
- Xi’an Aeronautics Computing Technique Research Institute, AVIC Xi’an, Xi’an 710068, China
| | - Xinzhou Xie
- Shaanxi Joint International Research Center on Integrated Technique of Brain-Computer for Unmanned System, Northwestern Polytechnical University, Xi’an 710129, China; (Y.C.); (Y.F.); (X.X.)
| |
Collapse
|
10
|
Choy CS, Fang Q, Neville K, Ding B, Kumar A, Mahmoud SS, Gu X, Fu J, Jelfs B. Virtual reality and motor imagery for early post-stroke rehabilitation. Biomed Eng Online 2023; 22:66. [PMID: 37407988 PMCID: PMC10320905 DOI: 10.1186/s12938-023-01124-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Motor impairment is a common consequence of stroke causing difficulty in independent movement. The first month of post-stroke rehabilitation is the most effective period for recovery. Movement imagination, known as motor imagery, in combination with virtual reality may provide a way for stroke patients with severe motor disabilities to begin rehabilitation. METHODS The aim of this study is to verify whether motor imagery and virtual reality help to activate stroke patients' motor cortex. 16 acute/subacute (< 6 months) stroke patients participated in this study. All participants performed motor imagery of basketball shooting which involved the following tasks: listening to audio instruction only, watching a basketball shooting animation in 3D with audio, and also performing motor imagery afterwards. Electroencephalogram (EEG) was recorded for analysis of motor-related features of the brain such as power spectral analysis in the [Formula: see text] and [Formula: see text] frequency bands and spectral entropy. 18 EEG channels over the motor cortex were used for all stroke patients. RESULTS All results are normalised relative to all tasks for each participant. The power spectral densities peak near the [Formula: see text] band for all participants and also the [Formula: see text] band for some participants. Tasks with instructions during motor imagery generally show greater power spectral peaks. The p-values of the Wilcoxon signed-rank test for band power comparison from the 18 EEG channels between different pairs of tasks show a 0.01 significance of rejecting the band powers being the same for most tasks done by stroke subjects. The motor cortex of most stroke patients is more active when virtual reality is involved during motor imagery as indicated by their respective scalp maps of band power and spectral entropy. CONCLUSION The resulting activation of stroke patient's motor cortices in this study reveals evidence that it is induced by imagination of movement and virtual reality supports motor imagery. The framework of the current study also provides an efficient way to investigate motor imagery and virtual reality during post-stroke rehabilitation.
Collapse
Affiliation(s)
- Chi S. Choy
- School of Engineering, RMIT University, Melbourne, Australia
| | - Qiang Fang
- Department of Biomedical Engineering, Shantou University, Shantou, China
| | - Katrina Neville
- School of Engineering, RMIT University, Melbourne, Australia
| | - Bingrui Ding
- Department of Biomedical Engineering, Shantou University, Shantou, China
| | - Akshay Kumar
- Department of Biomedical Engineering, Shantou University, Shantou, China
| | | | - Xudong Gu
- Rehabilitation Center, Jiaxing 2nd Hospital, Jiaxing, 314000 China
| | - Jianming Fu
- Rehabilitation Center, Jiaxing 2nd Hospital, Jiaxing, 314000 China
| | - Beth Jelfs
- Department of Electrical, Electronic & Systems Engineering, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Batistić L, Lerga J, Stanković I. Detection of motor imagery based on short-term entropy of time-frequency representations. Biomed Eng Online 2023; 22:41. [PMID: 37143020 PMCID: PMC10157970 DOI: 10.1186/s12938-023-01102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Motor imagery is a cognitive process of imagining a performance of a motor task without employing the actual movement of muscles. It is often used in rehabilitation and utilized in assistive technologies to control a brain-computer interface (BCI). This paper provides a comparison of different time-frequency representations (TFR) and their Rényi and Shannon entropies for sensorimotor rhythm (SMR) based motor imagery control signals in electroencephalographic (EEG) data. The motor imagery task was guided by visual guidance, visual and vibrotactile (somatosensory) guidance or visual cue only. RESULTS When using TFR-based entropy features as an input for classification of different interaction intentions, higher accuracies were achieved (up to 99.87%) in comparison to regular time-series amplitude features (for which accuracy was up to 85.91%), which is an increase when compared to existing methods. In particular, the highest accuracy was achieved for the classification of the motor imagery versus the baseline (rest state) when using Shannon entropy with Reassigned Pseudo Wigner-Ville time-frequency representation. CONCLUSIONS Our findings suggest that the quantity of useful classifiable motor imagery information (entropy output) changes during the period of motor imagery in comparison to baseline period; as a result, there is an increase in the accuracy and F1 score of classification when using entropy features in comparison to the accuracy and the F1 of classification when using amplitude features, hence, it is manifested as an improvement of the ability to detect motor imagery.
Collapse
Affiliation(s)
- Luka Batistić
- University of Rijeka - Faculty of Engineering, Vukovarska 58, 51000, Rijeka, Croatia
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, R. Matejčić 2, 51000, Rijeka, Croatia
| | - Jonatan Lerga
- University of Rijeka - Faculty of Engineering, Vukovarska 58, 51000, Rijeka, Croatia.
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, R. Matejčić 2, 51000, Rijeka, Croatia.
| | - Isidora Stanković
- University of Montenegro, Džordža Vašingtona bb, 81000, Podgorica, Montenegro
| |
Collapse
|
12
|
Ivanov N, Chau T. Riemannian geometry-based metrics to measure and reinforce user performance changes during brain-computer interface user training. Front Comput Neurosci 2023; 17:1108889. [PMID: 36860616 PMCID: PMC9968793 DOI: 10.3389/fncom.2023.1108889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Despite growing interest and research into brain-computer interfaces (BCI), their usage remains limited outside of research laboratories. One reason for this is BCI inefficiency, the phenomenon where a significant number of potential users are unable to produce machine-discernible brain signal patterns to control the devices. To reduce the prevalence of BCI inefficiency, some have advocated for novel user-training protocols that enable users to more effectively modulate their neural activity. Important considerations for the design of these protocols are the assessment measures that are used for evaluating user performance and for providing feedback that guides skill acquisition. Herein, we present three trial-wise adaptations (running, sliding window and weighted average) of Riemannian geometry-based user-performance metrics (classDistinct reflecting the degree of class separability and classStability reflecting the level of within-class consistency) to enable feedback to the user following each individual trial. We evaluated these metrics, along with conventional classifier feedback, using simulated and previously recorded sensorimotor rhythm-BCI data to assess their correlation with and discrimination of broader trends in user performance. Analysis revealed that the sliding window and weighted average variants of our proposed trial-wise Riemannian geometry-based metrics more accurately reflected performance changes during BCI sessions compared to conventional classifier output. The results indicate the metrics are a viable method for evaluating and tracking user performance changes during BCI-user training and, therefore, further investigation into how these metrics may be presented to users during training is warranted.
Collapse
Affiliation(s)
- Nicolas Ivanov
- PRISM Lab, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Tom Chau
- PRISM Lab, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Wang K, Tian F, Xu M, Zhang S, Xu L, Ming D. Resting-State EEG in Alpha Rhythm May Be Indicative of the Performance of Motor Imagery-Based Brain-Computer Interface. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1556. [PMID: 36359646 PMCID: PMC9689965 DOI: 10.3390/e24111556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Motor imagery-based brain-computer interfaces (MI-BCIs) have great application prospects in motor enhancement and rehabilitation. However, the capacity to control a MI-BCI varies among persons. Predicting the MI ability of a user remains challenging in BCI studies. We first calculated the relative power level (RPL), power spectral entropy (PSE) and Lempel-Ziv complexity (LZC) of the resting-state open and closed-eye EEG of different frequency bands and investigated their correlations with the upper and lower limbs MI performance (left hand, right hand, both hands and feet MI tasks) on as many as 105 subjects. Then, the most significant related features were used to construct a classifier to separate the high MI performance group from the low MI performance group. The results showed that the features of open-eye resting alpha-band EEG had the strongest significant correlations with MI performance. The PSE performed the best among all features for the screening of the MI performance, with the classification accuracy of 85.24%. These findings demonstrated that the alpha bands might offer information related to the user's MI ability, which could be used to explore more effective and general neural markers to screen subjects and design individual MI training strategies.
Collapse
Affiliation(s)
- Kun Wang
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Feifan Tian
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Minpeng Xu
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Shanshan Zhang
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Lichao Xu
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Dong Ming
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
14
|
Hag A, Handayani D, Pillai T, Mantoro T, Kit MH, Al-Shargie F. EEG Mental Stress Assessment Using Hybrid Multi-Domain Feature Sets of Functional Connectivity Network and Time-Frequency Features. SENSORS (BASEL, SWITZERLAND) 2021; 21:6300. [PMID: 34577505 PMCID: PMC8473213 DOI: 10.3390/s21186300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 12/28/2022]
Abstract
Exposure to mental stress for long period leads to serious accidents and health problems. To avoid negative consequences on health and safety, it is very important to detect mental stress at its early stages, i.e., when it is still limited to acute or episodic stress. In this study, we developed an experimental protocol to induce two different levels of stress by utilizing a mental arithmetic task with time pressure and negative feedback as the stressors. We assessed the levels of stress on 22 healthy subjects using frontal electroencephalogram (EEG) signals, salivary alpha-amylase level (AAL), and multiple machine learning (ML) classifiers. The EEG signals were analyzed using a fusion of functional connectivity networks estimated by the Phase Locking Value (PLV) and temporal and spectral domain features. A total of 210 different features were extracted from all domains. Only the optimum multi-domain features were used for classification. We then quantified stress levels using statistical analysis and seven ML classifiers. Our result showed that the AAL level was significantly increased (p < 0.01) under stress condition in all subjects. Likewise, the functional connectivity network demonstrated a significant decrease under stress, p < 0.05. Moreover, we achieved the highest stress classification accuracy of 93.2% using the Support Vector Machine (SVM) classifier. Other classifiers produced relatively similar results.
Collapse
Affiliation(s)
- Ala Hag
- School of Computer Science & Engineering, Taylor’s University, Jalan Taylors, Subang Jaya 47500, Malaysia; (A.H.); (T.P.)
| | - Dini Handayani
- School of Computer Science & Engineering, Taylor’s University, Jalan Taylors, Subang Jaya 47500, Malaysia; (A.H.); (T.P.)
| | - Thulasyammal Pillai
- School of Computer Science & Engineering, Taylor’s University, Jalan Taylors, Subang Jaya 47500, Malaysia; (A.H.); (T.P.)
| | - Teddy Mantoro
- Faculty of Engineering and Technology, Sampoerna University, Jakarta 12780, Indonesia;
| | - Mun Hou Kit
- Department of Mechatronic and Biomedical Engineering, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Kajang 43000, Malaysia;
| | - Fares Al-Shargie
- Department of Electrical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates;
| |
Collapse
|
15
|
Zhou Q, Lin J, Yao L, Wang Y, Han Y, Xu K. Relative Power Correlates With the Decoding Performance of Motor Imagery Both Across Time and Subjects. Front Hum Neurosci 2021; 15:701091. [PMID: 34483866 PMCID: PMC8414415 DOI: 10.3389/fnhum.2021.701091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022] Open
Abstract
One of the most significant challenges in the application of brain-computer interfaces (BCI) is the large performance variation, which often occurs over time or across users. Recent evidence suggests that the physiological states may explain this performance variation in BCI, however, the underlying neurophysiological mechanism is unclear. In this study, we conducted a seven-session motor-imagery (MI) experiment on 20 healthy subjects to investigate the neurophysiological mechanism on the performance variation. The classification accuracy was calculated offline by common spatial pattern (CSP) and support vector machine (SVM) algorithms to measure the MI performance of each subject and session. Relative Power (RP) values from different rhythms and task stages were used to reflect the physiological states and their correlation with the BCI performance was investigated. Results showed that the alpha band RP from the supplementary motor area (SMA) within a few seconds before MI was positively correlated with performance. Besides, the changes of RP between task and pre-task stage from theta, alpha, and gamma band were also found to be correlated with performance both across time and subjects. These findings reveal a neurophysiological manifestation of the performance variations, and would further provide a way to improve the BCI performance.
Collapse
Affiliation(s)
- Qing Zhou
- Zhejiang Lab, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Jiafan Lin
- Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Lin Yao
- Frontiers Science Center for Brain and Brain-Machine Integration, Zhejiang University, Hangzhou, China.,The College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Yueming Wang
- Zhejiang Lab, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China.,Frontiers Science Center for Brain and Brain-Machine Integration, Zhejiang University, Hangzhou, China.,The College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Yan Han
- Zhejiang Key Laboratory of Neuroelectronics and Brain Computer Interface Technology, Hangzhou, China
| | - Kedi Xu
- Zhejiang Lab, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China.,Frontiers Science Center for Brain and Brain-Machine Integration, Zhejiang University, Hangzhou, China.,The College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Garg S, Patro RK, Behera S, Tigga NP, Pandey R. An overlapping sliding window and combined features based emotion recognition system for EEG signals. APPLIED COMPUTING AND INFORMATICS 2021. [DOI: 10.1108/aci-05-2021-0130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
The purpose of this study is to propose an alternative efficient 3D emotion recognition model for variable-length electroencephalogram (EEG) data.
Design/methodology/approach
Classical AMIGOS data set which comprises of multimodal records of varying lengths on mood, personality and other physiological aspects on emotional response is used for empirical assessment of the proposed overlapping sliding window (OSW) modelling framework. Two features are extracted using Fourier and Wavelet transforms: normalised band power (NBP) and normalised wavelet energy (NWE), respectively. The arousal, valence and dominance (AVD) emotions are predicted using one-dimension (1D) and two-dimensional (2D) convolution neural network (CNN) for both single and combined features.
Findings
The two-dimensional convolution neural network (2D CNN) outcomes on EEG signals of AMIGOS data set are observed to yield the highest accuracy, that is 96.63%, 95.87% and 96.30% for AVD, respectively, which is evidenced to be at least 6% higher as compared to the other available competitive approaches.
Originality/value
The present work is focussed on the less explored, complex AMIGOS (2018) data set which is imbalanced and of variable length. EEG emotion recognition-based work is widely available on simpler data sets. The following are the challenges of the AMIGOS data set addressed in the present work: handling of tensor form data; proposing an efficient method for generating sufficient equal-length samples corresponding to imbalanced and variable-length data.; selecting a suitable machine learning/deep learning model; improving the accuracy of the applied model.
Collapse
|
17
|
Bobrova EV, Reshetnikova VV, Vershinina EA, Grishin AA, Bobrov PD, Frolov AA, Gerasimenko YP. Success of Hand Movement Imagination Depends on Personality Traits, Brain Asymmetry, and Degree of Handedness. Brain Sci 2021; 11:853. [PMID: 34202413 PMCID: PMC8301954 DOI: 10.3390/brainsci11070853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/05/2022] Open
Abstract
Brain-computer interfaces (BCIs), based on motor imagery, are increasingly used in neurorehabilitation. However, some people cannot control BCI, predictors of this are the features of brain activity and personality traits. It is not known whether the success of BCI control is related to interhemispheric asymmetry. The study was conducted on 44 BCI-naive subjects and included one BCI session, EEG-analysis, 16PF Cattell Questionnaire, estimation of latent left-handedness, and of subjective complexity of real and imagery movements. The success of brain states recognition during imagination of left hand (LH) movement compared to the rest is higher in reserved, practical, skeptical, and not very sociable individuals. Extraversion, liveliness, and dominance are significant for the imagination of right hand (RH) movements in "pure" right-handers, and sensitivity in latent left-handers. Subjective complexity of real LH and of imagery RH movements correlates with the success of brain states recognition in the imagination of movement of LH compared to RH and depends on the level of handedness. Thus, the level of handedness is the factor influencing the success of BCI control. The data are supposed to be connected with hemispheric differences in motor control, lateralization of dopamine, and may be important for rehabilitation of patients after a stroke.
Collapse
Affiliation(s)
- Elena V. Bobrova
- Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (V.V.R.); (E.A.V.); (A.A.G.); (Y.P.G.)
| | - Varvara V. Reshetnikova
- Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (V.V.R.); (E.A.V.); (A.A.G.); (Y.P.G.)
| | - Elena A. Vershinina
- Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (V.V.R.); (E.A.V.); (A.A.G.); (Y.P.G.)
| | - Alexander A. Grishin
- Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (V.V.R.); (E.A.V.); (A.A.G.); (Y.P.G.)
| | - Pavel D. Bobrov
- Institute of Translational Medicine of Pirogov of Russian National Research Medical University, 117997 Moscow, Russia; (P.D.B.); (A.A.F.)
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia
| | - Alexander A. Frolov
- Institute of Translational Medicine of Pirogov of Russian National Research Medical University, 117997 Moscow, Russia; (P.D.B.); (A.A.F.)
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia
| | - Yury P. Gerasimenko
- Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (V.V.R.); (E.A.V.); (A.A.G.); (Y.P.G.)
- Department of Physiology and Biophysics, University of Louisville, Louisville, KY 40292, USA
- Kentucky Spinal Cord Injury Research Center, Frazier Rehab Institute, University of Louisville, UofL Health, Louisville, KY 40202, USA
| |
Collapse
|
18
|
Ra JS, Li T, Li Y. A novel spectral entropy-based index for assessing the depth of anaesthesia. Brain Inform 2021; 8:10. [PMID: 33978842 PMCID: PMC8116386 DOI: 10.1186/s40708-021-00130-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/12/2021] [Indexed: 12/05/2022] Open
Abstract
Anaesthesia is a state of temporary controlled loss of awareness induced for medical operations. An accurate assessment of the depth of anaesthesia (DoA) helps anesthesiologists to avoid awareness during surgery and keep the recovery period short. However, the existing DoA algorithms have limitations, such as not robust enough for different patients and having time delay in assessment. In this study, to develop a reliable DoA measurement method, pre-denoised electroencephalograph (EEG) signals are divided into ten frequency bands (α, β1, β2, β3, β4, β, βγ, γ, δ and θ), and the features are extracted from different frequency bands using spectral entropy (SE) methods. SE from the beta-gamma frequency band (21.5–38.5 Hz) and SE from the beta frequency band show the highest correlation (R-squared value: 0.8458 and 0.7312, respectively) with the most popular DoA index, bispectral index (BIS). In this research, a new DoA index is developed based on these two SE features for monitoring the DoA. The highest Pearson correlation coefficient by comparing the BIS index for testing data is 0.918, and the average is 0.80. In addition, the proposed index shows an earlier reaction than the BIS index when the patient goes from deep anaesthesia to moderate anaesthesia, which means it is more suitable for the real-time DoA assessment. In the case of poor signal quality (SQ), while the BIS index exhibits inflexibility with cases of poor SQ, the new proposed index shows reliable assessment results that reflect the clinical observations.
Collapse
Affiliation(s)
- Jee Sook Ra
- School of Sciences, University of Southern Queensland, West St, Darling Heights, Toowomba, QLD, 4350, Australia.
| | - Tianning Li
- School of Sciences, University of Southern Queensland, West St, Darling Heights, Toowomba, QLD, 4350, Australia
| | - Yan Li
- School of Sciences, University of Southern Queensland, West St, Darling Heights, Toowomba, QLD, 4350, Australia
| |
Collapse
|
19
|
Kleih-Dahms SC, Botrel L, Kübler A. The influence of motivation and emotion on sensorimotor rhythm-based brain-computer interface performance. Psychophysiology 2021; 58:e13832. [PMID: 33945156 DOI: 10.1111/psyp.13832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/20/2023]
Abstract
While decades of research have investigated and technically improved brain-computer interface (BCI)-controlled applications, relatively little is known about the psychological aspects of brain-computer interfacing. In 35 healthy students, we investigated whether extrinsic motivation manipulated via monetary reward and emotional state manipulated via video and music would influence behavioral and psychophysiological measures of performance with a sensorimotor rhythm (SMR)-based BCI. We found increased task-related brain activity in extrinsically motivated (rewarded) as compared with nonmotivated participants but no clear effect of emotional state manipulation. Our experiment investigated the short-term effect of motivation and emotion manipulation in a group of young healthy subjects, and thus, the significance for patients in the locked-in state, who may be in need of a BCI, remains to be investigated.
Collapse
Affiliation(s)
| | - Loic Botrel
- Institute of Psychology, University of Würzburg, Würzburg, Germany
| | - Andrea Kübler
- Institute of Psychology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Singh A, Hussain AA, Lal S, Guesgen HW. A Comprehensive Review on Critical Issues and Possible Solutions of Motor Imagery Based Electroencephalography Brain-Computer Interface. SENSORS 2021; 21:s21062173. [PMID: 33804611 PMCID: PMC8003721 DOI: 10.3390/s21062173] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/16/2023]
Abstract
Motor imagery (MI) based brain–computer interface (BCI) aims to provide a means of communication through the utilization of neural activity generated due to kinesthetic imagination of limbs. Every year, a significant number of publications that are related to new improvements, challenges, and breakthrough in MI-BCI are made. This paper provides a comprehensive review of the electroencephalogram (EEG) based MI-BCI system. It describes the current state of the art in different stages of the MI-BCI (data acquisition, MI training, preprocessing, feature extraction, channel and feature selection, and classification) pipeline. Although MI-BCI research has been going for many years, this technology is mostly confined to controlled lab environments. We discuss recent developments and critical algorithmic issues in MI-based BCI for commercial deployment.
Collapse
|
21
|
Caicedo-Acosta J, Castaño GA, Acosta-Medina C, Alvarez-Meza A, Castellanos-Dominguez G. Deep Neural Regression Prediction of Motor Imagery Skills Using EEG Functional Connectivity Indicators. SENSORS (BASEL, SWITZERLAND) 2021; 21:1932. [PMID: 33801817 PMCID: PMC7999933 DOI: 10.3390/s21061932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022]
Abstract
Motor imaging (MI) induces recovery and neuroplasticity in neurophysical regulation. However, a non-negligible portion of users presents insufficient coordination skills of sensorimotor cortex control. Assessments of the relationship between wakefulness and tasks states are conducted to foster neurophysiological and mechanistic interpretation in MI-related applications. Thus, to understand the organization of information processing, measures of functional connectivity are used. Also, models of neural network regression prediction are becoming popular, These intend to reduce the need for extracting features manually. However, predicting MI practicing's neurophysiological inefficiency raises several problems, like enhancing network regression performance because of the overfitting risk. Here, to increase the prediction performance, we develop a deep network regression model that includes three procedures: leave-one-out cross-validation combined with Monte Carlo dropout layers, subject clustering of MI inefficiency, and transfer learning between neighboring runs. Validation is performed using functional connectivity predictors extracted from two electroencephalographic databases acquired in conditions close to real MI applications (150 users), resulting in a high prediction of pretraining desynchronization and initial training synchronization with adequate physiological interpretability.
Collapse
Affiliation(s)
- Julian Caicedo-Acosta
- Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170001, Colombia; (C.A.-M.); (A.A.-M.); (G.C.-D.)
| | - German A. Castaño
- Grupo de investigación Cultura de la Calidad en la Educación, Universidad Nacional de Colombia, Manizales 170001, Colombia;
| | - Carlos Acosta-Medina
- Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170001, Colombia; (C.A.-M.); (A.A.-M.); (G.C.-D.)
| | - Andres Alvarez-Meza
- Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170001, Colombia; (C.A.-M.); (A.A.-M.); (G.C.-D.)
| | - German Castellanos-Dominguez
- Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170001, Colombia; (C.A.-M.); (A.A.-M.); (G.C.-D.)
| |
Collapse
|
22
|
Saha S, Mamun KA, Ahmed K, Mostafa R, Naik GR, Darvishi S, Khandoker AH, Baumert M. Progress in Brain Computer Interface: Challenges and Opportunities. Front Syst Neurosci 2021; 15:578875. [PMID: 33716680 PMCID: PMC7947348 DOI: 10.3389/fnsys.2021.578875] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Brain computer interfaces (BCI) provide a direct communication link between the brain and a computer or other external devices. They offer an extended degree of freedom either by strengthening or by substituting human peripheral working capacity and have potential applications in various fields such as rehabilitation, affective computing, robotics, gaming, and neuroscience. Significant research efforts on a global scale have delivered common platforms for technology standardization and help tackle highly complex and non-linear brain dynamics and related feature extraction and classification challenges. Time-variant psycho-neurophysiological fluctuations and their impact on brain signals impose another challenge for BCI researchers to transform the technology from laboratory experiments to plug-and-play daily life. This review summarizes state-of-the-art progress in the BCI field over the last decades and highlights critical challenges.
Collapse
Affiliation(s)
- Simanto Saha
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
- Department of Electrical and Electronic Engineering, United International University, Dhaka, Bangladesh
| | - Khondaker A. Mamun
- Advanced Intelligent Multidisciplinary Systems (AIMS) Lab, Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh
| | - Khawza Ahmed
- Department of Electrical and Electronic Engineering, United International University, Dhaka, Bangladesh
| | - Raqibul Mostafa
- Department of Electrical and Electronic Engineering, United International University, Dhaka, Bangladesh
| | - Ganesh R. Naik
- Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Sam Darvishi
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
| | - Ahsan H. Khandoker
- Healthcare Engineering Innovation Center, Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mathias Baumert
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
23
|
Zhang R, Li F, Zhang T, Yao D, Xu P. Subject inefficiency phenomenon of motor imagery brain-computer interface: Influence factors and potential solutions. BRAIN SCIENCE ADVANCES 2021. [DOI: 10.26599/bsa.2020.9050021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Motor imagery brain–computer interfaces (MI‐BCIs) have great potential value in prosthetics control, neurorehabilitation, and gaming; however, currently, most such systems only operate in controlled laboratory environments. One of the most important obstacles is the MI‐BCI inefficiency phenomenon. The accuracy of MI‐BCI control varies significantly (from chance level to 100% accuracy) across subjects due to the not easily induced and unstable MI‐related EEG features. An MI‐BCI inefficient subject is defined as a subject who cannot achieve greater than 70% accuracy after sufficient training time, and multiple survey results indicate that inefficient subjects account for 10%–50% of the experimental population. The widespread use of MI‐BCI has been seriously limited due to these large percentages of inefficient subjects. In this review, we summarize recent findings of the cause of MI‐BCI inefficiency from resting‐state brain function, task‐related brain activity, brain structure, and psychological perspectives. These factors help understand the reasons for inter‐subject MI‐BCI control performance variability, and it can be concluded that the lower resting‐state sensorimotor rhythm (SMR) is the key factor in MI‐BCI inefficiency, which has been confirmed by multiple independent laboratories. We then propose to divide MI‐BCI inefficient subjects into three categories according to the resting‐state SMR and offline/online accuracy to apply more accurate approaches to solve the inefficiency problem. The potential solutions include developing transfer learning algorithms, new experimental paradigms, mindfulness meditation practice, novel training strategies, and identifying new motor imagery‐related EEG features. To date, few studies have focused on improving the control accuracy of MI‐BCI inefficient subjects; thus, we appeal to the BCI community to focus more on this research area. Only by reducing the percentage of inefficient subjects can we create the opportunity to expand the value and influence of MI‐BCI.
Collapse
Affiliation(s)
- Rui Zhang
- Henan Key Laboratory of Brain Science and Brain‐Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Fali Li
- MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Tao Zhang
- Science of School, Xihua University, Chengdu 610039, Sichuan, China
| | - Dezhong Yao
- Henan Key Laboratory of Brain Science and Brain‐Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
- MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Peng Xu
- MOE Key Lab for NeuroInformation, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| |
Collapse
|
24
|
Vidaurre C, Haufe S, Jorajuría T, Müller KR, Nikulin VV. Sensorimotor Functional Connectivity: A Neurophysiological Factor Related to BCI Performance. Front Neurosci 2021; 14:575081. [PMID: 33390877 PMCID: PMC7775663 DOI: 10.3389/fnins.2020.575081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022] Open
Abstract
Brain-Computer Interfaces (BCIs) are systems that allow users to control devices using brain activity alone. However, the ability of participants to command BCIs varies from subject to subject. About 20% of potential users of sensorimotor BCIs do not gain reliable control of the system. The inefficiency to decode user's intentions requires the identification of neurophysiological factors determining “good” and “poor” BCI performers. One of the important neurophysiological aspects in BCI research is that the neuronal oscillations, used to control these systems, show a rich repertoire of spatial sensorimotor interactions. Considering this, we hypothesized that neuronal connectivity in sensorimotor areas would define BCI performance. Analyses for this study were performed on a large dataset of 80 inexperienced participants. They took part in a calibration and an online feedback session recorded on the same day. Undirected functional connectivity was computed over sensorimotor areas by means of the imaginary part of coherency. The results show that post- as well as pre-stimulus connectivity in the calibration recording is significantly correlated to online feedback performance in μ and feedback frequency bands. Importantly, the significance of the correlation between connectivity and BCI feedback accuracy was not due to the signal-to-noise ratio of the oscillations in the corresponding post and pre-stimulus intervals. Thus, this study demonstrates that BCI performance is not only dependent on the amplitude of sensorimotor oscillations as shown previously, but that it also relates to sensorimotor connectivity measured during the preceding training session. The presence of such connectivity between motor and somatosensory systems is likely to facilitate motor imagery, which in turn is associated with the generation of a more pronounced modulation of sensorimotor oscillations (manifested in ERD/ERS) required for the adequate BCI performance. We also discuss strategies for the up-regulation of such connectivity in order to enhance BCI performance.
Collapse
Affiliation(s)
- Carmen Vidaurre
- Department of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, Spain
| | - Stefan Haufe
- Berlin Center for Advanced Neuroimaging, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Tania Jorajuría
- Department of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, Spain
| | - Klaus-Robert Müller
- Department of Machine Learning, Berlin University of Technology, Berlin, Germany.,Department of Artificial Intelligence, Korea University, Seoul, South Korea.,Max Planck Institute for Informatics, Saarbrücken, Germany.,Google Research, Brain Team, Berlin, Germany
| | - Vadim V Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
25
|
Al-Shargie F, Tariq U, Babiloni F, Al-Nashash H. Cognitive Vigilance Enhancement Using Audio Stimulation of Pure Tone at 250 Hz. IEEE ACCESS 2021; 9:22955-22970. [DOI: 10.1109/access.2021.3054785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
|
26
|
Lee M, Yoon JG, Lee SW. Predicting Motor Imagery Performance From Resting-State EEG Using Dynamic Causal Modeling. Front Hum Neurosci 2020; 14:321. [PMID: 32903663 PMCID: PMC7438792 DOI: 10.3389/fnhum.2020.00321] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022] Open
Abstract
Motor imagery-based brain–computer interfaces (MI-BCIs) send commands to a computer using the brain activity registered when a subject imagines—but does not perform—a given movement. However, inconsistent MI-BCI performance occurs in variations of brain signals across subjects and experiments; this is considered to be a significant problem in practical BCI. Moreover, some subjects exhibit a phenomenon referred to as “BCI-inefficiency,” in which they are unable to generate brain signals for BCI control. These subjects have significant difficulties in using BCI. The primary goal of this study is to identify the connections of the resting-state network that affect MI performance and predict MI performance using these connections. We used a public database of MI, which includes the results of psychological questionnaires and pre-experimental resting-state taken over two sessions on different days. A dynamic causal model was used to calculate the coupling strengths between brain regions with directionality. Specifically, we investigated the motor network in resting-state, including the dorsolateral prefrontal cortex, which performs motor planning. As a result, we observed a significant difference in the connectivity strength from the supplementary motor area to the right dorsolateral prefrontal cortex between the low- and high-MI performance groups. This coupling, measured in the resting-state, is significantly stronger in the high-MI performance group than the low-MI performance group. The connection strength is positively correlated with MI-BCI performance (Session 1: r = 0.54; Session 2: r = 0.42). We also predicted MI performance using linear regression based on this connection (r-squared = 0.31). The proposed predictors, based on dynamic causal modeling, can develop new strategies for improving BCI performance. These findings can further our understanding of BCI-inefficiency and help BCI users to lower costs and save time.
Collapse
Affiliation(s)
- Minji Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Jae-Geun Yoon
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Seong-Whan Lee
- Department of Artificial Intelligence, Korea University, Seoul, South Korea
| |
Collapse
|
27
|
Use of Both Eyes-Open and Eyes-Closed Resting States May Yield a More Robust Predictor of Motor Imagery BCI Performance. ELECTRONICS 2020. [DOI: 10.3390/electronics9040690] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Motor-imagery brain-computer interface (MI-BCI) is a technique that manipulates external machines using brain activities, and is highly useful to amyotrophic lateral sclerosis patients who cannot move their limbs. However, it is reported that approximately 15–30% of users cannot modulate their brain signals, which results in the inability to operate motor imagery BCI systems. Thus, advance prediction of BCI performance has drawn researchers’ attention, and some predictors have been proposed using the alpha band’s power, as well as other spectral bands’ powers, or spectral entropy from resting state electroencephalography (EEG). However, these predictors rely on a single state alone, such as the eyes-closed or eyes-open state; thus, they may often be less stable or unable to explain inter-/intra-subject variability. In this work, a modified predictor of MI-BCI performance that considered both brain states (eyes-open and eyes-closed resting states) was investigated with 41 online MI-BCI session datasets acquired from 15 subjects. The results showed that our proposed predictor and online MI-BCI classification accuracy were positively and highly significantly correlated (r = 0.71, p < 0.1 × 10 − 7 ), which indicates that the use of multiple brain states may yield a more robust predictor than the use of a single state alone.
Collapse
|
28
|
Li P, Huang X, Zhu X, Li C, Liu H, Zhou W, Bore JC, Zhang T, Zhang Y, Yao D, Xu P. Robust brain causality network construction based on Bayesian multivariate autoregression. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Gong A, Nan W, Yin E, Jiang C, Fu Y. Efficacy, Trainability, and Neuroplasticity of SMR vs. Alpha Rhythm Shooting Performance Neurofeedback Training. Front Hum Neurosci 2020; 14:94. [PMID: 32265676 PMCID: PMC7098988 DOI: 10.3389/fnhum.2020.00094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 03/02/2020] [Indexed: 11/13/2022] Open
Abstract
Previous literature on shooting performance neurofeedback training (SP-NFT) to enhance performance usually focused on changes in behavioral indicators, but research on the physiological features of SP-NFT is lacking. To explore the effects of SP-NFT on trainability and neuroplasticity, we conducted a study in which 45 healthy participants were randomly divided into three groups: based on sensory-motor rhythm of C3, Cz and C4 (SMR group), based on alpha rhythm of T3 and T4 (Alpha group), and no NFT (control group). The training was performed for six sessions for 3 weeks. Before and after the SP-NFT, we evaluated changes in shooting performance and resting electroencephalography (EEG) frequency power, participant's subjective task appraisal, neurofeedback trainability score, and EEG feature. Statistical analysis showed that the shooting performance of the participants in the SMR group improved significantly, the participants in the Alpha group decreased, and that of participants in the control group have no change. Meanwhile, the resting EEG power features of the two NFT groups changed specifically after training. The training process data showed that the training difficulty was significantly lower in the SMR group than in the Alpha group. Both NFT groups could improve the neurofeedback trainability scores and change the feedback features by means of their mind strategy. These results may provide evidence of trainability and neuroplasticity for SP-NFT, suggesting that the SP-NFT is effective in brain regulation and thus provide a potential method to improve shooting performance.
Collapse
Affiliation(s)
- Anmin Gong
- School of Information Engineering, Engineering University of Armed Police Force, Xi'an, China
| | - Wenya Nan
- Department of Psychology, College of Education, Shanghai Normal University, Shanghai, China
| | - Erwei Yin
- Tianjin Artificial Intelligence Innovation Center (TAIIC), National Institute of Defense Technology Innovation, Academy of Military Sciences China, Beijing, China
| | - Changhao Jiang
- Key Laboratory of Sports Performance Evaluation and Technical Analysis, Capital University of Physical Education and Sports, Beijing, China
| | - Yunfa Fu
- School of Automation and Information Engineering, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
30
|
Li F, Tao Q, Peng W, Zhang T, Si Y, Zhang Y, Yi C, Biswal B, Yao D, Xu P. Inter-subject P300 variability relates to the efficiency of brain networks reconfigured from resting- to task-state: Evidence from a simultaneous event-related EEG-fMRI study. Neuroimage 2020; 205:116285. [DOI: 10.1016/j.neuroimage.2019.116285] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/12/2019] [Accepted: 10/14/2019] [Indexed: 11/15/2022] Open
|
31
|
Shaw SB, Dhindsa K, Reilly JP, Becker S. Capturing the Forest but Missing the Trees: Microstates Inadequate for Characterizing Shorter-Scale EEG Dynamics. Neural Comput 2019; 31:2177-2211. [DOI: 10.1162/neco_a_01229] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The brain is known to be active even when not performing any overt cognitive tasks, and often it engages in involuntary mind wandering. This resting state has been extensively characterized in terms of fMRI-derived brain networks. However, an alternate method has recently gained popularity: EEG microstate analysis. Proponents of microstates postulate that the brain discontinuously switches between four quasi-stable states defined by specific EEG scalp topologies at peaks in the global field potential (GFP). These microstates are thought to be “atoms of thought,” involved with visual, auditory, salience, and attention processing. However, this method makes some major assumptions by excluding EEG data outside the GFP peaks and then clustering the EEG scalp topologies at the GFP peaks, assuming that only one microstate is active at any given time. This study explores the evidence surrounding these assumptions by studying the temporal dynamics of microstates and its clustering space using tools from dynamical systems analysis, fractal, and chaos theory to highlight the shortcomings in microstate analysis. The results show evidence of complex and chaotic EEG dynamics outside the GFP peaks, which is being missed by microstate analysis. Furthermore, the winner-takes-all approach of only one microstate being active at a time is found to be inadequate since the dynamic EEG scalp topology does not always resemble that of the assigned microstate, and there is competition among the different microstate classes. Finally, clustering space analysis shows that the four microstates do not cluster into four distinct and separable clusters. Taken collectively, these results show that the discontinuous description of EEG microstates is inadequate when looking at nonstationary short-scale EEG dynamics.
Collapse
Affiliation(s)
- Saurabh Bhaskar Shaw
- Neuroscience Graduate Program, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Kiret Dhindsa
- Research and High Performance Computing, McMaster University, Hamilton, ON L8S 4L8, Canada, and Vector Institute for Artificial Intelligence, Toronto, ON M5G 1M1, Canada
| | - James P. Reilly
- Vector Institute for Artificial Intelligence, Toronto, ON M5G 1M1, Canada, and Department of Electrical and Computer Engineering and McMaster School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Suzanna Becker
- Department of Psychology Neuroscience and Behaviour, McMaster University, Hamilton, ON L8S 4L8, Canada, and Vector Institute for Artificial Intelligence, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
32
|
Tian Y, Zhang H, Jiang Y, Li P, Li Y. A Fusion Feature for Enhancing the Performance of Classification in Working Memory Load With Single-Trial Detection. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1985-1993. [DOI: 10.1109/tnsre.2019.2936997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Saha S, Hossain MS, Ahmed K, Mostafa R, Hadjileontiadis L, Khandoker A, Baumert M. Wavelet Entropy-Based Inter-subject Associative Cortical Source Localization for Sensorimotor BCI. Front Neuroinform 2019; 13:47. [PMID: 31396068 PMCID: PMC6664070 DOI: 10.3389/fninf.2019.00047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 06/11/2019] [Indexed: 11/13/2022] Open
Abstract
We propose event-related cortical sources estimation from subject-independent electroencephalography (EEG) recordings for motor imagery brain computer interface (BCI). By using wavelet-based maximum entropy on the mean (wMEM), task-specific EEG channels are selected to predict right hand and right foot sensorimotor tasks, employing common spatial pattern (CSP) and regularized common spatial pattern (RCSP). EEG from five healthy individuals (Dataset IVa, BCI Competition III) were evaluated by a cross-subject paradigm. Prediction performance was evaluated via a two-layer feed-forward neural network, where the classifier was trained and tested by data from two subjects independently. On average, the overall mean prediction accuracies obtained using all 118 channels are (55.98±6.53) and (71.20±5.32) in cases of CSP and RCSP, respectively, which are slightly lower than the accuracies obtained using only the selected channels, i.e., (58.95±6.90) and (71.41±6.65), respectively. The highest mean prediction accuracy achieved for a specific subject pair by using selected EEG channels was on average (90.36±5.59) and outperformed that achieved by using all available channels (86.07 ± 10.71). Spatially projected cortical sources approximated using wMEM may be useful for capturing inter-subject associative sensorimotor brain dynamics and pave the way toward an enhanced subject-independent BCI.
Collapse
Affiliation(s)
- Simanto Saha
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
- Department of Electrical and Electronic Engineering, United International University, Dhaka, Bangladesh
| | - Md. Shakhawat Hossain
- Department of Electrical and Electronic Engineering, United International University, Dhaka, Bangladesh
| | - Khawza Ahmed
- Department of Electrical and Electronic Engineering, United International University, Dhaka, Bangladesh
| | - Raqibul Mostafa
- Department of Electrical and Electronic Engineering, United International University, Dhaka, Bangladesh
| | - Leontios Hadjileontiadis
- Department of Electrical and Computer Engineering, Khalifa University of Science and Technology, Technology and Research, Abu Dhabi, United Arab Emirates
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ahsan Khandoker
- Healthcare Engineering Innovation Center (HEIC), Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Electrical and Electronic Engineering Department, University of Melbourne, Parkville, VIC, Australia
| | - Mathias Baumert
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
34
|
Botrel L, Kübler A. Week-long visuomotor coordination and relaxation trainings do not increase sensorimotor rhythms (SMR) based brain-computer interface performance. Behav Brain Res 2019; 372:111993. [PMID: 31163204 DOI: 10.1016/j.bbr.2019.111993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
Abstract
Brain-computer interfaces (BCI) translate brain activity into control signals or commands for a device. Motor imagery of the limbs allows for modulating the sensorimotor rhythms (SMR), but there are up to 30% of the participants for whom electroencephalography (EEG) based SMR-BCI cannot detect any imagery-related changes. Individual variables, such as ability to concentrate on a task and error duration in a two-hand visuomotor coordination (VMC) task have been previously found to predict accuracy in an SMR-BCI. A first study attempted to substantiate those predictors by introducing a 30 min relaxation or VMC training period prior to an SMR-BCI session, but performance did not increase when compared to a control group. As the predictor training may have been too short, we applied 4 such training sessions on consecutive days in the current study. In a pre-post design, SMR-BCI accuracy of n = 39 participants increased from session 1 before to session 2 after the predictor training. While the manipulation of the predictor variables was successful, there was no effect on SMR-BCI performance. BCI accuracy correlated positively with the neurophysiological SMR predictor identified by Blankertz et al. [3], consolidating its predictive value, and with the state mindfulness scale. No other psychological predictor could be identified or replicated. Further studies should therefore focus more on delineating (partially) replicated or potential predictors such as VMC or mindfulness to help refining a sound model to predict SMR-BCI accuracy.
Collapse
Affiliation(s)
- L Botrel
- Institute of Psychology, University of Würzburg, Würzburg, Germany
| | - A Kübler
- Institute of Psychology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
35
|
Heimann K, Uithol S, Calbi M, Umiltà MA, Guerra M, Fingerhut J, Gallese V. Embodying the camera: An EEG study on the effect of camera movements on film spectators´ sensorimotor cortex activation. PLoS One 2019; 14:e0211026. [PMID: 30865624 PMCID: PMC6415856 DOI: 10.1371/journal.pone.0211026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 01/07/2019] [Indexed: 12/05/2022] Open
Abstract
One key feature of film consists in its power to bodily engage the viewer. Previous research has suggested lens and camera movements to be among the most effective stylistic devices involved in such engagement. In an EEG experiment we assessed the role of such movements in modulating specific spectators´ neural and experiential responses, likely reflecting such engagement. We produced short video clips of an empty room with a still, a zooming and a moving camera (steadicam) that might simulate the movement of an observer in different ways. We found an event related desynchronization of the beta components of the rolandic mu rhythm that was stronger for the clips produced with steadicam than for those produced with a still or zooming camera. No equivalent modulation in the attention related occipital areas was found, thus confirming the sensorimotor nature of spectators´ neural responses to the film clips. The present study provides the first empirical evidence that filmic means such as camera movements alone can modulate spectators’ bodily engagement with film.
Collapse
Affiliation(s)
- Katrin Heimann
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
- * E-mail:
| | - Sebo Uithol
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| | - Marta Calbi
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
| | | | - Michele Guerra
- Department of Humanities, Social Sciences, and Cultural Industries, University of Parma, Parma, Italy
| | - Joerg Fingerhut
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Vittorio Gallese
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Parma, Italy
- Institute of Philosophy, School of Advanced Study, University of London, London, United Kingdom
| |
Collapse
|
36
|
Hong J, Qin X, Li J, Niu J, Wang W. Signal processing algorithms for motor imagery brain-computer interface: State of the art. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2018. [DOI: 10.3233/jifs-181309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jie Hong
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Xiansheng Qin
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Jing Li
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Junlong Niu
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Wenjie Wang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
37
|
Cortical Classification with Rhythm Entropy for Error Processing in Cocktail Party Environment Based on Scalp EEG Recording. Sci Rep 2018; 8:6070. [PMID: 29666460 PMCID: PMC5904132 DOI: 10.1038/s41598-018-24535-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/05/2018] [Indexed: 11/17/2022] Open
Abstract
Using single-trial cortical signals calculated by weighted minimum norm solution estimation (WMNE), the present study explored a feature extraction method based on rhythm entropy to classify the scalp electroencephalography (EEG) signals of error response from that of correct response during performing auditory-track tasks in cocktail party environment. The classification rate achieved 89.7% with single-trial (≈700 ms) when using support vector machine(SVM) with the leave-one-out-cross-validation (LOOCV). And high discriminative regions mainly distributed at the medial frontal cortex (MFC), the left supplementary motor area (lSMA) and the right supplementary motor area (rSMA). The mean entropy value for error trials was significantly lower than that for correct trials in the discriminative cortices. By time-varying network analysis, different information flows changed among these discriminative regions with time, i.e. error processing showed a left-bias information flow, and correct processing presented a right-bias information flow. These findings revealed that the rhythm information based on single cortical signals could be well used to describe characteristics of error-related EEG signals and further provided a novel application about auditory attention for brain computer interfaces (BCIs).
Collapse
|
38
|
Saha S, Ahmed KIU, Mostafa R, Hadjileontiadis L, Khandoker A. Evidence of Variabilities in EEG Dynamics During Motor Imagery-Based Multiclass Brain–Computer Interface. IEEE Trans Neural Syst Rehabil Eng 2018; 26:371-382. [DOI: 10.1109/tnsre.2017.2778178] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Gong A, Liu J, Li F, Liu F, Jiang C, Fu Y. Correlation Between Resting-state Electroencephalographic Characteristics and Shooting Performance. Neuroscience 2017; 366:172-183. [PMID: 29079062 DOI: 10.1016/j.neuroscience.2017.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/28/2017] [Accepted: 10/13/2017] [Indexed: 11/30/2022]
Abstract
According to the theories of neural plasticity and neural efficiency, professional skill training improves performance by strengthening the underlying neural mechanisms. Therefore, subjects trained professionally may exhibit changes in resting-state neurophysiological characteristics closely related to performance. To test this notion, the resting-state electroencephalogram (EEG) was measured from 35 rifle shooters after the same training regimen, and resting-state EEG characteristics were analyzed for correlations with shooting performance. The results showed a significant linear correlation between shooting performance and the coherence of electrode channels C3 and T3 in the beta1 band (r = 0.74, P < 4.2 × 10-6). There was also a significant linear correlation between the characteristic path length of the resting-state theta band brain network and shooting performance (r = 0.56, P < 0.0005). This study identifies potential neural mechanisms underlying successful shooting and a new method for predicting and evaluating performance based on EEG characteristics.
Collapse
Affiliation(s)
- Anmin Gong
- School of Science, Engineering University of Chinese People's Armed Police Force, China.
| | - Jianping Liu
- School of Science, Engineering University of Chinese People's Armed Police Force, China
| | - Fangbo Li
- School of Science, Engineering University of Chinese People's Armed Police Force, China
| | - Fangyi Liu
- School of Science, Engineering University of Chinese People's Armed Police Force, China
| | - Changhao Jiang
- Key Laboratory of Sports Performance Evaluation and Technical Analysis, Capital Institute of Physical Education, China
| | - Yunfa Fu
- School of Automation and Information Engineering, Kunming University of Science and Technology, China
| |
Collapse
|
40
|
Tian Y, Zhang H, Xu W, Zhang H, Yang L, Zheng S, Shi Y. Spectral Entropy Can Predict Changes of Working Memory Performance Reduced by Short-Time Training in the Delayed-Match-to-Sample Task. Front Hum Neurosci 2017; 11:437. [PMID: 28912701 PMCID: PMC5583228 DOI: 10.3389/fnhum.2017.00437] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/15/2017] [Indexed: 11/13/2022] Open
Abstract
Spectral entropy, which was generated by applying the Shannon entropy concept to the power distribution of the Fourier-transformed electroencephalograph (EEG), was utilized to measure the uniformity of power spectral density underlying EEG when subjects performed the working memory tasks twice, i.e., before and after training. According to Signed Residual Time (SRT) scores based on response speed and accuracy trade-off, 20 subjects were divided into two groups, namely high-performance and low-performance groups, to undertake working memory (WM) tasks. We found that spectral entropy derived from the retention period of WM on channel FC4 exhibited a high correlation with SRT scores. To this end, spectral entropy was used in support vector machine classifier with linear kernel to differentiate these two groups. Receiver operating characteristics analysis and leave-one out cross-validation (LOOCV) demonstrated that the averaged classification accuracy (CA) was 90.0 and 92.5% for intra-session and inter-session, respectively, indicating that spectral entropy could be used to distinguish these two different WM performance groups successfully. Furthermore, the support vector regression prediction model with radial basis function kernel and the root-mean-square error of prediction revealed that spectral entropy could be utilized to predict SRT scores on individual WM performance. After testing the changes in SRT scores and spectral entropy for each subject by short-time training, we found that 16 in 20 subjects’ SRT scores were clearly promoted after training and 15 in 20 subjects’ SRT scores showed consistent changes with spectral entropy before and after training. The findings revealed that spectral entropy could be a promising indicator to predict individual’s WM changes by training and further provide a novel application about WM for brain–computer interfaces.
Collapse
Affiliation(s)
- Yin Tian
- Bio-information College, Chongqing University of Posts and TelecommunicationsChongqing, China
| | - Huiling Zhang
- Bio-information College, Chongqing University of Posts and TelecommunicationsChongqing, China
| | - Wei Xu
- Bio-information College, Chongqing University of Posts and TelecommunicationsChongqing, China
| | - Haiyong Zhang
- Bio-information College, Chongqing University of Posts and TelecommunicationsChongqing, China
| | - Li Yang
- Bio-information College, Chongqing University of Posts and TelecommunicationsChongqing, China
| | - Shuxing Zheng
- Bio-information College, Chongqing University of Posts and TelecommunicationsChongqing, China
| | - Yupan Shi
- Bio-information College, Chongqing University of Posts and TelecommunicationsChongqing, China
| |
Collapse
|
41
|
Gong J, Luo C, Chang X, Zhang R, Klugah-Brown B, Guo L, Xu P, Yao D. White Matter Connectivity Pattern Associate with Characteristics of Scalp EEG Signals. Brain Topogr 2017; 30:797-809. [PMID: 28785973 DOI: 10.1007/s10548-017-0581-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 07/27/2017] [Indexed: 12/01/2022]
Abstract
The rhythm of electroencephalogram (EEG) depends on the neuroanatomical-based parameters such as white matter (WM) connectivity. However, the impacts of these parameters on the specific characteristics of EEG have not been clearly understood. Previous studies demonstrated that, these parameters contribute the inter-subject differences of EEG during performance of specific task such as motor imagery (MI). Though researchers have worked on this phenomenon, the idea is yet to be understood in terms of the mechanism that underlies such differences. Here, to tackle this issue, we began our investigations by first examining the structural features related to scalp EEG characteristics, which are event-related desynchronizations (ERDs), during MI using diffusion MRI. Twenty-four right-handed subjects were recruited to accomplish MI tasks and MRI scans. Based on the high spatial resolution of the structural and diffusion images, the motor-related WM links, such as basal ganglia (BG)-primary somatosensory cortex (SM1) pathway and supplementary motor area (SMA)-SM1 connection, were reconstructed by using probabilistic white matter tractography. Subsequently, the relationships of WM characteristics with EEG signals were investigated. These analyses demonstrated that WM pathway characteristics, including the connectivity strength and the positional characteristics of WM connectivity on SM1 (defined by the gyrus-sulcus ratio of connectivity, GSR), have a significant impact on ERDs when doing MI. Interestingly, the high GSR of WM connections between SM1 and BG were linked to the better ERDs. These results therefore, indicated that the connectivity in the gyrus of SM1 interacted with MI network which played the critical role for the scalp EEG signal extraction of MI to a great extent. The study provided the coupling mechanism between structural and dynamic physiological features of human brain, which would also contribute to understanding individual differences of EEG in MI-brain computer interface.
Collapse
Affiliation(s)
- Jinnan Gong
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Xuebin Chang
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Rui Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Klugah-Brown
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lanjin Guo
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Xu
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
42
|
Bodranghien FCAA, Langlois Mahe M, Clément S, Manto MU. A Pilot Study on the Effects of Transcranial Direct Current Stimulation on Brain Rhythms and Entropy during Self-Paced Finger Movement using the Epoc Helmet. Front Hum Neurosci 2017; 11:201. [PMID: 28503139 PMCID: PMC5408787 DOI: 10.3389/fnhum.2017.00201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/06/2017] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) of the cerebellum is emerging as a novel non-invasive tool to modulate the activity of the cerebellar circuitry. In a single blinded study, we applied anodal tDCS (atDCS) of the cerebellum to assess its effects on brain entropy and brain rhythms during self-paced sequential finger movements in a group of healthy volunteers. Although wearable electroencephalogram (EEG) systems cannot compete with traditional clinical/laboratory set-ups in terms of accuracy and channel density, they have now reached a sufficient maturity to envision daily life applications. Therefore, the EEG was recorded with a comfortable and easy to wear 14 channels wireless helmet (Epoc headset; electrode location was based on the 10-20 system). Cerebellar neurostimulation modified brain rhythmicity with a decrease in the delta band (electrode F3 and T8, p < 0.05). By contrast, our study did not show any significant change in entropy ratios and laterality coefficients (LC) after atDCS of the cerebellum in the 14 channels. The cerebellum is heavily connected with the cerebral cortex including the frontal lobes and parietal lobes via the cerebello-thalamo-cortical pathway. We propose that the effects of anodal stimulation of the cerebellar cortex upon cerebral cortical rhythms are mediated by this key-pathway. Additional studies using high-density EEG recordings and behavioral correlates are now required to confirm our findings, especially given the limited coverage of Epoc headset.
Collapse
Affiliation(s)
- Florian C. A. A. Bodranghien
- Unité d’Etude du Mouvement (UEM-GRIM), Fonds de la Recherche Scientifique, Université Libre De BruxellesBruxelles, Belgium
| | | | - Serge Clément
- Haute Ecole Libre de Bruxelles Ilya Prigogine (HELB)Bruxelles, Belgium
| | - Mario U. Manto
- Unité d’Etude du Mouvement (UEM-GRIM), Fonds de la Recherche Scientifique, Université Libre De BruxellesBruxelles, Belgium
- Haute Ecole Libre de Bruxelles Ilya Prigogine (HELB)Bruxelles, Belgium
| |
Collapse
|
43
|
Fu Y, Xiong X, Jiang C, Xu B, Li Y, Li H. Imagined Hand Clenching Force and Speed Modulate Brain Activity and Are Classified by NIRS Combined With EEG. IEEE Trans Neural Syst Rehabil Eng 2016; 25:1641-1652. [PMID: 27849544 DOI: 10.1109/tnsre.2016.2627809] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Simultaneous acquisition of brain activity signals from the sensorimotor area using NIRS combined with EEG, imagined hand clenching force and speed modulation of brain activity, as well as 6-class classification of these imagined motor parameters by NIRS-EEG were explored. Near infrared probes were aligned with C3 and C4, and EEG electrodes were placed midway between the NIRS probes. NIRS and EEG signals were acquired from six healthy subjects during six imagined hand clenching force and speed tasks involving the right hand. The results showed that NIRS combined with EEG is effective for simultaneously measuring brain activity of the sensorimotor area. The study also showed that in the duration of (0, 10) s for imagined force and speed of hand clenching, HbO first exhibited a negative variation trend, which was followed by a negative peak. After the negative peak, it exhibited a positive variation trend with a positive peak about 6-8 s after termination of imagined movement. During (-2, 1) s, the EEG may have indicated neural processing during the preparation, execution, and monitoring of a given imagined force and speed of hand clenching. The instantaneous phase, frequency, and amplitude feature of the EEG were calculated by Hilbert transform; HbO and the difference between HbO and Hb concentrations were extracted. The features of NIRS and EEG were combined to classify three levels of imagined force [at 20/50/80% MVGF (maximum voluntary grip force)] and speed (at 0.5/1/2 Hz) of hand clenching by SVM. The average classification accuracy of the NIRS-EEG fusion feature was 0.74 ± 0.02. These results may provide increased control commands of force and speed for a brain-controlled robot based on NIRS-EEG.
Collapse
|
44
|
Humeau-Heurtier A, Wu CW, Wu SD, Mahe G, Abraham P. Refined Multiscale Hilbert–Huang Spectral Entropy and Its Application to Central and Peripheral Cardiovascular Data. IEEE Trans Biomed Eng 2016; 63:2405-2415. [DOI: 10.1109/tbme.2016.2533665] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Alonso-Valerdi LM. Python Executable Script for Estimating Two Effective Parameters to Individualize Brain-Computer Interfaces: Individual Alpha Frequency and Neurophysiological Predictor. Front Neuroinform 2016; 10:22. [PMID: 27445783 PMCID: PMC4916201 DOI: 10.3389/fninf.2016.00022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/08/2016] [Indexed: 11/13/2022] Open
Abstract
A brain-computer interface (BCI) aims to establish communication between the human brain and a computing system so as to enable the interaction between an individual and his environment without using the brain output pathways. Individuals control a BCI system by modulating their brain signals through mental tasks (e.g., motor imagery or mental calculation) or sensory stimulation (e.g., auditory, visual, or tactile). As users modulate their brain signals at different frequencies and at different levels, the appropriate characterization of those signals is necessary. The modulation of brain signals through mental tasks is furthermore a skill that requires training. Unfortunately, not all the users acquire such skill. A practical solution to this problem is to assess the user probability of controlling a BCI system. Another possible solution is to set the bandwidth of the brain oscillations, which is highly sensitive to the users' age, sex and anatomy. With this in mind, NeuroIndex, a Python executable script, estimates a neurophysiological prediction index and the individual alpha frequency (IAF) of the user in question. These two parameters are useful to characterize the user EEG signals, and decide how to go through the complex process of adapting the human brain and the computing system on the basis of previously proposed methods. NeuroIndeX is not only the implementation of those methods, but it also complements the methods each other and provides an alternative way to obtain the prediction parameter. However, an important limitation of this application is its dependency on the IAF value, and some results should be interpreted with caution. The script along with some electroencephalographic datasets are available on a GitHub repository in order to corroborate the functionality and usability of this application.
Collapse
|
46
|
Lian J, Zhang W, Guo Q, Liu F. Generation Mechanism and Prediction Model for Low Frequency Noise Induced by Energy Dissipating Submerged Jets during Flood Discharge from a High Dam. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060594. [PMID: 27314374 PMCID: PMC4924051 DOI: 10.3390/ijerph13060594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/23/2016] [Accepted: 06/04/2016] [Indexed: 11/16/2022]
Abstract
As flood water is discharged from a high dam, low frequency (i.e., lower than 10 Hz) noise (LFN) associated with air pulsation is generated and propagated in the surrounding areas, causing environmental problems such as vibrations of windows and doors and discomfort of residents and construction workers. To study the generation mechanisms and key influencing factors of LFN induced by energy dissipation through submerged jets at a high dam, detailed prototype observations and analyses of LFN are conducted. The discharge flow field is simulated using a gas-liquid turbulent flow model, and the vorticity fluctuation characteristics are then analyzed. The mathematical model for the LFN intensity is developed based on vortex sound theory and a turbulent flow model, verified by prototype observations. The model results reveal that the vorticity fluctuation in strong shear layers around the high-velocity submerged jets is highly correlated with the on-site LFN, and the strong shear layers are the main regions of acoustic source for the LFN. In addition, the predicted and observed magnitudes of LFN intensity agree quite well. This is the first time that the LFN intensity has been shown to be able to be predicted quantitatively.
Collapse
Affiliation(s)
- Jijian Lian
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Wenjiao Zhang
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Qizhong Guo
- Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Fang Liu
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
47
|
Structural and functional correlates of motor imagery BCI performance: Insights from the patterns of fronto-parietal attention network. Neuroimage 2016; 134:475-485. [PMID: 27103137 DOI: 10.1016/j.neuroimage.2016.04.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/04/2016] [Accepted: 04/13/2016] [Indexed: 11/21/2022] Open
Abstract
Motor imagery (MI)-based brain-computer interfaces (BCIs) have been widely used for rehabilitation of motor abilities and prosthesis control for patients with motor impairments. However, MI-BCI performance exhibits a wide variability across subjects, and the underlying neural mechanism remains unclear. Several studies have demonstrated that both the fronto-parietal attention network (FPAN) and MI are involved in high-level cognitive processes that are crucial for the control of BCIs. Therefore, we hypothesized that the FPAN may play an important role in MI-BCI performance. In our study, we recorded multi-modal datasets consisting of MI electroencephalography (EEG) signals, T1-weighted structural and resting-state functional MRI data for each subject. MI-BCI performance was evaluated using the common spatial pattern to extract the MI features from EEG signals. One cortical structural feature (cortical thickness (CT)) and two measurements (degree centrality (DC) and eigenvector centrality (EC)) of node centrality were derived from the structural and functional MRI data, respectively. Based on the information extracted from the EEG and MRI, a correlation analysis was used to elucidate the relationships between the FPAN and MI-BCI performance. Our results show that the DC of the right ventral intraparietal sulcus, the EC and CT of the left inferior parietal lobe, and the CT of the right dorsolateral prefrontal cortex were significantly associated with MI-BCI performance. Moreover, the receiver operating characteristic analysis and machine learning classification revealed that the EC and CT of the left IPL could effectively predict the low-aptitude BCI users from the high-aptitude BCI users with 83.3% accuracy. Those findings consistently reveal that the individuals who have efficient FPAN would perform better on MI-BCI. Our findings may deepen the understanding of individual variability in MI-BCI performance, and also may provide a new biomarker to predict individual MI-BCI performance.
Collapse
|
48
|
Acqualagna L, Botrel L, Vidaurre C, Kübler A, Blankertz B. Large-Scale Assessment of a Fully Automatic Co-Adaptive Motor Imagery-Based Brain Computer Interface. PLoS One 2016; 11:e0148886. [PMID: 26891350 PMCID: PMC4758702 DOI: 10.1371/journal.pone.0148886] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/24/2016] [Indexed: 11/25/2022] Open
Abstract
In the last years Brain Computer Interface (BCI) technology has benefited from the development of sophisticated machine leaning methods that let the user operate the BCI after a few trials of calibration. One remarkable example is the recent development of co-adaptive techniques that proved to extend the use of BCIs also to people not able to achieve successful control with the standard BCI procedure. Especially for BCIs based on the modulation of the Sensorimotor Rhythm (SMR) these improvements are essential, since a not negligible percentage of users is unable to operate SMR-BCIs efficiently. In this study we evaluated for the first time a fully automatic co-adaptive BCI system on a large scale. A pool of 168 participants naive to BCIs operated the co-adaptive SMR-BCI in one single session. Different psychological interventions were performed prior the BCI session in order to investigate how motor coordination training and relaxation could influence BCI performance. A neurophysiological indicator based on the Power Spectral Density (PSD) was extracted by the recording of few minutes of resting state brain activity and tested as predictor of BCI performances. Results show that high accuracies in operating the BCI could be reached by the majority of the participants before the end of the session. BCI performances could be significantly predicted by the neurophysiological indicator, consolidating the validity of the model previously developed. Anyway, we still found about 22% of users with performance significantly lower than the threshold of efficient BCI control at the end of the session. Being the inter-subject variability still the major problem of BCI technology, we pointed out crucial issues for those who did not achieve sufficient control. Finally, we propose valid developments to move a step forward to the applicability of the promising co-adaptive methods.
Collapse
Affiliation(s)
- Laura Acqualagna
- Neurotechnology Group, Technische Universität Berlin, Berlin, Germany
- * E-mail:
| | - Loic Botrel
- Institute of Psychology, University of Würzburg, Würzburg, Germany
| | - Carmen Vidaurre
- Machine Learning Group, Technische Universität Berlin, Berlin, Germany
| | - Andrea Kübler
- Institute of Psychology, University of Würzburg, Würzburg, Germany
| | - Benjamin Blankertz
- Institute of Psychology, University of Würzburg, Würzburg, Germany
- Bernstein Focus Neurotechnology, Berlin, Germany
| |
Collapse
|
49
|
Zhang R, Yao D, Valdés-Sosa PA, Li F, Li P, Zhang T, Ma T, Li Y, Xu P. Efficient resting-state EEG network facilitates motor imagery performance. J Neural Eng 2015; 12:066024. [PMID: 26529439 DOI: 10.1088/1741-2560/12/6/066024] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Motor imagery-based brain-computer interface (MI-BCI) systems hold promise in motor function rehabilitation and assistance for motor function impaired people. But the ability to operate an MI-BCI varies across subjects, which becomes a substantial problem for practical BCI applications beyond the laboratory. APPROACH Several previous studies have demonstrated that individual MI-BCI performance is related to the resting state of brain. In this study, we further investigate offline MI-BCI performance variations through the perspective of resting-state electroencephalography (EEG) network. MAIN RESULTS Spatial topologies and statistical measures of the network have close relationships with MI classification accuracy. Specifically, mean functional connectivity, node degrees, edge strengths, clustering coefficient, local efficiency and global efficiency are positively correlated with MI classification accuracy, whereas the characteristic path length is negatively correlated with MI classification accuracy. The above results indicate that an efficient background EEG network may facilitate MI-BCI performance. Finally, a multiple linear regression model was adopted to predict subjects' MI classification accuracy based on the efficiency measures of the resting-state EEG network, resulting in a reliable prediction. SIGNIFICANCE This study reveals the network mechanisms of the MI-BCI and may help to find new strategies for improving MI-BCI performance.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|