1
|
Vass Á, Farkas K, Lányi O, Kói T, Csukly G, Réthelyi JM, Baradits M. Current status of EEG microstate in psychiatric disorders: a systematic review and meta-analysis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00128-4. [PMID: 40220957 DOI: 10.1016/j.bpsc.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND EEG microstates are promising biomarkers for psychiatric conditions, though prior meta-analyses mainly focused on schizophrenia and mood disorders. This study expands the analysis to a wider range of mental disorders, examining microstate variations across the psychosis and mood spectra and assessing medication effects on schizophrenia. METHODS Following PRISMA guidelines, we conducted a comprehensive literature search, identifying 24 studies meeting inclusion criteria. Analyses were performed across two psychiatric subgroups: psychotic disorders and mood disorders. We further conducted a subgroup analysis within the schizophrenia spectrum to examine differences in microstate properties between medicated and unmedicated patients. RESULTS Microstate C demonstrated significant increase in coverage, and occurrence in patients with schizophrenia, first episode psychosis and high risk for psychosis, and increased duration in schizophrenia. The absence of increased occurrence in medicated schizophrenia patients suggests that this feature may be state-dependent or modulated by treatment. In contrast, microstate D exhibited significant decreases in duration and coverage in unmedicated schizophrenia patients, indicating potential links with acute psychotic states. CONCLUSIONS Our findings suggest that microstates C and D could serve as potential biomarkers in schizophrenia, with microstate D alterations linked to acute psychotic symptoms and microstate C potentially reflecting a chronic course or treatment effects. These results emphasize the clinical potential of microstate analysis in psychotic disorder diagnosis and treatment monitoring. The literature on microstate variations in neurodevelopmental and mood disorders is limited, highlighting the need for further research to determine their biomarker potential in these conditions.
Collapse
Affiliation(s)
- Ágota Vass
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Kinga Farkas
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary.
| | - Orsolya Lányi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Tamás Kói
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - János M Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Máté Baradits
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; Institute of Behavioral Science, Feinstein Institutes for Medical Research, New York
| |
Collapse
|
2
|
Haydock D, Kadir S, Leech R, Nehaniv CL, Antonova E. EEG microstate syntax analysis: A review of methodological challenges and advances. Neuroimage 2025; 309:121090. [PMID: 39961498 DOI: 10.1016/j.neuroimage.2025.121090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025] Open
Abstract
Electroencephalography (EEG) microstates are "quasi-stable" periods of electrical potential distribution in multichannel EEG derived from peaks in Global Field Power. Transitions between microstates form a temporal sequence that may reflect underlying neural dynamics. Mounting evidence indicates that EEG microstate sequences have long-range, non-Markovian dependencies, suggesting a complex underlying process that drives EEG microstate syntax (i.e., the transitional dynamics between microstates). Despite growing interest in EEG microstate syntax, the field remains fragmented, with inconsistent terminologies used between studies and a lack of defined methodological categories. To advance the understanding of functional significance of microstates and to facilitate methodological comparability and finding replicability across studies, we: i) derive categories of syntax analysis methods, reviewing how each may be utilised most readily; ii) define three "time-modes" for EEG microstate sequence construction; and iii) outline general issues concerning current microstate syntax analysis methods, suggesting that the microstate models derived using these methods are cross-referenced against models of continuous EEG. We advocate for these continuous approaches as they do not assume a winner-takes-all model inherent in the microstate derivation methods and contextualise the relationship between microstate models and EEG data. They may also allow for the development of more robust associative models between microstates and functional Magnetic Resonance Imaging data.
Collapse
Affiliation(s)
- David Haydock
- Biocomputation Research Group, School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, UK; Birkbeck-UCL Centre for Neuroimaging, Psychology and Language Sciences, University College London, UK.
| | - Shabnam Kadir
- Biocomputation Research Group, School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, UK
| | - Robert Leech
- Centre for Neuroimaging Science, King's College London, London, UK
| | - Chrystopher L Nehaniv
- Biocomputation Research Group, School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, UK; Centre for Theoretical Neuroscience, Departments of Systems Design Engineering and of Electrical & Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Elena Antonova
- Division of Psychology, Department of Life Sciences, College of Health, Medicine and Life Sciences, Centre for Cognitive and Clinical Neuroscience, Brunel University of London, Uxbridge, UK
| |
Collapse
|
3
|
Bagdasarov A, Markert S, Gaffrey MS. Infant EEG microstate dynamics relate to fine-grained patterns of infant attention during naturalistic play with caregivers. Proc Natl Acad Sci U S A 2025; 122:e2414636122. [PMID: 40080640 PMCID: PMC11929394 DOI: 10.1073/pnas.2414636122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/23/2025] [Indexed: 03/15/2025] Open
Abstract
As infants grow, they develop greater attentional control during interactions with others, shifting from patterns of attention primarily driven by caregivers (exogenous) to those that are also self-directed (endogenous). The ability to endogenously control attention during infancy is thought to reflect ongoing brain development and is influenced by patterns of joint attention between infant and caregiver. However, whether measures of infant attentional control and caregiver behavior during infant-caregiver interactions relate to patterns of infant brain activity is unknown and key for informing developmental models of attentional control. Using data from 43 infant-caregiver dyads, we quantified patterns of visual attention with dyadic, head-mounted eye tracking during infant-caregiver play and associated them with the duration of infant EEG microstate D/4 measured during rest. Importantly, microstate D/4 is a scalp potential topography thought to reflect the organization and function of attention-related brain networks. We found that microstate D/4 associated positively with infant-led joint attention rate but did not associate with caregiver-led joint attention rate, suggesting that infant-led coordination of joint attention during play may be critical for the neurobiological development of attentional control, or vice versa. Further, we found that microstate D/4 associated negatively with infant attention shift rate and positively with infant sustained attention duration, suggesting that increased stability of microstate D/4 may reflect maturation of attentional control and its underlying neural substrates. Together, our findings provide insights into how infant attentional control abilities and infant-caregiver visual behavior during play are associated with the spatial and temporal dynamics of infant brain activity.
Collapse
Affiliation(s)
- Armen Bagdasarov
- Department of Psychology and Neuroscience, Duke University, Durham, NC27708
| | - Sarah Markert
- Department of Psychology and Neuroscience, Duke University, Durham, NC27708
| | - Michael S. Gaffrey
- Department of Psychology and Neuroscience, Duke University, Durham, NC27708
- Children’s Wisconsin, Milwaukee, WI53226
- Division of Pediatric Psychology and Developmental Medicine, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI53226
| |
Collapse
|
4
|
Wu D, Liu N, Wang Y, Wang P, Sun K, Zhang P. Using EEG microstates to examine whole-brain neuronal networks during offline rest consolidation after visual perceptual learning. Biol Psychol 2025; 196:109008. [PMID: 40032237 DOI: 10.1016/j.biopsycho.2025.109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Visual perceptual learning (VPL) leads to improvements in visual skills after practice or training in visual perceptual tasks. Evidence suggests that newly formed skills are preferentially consolidated by the brain during offline task-free periods. Additionally, VPL can lead to changes in brain areas associated with higher cognitive functions. Thus, training may result in changes in whole-brain networks during the offline consolidation period. To test this inference, electroencephalography (EEG) microstates were used to explore the dynamic characteristics of the whole-brain network during consolidation periods after training. Forty-five healthy young adults were randomly divided into three groups for training with moderate, easy and difficult intensity. The participants were trained on a coherent motion discrimination task, and the coherence threshold and resting EEG were measured before and after training. The results showed that visual performance improved only in the moderate training group and not in the easy or difficult training groups. Microstate analyses revealed significant decreases in the duration and occurrence rate of microstate C (often associated with the default mode network) during offline consolidation following moderate training. Moreover, the duration of microstate D (often associated with the dorsal attention network) significantly increased. However, moderate training did not change the duration or occurrence rate of microstate B (often associated with the visual network). This study revealed the activity of whole-brain networks in the consolidation period after VPL.
Collapse
Affiliation(s)
- Di Wu
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Na Liu
- Department of Nursing, Air Force Medical University, Xi'an, China
| | - Yifan Wang
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Panhui Wang
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Kewei Sun
- Department of Medical Psychology, Air Force Medical University, Xi'an, China
| | - Pan Zhang
- Department of Psychology, Hebei Normal University, Shijiazhuang, China.
| |
Collapse
|
5
|
Li S, Hu R, Yan H, Chu L, Qiu Y, Gao Y, Li M, Li J. Neurophysiological Markers of Auditory Verbal Hallucinations in Patients with Schizophrenia: An EEG Microstates Study. Brain Topogr 2025; 38:29. [PMID: 39920494 DOI: 10.1007/s10548-025-01105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/26/2025] [Indexed: 02/09/2025]
Abstract
Alterations in the temporal characteristics of EEG microstates in patients with schizophrenia (SCZ) have been repeatedly found in previous studies. Nevertheless, altered temporal characteristics of EEG microstates in auditory verbal hallucinations (AVHs) SCZ are still unknown. This study aimed to investigate whether SCZ patients with sAVHs exhibit abnormal EEG microstates. We analyzed high-density electroencephalography data that from 79 SCZ patients, including 38 severe AVHs patients (sAVH group), 17 moderate auditory verbal hallucinations patients (mid-AVH group), and 24 without auditory verbal hallucinations patients (non-AVH group). Microstates were compared between three groups. Microstate C exhibited significant differences in duration and coverage and microstate B exhibited significant differences in occurrence between patients with sAVHs and without AVHs. There was a significant negative correlation between the coverage in microstate C and the severity of sAVH. Microstate C in duration, microstate B in occurrence were efficient in detecting sAVH patients. The decreased class C microstates in duration and coverage and increased class B microstates in occurrence may contribute to the severity of symptoms in AVH patients. Furthermore, we have identified that microstates C could serve as potential neurophysiological markers for detecting AVHs in SCZ patients. These results can provide potential avenues for therapeutic intervention of AVHs.
Collapse
Affiliation(s)
- Shaobing Li
- Institute of Mental Health of Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Ruxin Hu
- Institute of Mental Health of Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Huiming Yan
- Institute of Mental Health of Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Lijun Chu
- Institute of Mental Health of Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Yuying Qiu
- Institute of Mental Health of Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Ying Gao
- Institute of Mental Health of Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Meijuan Li
- Institute of Mental Health of Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China
| | - Jie Li
- Institute of Mental Health of Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Road, Hexi District, Tianjin, 300222, China.
| |
Collapse
|
6
|
Pan S, Shen T, Lian Y, Shi L. A Task-Related EEG Microstate Clustering Algorithm Based on Spatial Patterns, Riemannian Distance, and a Deep Autoencoder. Brain Sci 2024; 15:27. [PMID: 39851395 PMCID: PMC11763639 DOI: 10.3390/brainsci15010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND The segmentation of electroencephalography (EEG) signals into a limited number of microstates is of significant importance in the field of cognitive neuroscience. Currently, the microstate analysis algorithm based on global field power has demonstrated its efficacy in clustering resting-state EEG. The task-related EEG was extensively analyzed in the field of brain-computer interfaces (BCIs); however, its primary objective is classification rather than segmentation. METHODS We propose an innovative algorithm for analyzing task-related EEG microstates based on spatial patterns, Riemannian distance, and a modified deep autoencoder. The objective of this algorithm is to achieve unsupervised segmentation and clustering of task-related EEG signals. RESULTS The proposed algorithm was validated through experiments conducted on simulated EEG data and two publicly available cognitive task datasets. The evaluation results and statistical tests demonstrate its robustness and efficiency in clustering task-related EEG microstates. CONCLUSIONS The proposed unsupervised algorithm can autonomously discretize EEG signals into a finite number of microstates, thereby facilitating investigations into the temporal structures underlying cognitive processes.
Collapse
Affiliation(s)
- Shihao Pan
- Department of Automation, Tsinghua University, Beijing 100084, China; (S.P.); (Y.L.)
| | - Tongyuan Shen
- School of Economics and Management, Beihang University, Beijing 100084, China;
| | - Yongxiang Lian
- Department of Automation, Tsinghua University, Beijing 100084, China; (S.P.); (Y.L.)
| | - Li Shi
- Department of Automation, Tsinghua University, Beijing 100084, China; (S.P.); (Y.L.)
| |
Collapse
|
7
|
Mahini R, Zhang G, Parviainen T, Düsing R, Nandi AK, Cong F, Hämäläinen T. Brain Evoked Response Qualification Using Multi-Set Consensus Clustering: Toward Single-Trial EEG Analysis. Brain Topogr 2024; 37:1010-1032. [PMID: 39162867 PMCID: PMC11408575 DOI: 10.1007/s10548-024-01074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/22/2024] [Indexed: 08/21/2024]
Abstract
In event-related potential (ERP) analysis, it is commonly assumed that individual trials from a subject share similar properties and originate from comparable neural sources, allowing reliable interpretation of group-averages. Nevertheless, traditional group-level ERP analysis methods, including cluster analysis, often overlook critical information about individual subjects' neural processes due to using fixed measurement intervals derived from averaging. We developed a multi-set consensus clustering pipeline to examine cognitive processes at the individual subject level. Initially, consensus clustering from diverse methods was applied to single-trial EEG epochs of individual subjects. Subsequently, a second level of consensus clustering was performed across the trials of each subject. A newly modified time window determination method was then employed to identify individual subjects' ERP(s) of interest. We validated our method with simulated data for ERP components N2 and P3, and real data from a visual oddball task to confirm the P3 component. Our findings revealed that estimated time windows for individual subjects provide precise ERP identification compared to fixed time windows across all subjects. Additionally, Monte Carlo simulations with synthetic single-trial data demonstrated stable scores for the N2 and P3 components, confirming the reliability of our method. The proposed method enhances the examination of brain-evoked responses at the individual subject level by considering single-trial EEG data, thereby extracting mutual information relevant to the neural process. This approach offers a significant improvement over conventional ERP analysis, which relies on the averaging mechanism and fixed measurement interval.
Collapse
Affiliation(s)
- Reza Mahini
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
| | - Guanghui Zhang
- Center for Mind and Brain, University of California -Davis, Davis, 95618, USA
| | - Tiina Parviainen
- Department of Psychology, Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Rainer Düsing
- Department of Research Methods, Diagnostics and EvaluationInstitute of Psychology, University of Osnabrück, Osnabrück, Germany
| | - Asoke K Nandi
- Department of Electronic and Electrical Engineering, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Fengyu Cong
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
- School of Biomedical Engineering, Faculty of Electronic and Electrical Engineering, Dalian University of Technology, Dalian, China
- Key Laboratory of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, 116024, China
| | - Timo Hämäläinen
- Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
8
|
Man H, Gong A, Song X, Zhang Y, Zhou Y, Fu Y. Decoding the Preparation Stage of Target Shooting under Audiovisual Restricted Conditions: Investigating Neural Mechanisms Using Microstate Analysis. Brain Topogr 2024; 37:1118-1138. [PMID: 38990422 DOI: 10.1007/s10548-024-01066-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Shooting is a fine sport that is greatly influenced by mental state, and the neural activity of brain in the preparation stage of shooting has a direct influence on the level of shooting. In order to explore the brain neural mechanism in the preparation stage of pistol shooting under audiovisual restricted conditions, and to reveal the intrinsic relationship between brain activity and shooting behavior indicators, the electroencephalography (EEG) signals and seven shooting behaviors including shooting performance, gun holding stability, and firing stability, were experimentally captured from 30 shooters, these shooters performed pistol shooting under three conditions, normal, dim, and noisy. Using EEG microstates combined with standardized low-resolution brain electromagnetic tomography (sLORETA) traceability analysis method, we investigated the difference between the microstates characteristics under audiovisual restricted conditions and normal condition, the relationship between the microstates characteristics and the behavioral indicators during the shooting preparation stage under different conditions. The experimental results showed that microstate 1 corresponded to microstate A, microstate 2 corresponded to microstate B, and microstate 4 corresponded to microstate D; Microstate 3 was a unique template, which was localized in the occipital lobe, its function was to generate the "vision for action"; The dim condition significantly reduced the shooter's performance, whereas the noisy condition had less effect on the shooter's performance; In audiovisual restricted conditions, the microstate characteristics were significantly different from those in the normal condition. Microstate 4' parameters decreased significantly while microstate 3' parameters increased significantly under restricted visual and auditory conditions; Dim condition required more shooting skills from the shooter; There was a significant relationship between characteristics of microstates and indicators of shooting behavior; It was concluded that in order to obtain good shooting performance, shooters should improve attention and concentrate on the adjustment of collimator and target's center leveling relation, but the focus was slightly different in the three conditions; Microstates that are more important for accomplishing the task have less variation in their characteristics over time; Similar conclusions to previous studies were obtained at the same time, i.e., increased visual attention prior to shooting is detrimental to shooting performance, and there is a high positive correlation with microstate D for task completion. The experimental results further reveal the brain neural mechanism in the shooting preparation stage, and the extracted neural markers can be used as effective functional indicators for monitoring the brain state in the shooting preparation stage of pistols.
Collapse
Affiliation(s)
- Huijie Man
- College of information Engineering, Engineering University of PAP, Xi'an, 710086, China
| | - Anmin Gong
- College of information Engineering, Engineering University of PAP, Xi'an, 710086, China.
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Xiaoou Song
- College of information Engineering, Engineering University of PAP, Xi'an, 710086, China
| | - Yijing Zhang
- Center for Psychological Sciences, Zhejiang University, Hangzhou, 200234, China
| | - Yalan Zhou
- College of information Engineering, Engineering University of PAP, Xi'an, 710086, China
| | - Yunfa Fu
- School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650000, China.
| |
Collapse
|
9
|
Wei C, Yang Q, Chen J, Rao X, Li Q, Luo J. EEG microstate as a biomarker of post-stroke depression with acupuncture treatment. Front Neurol 2024; 15:1452243. [PMID: 39534268 PMCID: PMC11554454 DOI: 10.3389/fneur.2024.1452243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Background Post-stroke depression (PSD) is a prevalent psychiatric complication among stroke survivors. The PSD researches focus on pathogenesis, new treatment methods and efficacy prediction. This study explored the electroencephalography (EEG) microstates in PSD and assessed their changes after acupuncture treatment, aiming to find the biological characteristics and the predictors of treatment efficacy of PSD. Methods A 64-channel resting EEG data was collected from 70 PSD patients (PSD group) and 40 healthy controls (HC group) to explore the neuro-electrophysiological mechanism of PSD. The PSD patients received 6 weeks of acupuncture treatment. EEG data was collected from 60 PSD patients after acupuncture treatment (MA group) to verify whether acupuncture had a modulating effect on abnormal EEG microstates. Finally, the MA group was divided into two groups: the remission prediction group (RP group) and the non-remission prediction group (NRP group) according to the 24-Item Hamilton Depression Scale (HAMD-24) reduction rate. A prediction model for acupuncture treatment was established by baseline EEG microstates. Results The duration of microstate D along with the occurrence and contribution of microstate C were reduced in PSD patients. Acupuncture treatment partially normalized abnormal EEG microstates in PSD patients. Baseline EEG microstates predicted the efficacy of acupuncture treatment with an area under the curve (AUC) of 0.964. Conclusion This study provides a novel viewpoint on the neurophysiological mechanisms of PSD and emphasizes the potential of EEG microstates as a functional biomarker. Additionally, we anticipated the therapeutic outcomes of acupuncture by analyzing the baseline microstates, which holds significant practical implication for the PSD treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Chenot Q, Hamery C, Truninger M, Langer N, De Boissezon X, Scannella S. Investigating the relationship between resting-state EEG microstates and executive functions: A null finding. Cortex 2024; 178:1-17. [PMID: 38954985 DOI: 10.1016/j.cortex.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024]
Abstract
Recent advances in cognitive neurosciences suggest that intrinsic brain networks dynamics are associated with cognitive functioning. Despite this emerging perspective, limited research exists to validate this hypothesis. This Registered Report aimed to specifically test the relationship between intrinsic brain spatio-temporal dynamics and executive functions. Resting-state EEG microstates were used to assess brain spatio-temporal dynamics, while a comprehensive battery of nine cognitive function tasks was employed to evaluate executive functions in 140 participants. We hypothesized that microstates (class C and D) metrics would correlate with an executive functions composite score. Contrary to expectations, our hypotheses were not supported by the data. We however observed a small, non-significant trend with a negative correlation between microstate D occurrences and executive functions scores (r = -.18, 95% CI [-.33, -.01]) which however did not meet the adjusted threshold for significance. In light of the inconclusive or minor effect sizes observed, the assertion that intrinsic brain networks dynamics - as measured by resting-state EEG microstate metrics - are a reliable signature of executive functioning remains unsupported.
Collapse
Affiliation(s)
- Quentin Chenot
- Fédération ENAC ISAE-SUPAERO ONERA, Université de Toulouse, France.
| | - Caroline Hamery
- Fédération ENAC ISAE-SUPAERO ONERA, Université de Toulouse, France
| | - Moritz Truninger
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Nicolas Langer
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Xavier De Boissezon
- UMR 1214-Inserm, UPS-ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Hôpital Purpan, Pavillon Baudot, Toulouse, France; Department of Rehabilitation and Physical Medicine, Pôle Neurosciences, Centre Hospitalier Universitaire de Toulouse CHU, Toulouse, France
| | | |
Collapse
|
11
|
Gao Z, Lv S, Ran X, Xia M, Qiu M, Wang J, Wei Y, Shao Z, Zhou X, Zhang Y, Zhao Z, Yu Y. Visual Feedback Gain Modulates the Activation of Task-Related Networks and the Suppression of Non-Task Networks During Precise Grasping. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2873-2882. [PMID: 39102321 DOI: 10.1109/tnsre.2024.3438674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Visual feedback gain is a crucial factor influencing the performance of precision grasping tasks, involving multiple brain regions of the visual motor system during task execution. However, the dynamic changes in brain network during this process remain unclear. The aim of this study is to investigate the impact of changes in visual feedback gain during precision grasping on brain network dynamics. Sixteen participants performed precision grip tasks at 15% of MVC under low (0.1°), medium (1°), and high (3°) visual feedback gain conditions, with simultaneous recording of EEG and right-hand precision grip data during the tasks. Utilizing electroencephalogram (EEG) microstate analysis, multiple parameters (Duration, Occurrence, Coverage, Transition probability(TP)) were extracted to assess changes in brain network dynamics. Precision grip accuracy and stability were evaluated using root mean square error(RMSE) and coefficient of variation(CV) of grip force. Compared to low visual feedback gain, under medium/high gain, the Duration, Occurrence, and Coverage of microstates B and D increase, while those of microstates A and C decrease. The Transition probability from microstates A, C, and D to B all increase. Additionally, RMSE and CV of grip force decrease. Occurrence and Coverage of microstates B and C are negatively correlated with RMSE and CV. These findings suggest that visual feedback gain affects the brain network dynamics during precision grasping; moderate increase in visual feedback gain can enhance the accuracy and stability of grip force, whereby the increased Occurrence and Coverage of microstates B and C contribute to improved performance in precision grasping. Our results play a crucial role in better understanding the impact of visual feedback gain on the motor control of precision grasping.
Collapse
|
12
|
Jiang Y, Zheng M. EEG microstates are associated with music training experience. Front Hum Neurosci 2024; 18:1434110. [PMID: 39118820 PMCID: PMC11306160 DOI: 10.3389/fnhum.2024.1434110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Background Music training facilitates the development of individual cognitive functions and influences brain plasticity. A comprehensive understanding of the pathways and processes through which music affects the human brain, as well as the neurobiological mechanisms underlying human brain perception of music, is necessary to fully harness the plasticity that music offers for brain development. Aims To investigate the resting-state electroencephalogram (EEG) activity of individuals with and without music training experience, and explore the microstate patterns of EEG signals. Method In this study, an analysis of electroencephalogram (EEG) microstates from 57 participants yielded temporal parameters(mean duration, time coverage, occurrence, and transition probability)of four classic microstate categories (Categories A, B, C, and D) for two groups: those with music training experience and those without. Statistical analysis was conducted on these parameters between groups. Results The results indicate that compared to individuals without music training experience, participants with music training experience exhibit significantly longer mean durations of microstate A, which is associated with speech processing. Additionally, they show a greater time coverage of microstate B, which is associated with visual processing. Transition probabilities from microstate A to microstate B were greater in participants with music training experience compared to those without. Conversely, transition probabilities from microstate A to microstate C and from microstate C to microstate D were greater in participants without music training experience. Conclusion Our study found differences in characteristic parameters of certain microstates between individuals with and without music training experience. This suggests distinct brain activity patterns during tasks related to speech, vision, and attention regulation among individuals with varying levels of music training experience. These findings support an association between music training experience and specific neural activities. Furthermore, they endorse the hypothesis of music training experience influencing brain activity during resting states. Additionally, they imply a facilitative role of music training in tasks related to speech, vision, and attention regulation, providing initial evidence for further empirical investigation into the cognitive processes influenced by music training.
Collapse
Affiliation(s)
- Yihe Jiang
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing, China
- School of Psychology, Southwest University, Chongqing, China
| | - Maoping Zheng
- School of Music, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Chivu A, Pascal SA, Damborská A, Tomescu MI. EEG Microstates in Mood and Anxiety Disorders: A Meta-analysis. Brain Topogr 2024; 37:357-368. [PMID: 37615799 PMCID: PMC11026263 DOI: 10.1007/s10548-023-00999-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/06/2023] [Indexed: 08/25/2023]
Abstract
To reduce the psycho-social burden increasing attention has focused on brain abnormalities in the most prevalent and highly co-occurring neuropsychiatric disorders, such as mood and anxiety. However, high inter-study variability in these patients results in inconsistent and contradictory alterations in the fast temporal dynamics of large-scale networks as measured by EEG microstates. Thus, in this meta-analysis, we aim to investigate the consistency of these changes to better understand possible common neuro-dynamical mechanisms of these disorders.In the systematic search, twelve studies investigating EEG microstate changes in participants with mood and anxiety disorders and individuals with subclinical depression were included in this meta-analysis, adding up to 787 participants.The results suggest that EEG microstates consistently discriminate mood and anxiety impairments from the general population in patients and subclinical states. Specifically, we found a small significant effect size for B microstates in patients compared to healthy controls, with larger effect sizes for increased B presence in unmedicated patients with comorbidity. In a subgroup meta-analysis of ten mood disorder studies, microstate D showed a significant effect size for decreased presence. When investigating only the two anxiety disorder studies, we found a significantly small effect size for the increased microstate A and a medium effect size for decreased microstate E (one study). However, more studies are needed to elucidate whether these findings are diagnostic-specific markers.Results are discussed in relation to the functional meaning of microstates and possible contribution to an explanatory mechanism of overlapping symptomatology of mood and anxiety disorders.
Collapse
Affiliation(s)
- Alina Chivu
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania
- Faculty of Psychology and Educational Sciences, Department of Applied Psychology and Psychotherapy, University of Bucharest, Bucharest, Romania
| | - Simona A Pascal
- Faculty of Psychology and Educational Sciences, Department of Applied Psychology and Psychotherapy, University of Bucharest, Bucharest, Romania
| | - Alena Damborská
- Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
- Multimodal and Functional Neuroimaging Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Miralena I Tomescu
- CINETic Center, National University of Theatre and Film "I.L. Caragiale" Bucharest, Bucharest, Romania.
- Faculty of Educational Sciences, Department of Psychology, University "Stefan cel Mare" of Suceava, Suceava, Romania.
- Faculty of Psychology and Educational Sciences, Department of Cognitive Sciences, University of Bucharest, Bucharest, Romania.
| |
Collapse
|
14
|
Niu Y, Chen X, Chen Y, Yao Z, Chen X, Liu Z, Meng X, Liu Y, Zhao Z, Fan H. A gender recognition method based on EEG microstates. Comput Biol Med 2024; 173:108366. [PMID: 38554661 DOI: 10.1016/j.compbiomed.2024.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Gender carries important information related to male and female characteristics, and a large number of studies have attempted to use physiological measurement methods for gender classification. Although previous studies have shown that there exist statistical differences in some Electroencephalographic (EEG) microstate parameters between males and females, it is still unknown that whether these microstate parameters can be used as potential biomarkers for gender classification based on machine learning. METHODS We used two independent resting-state EEG datasets: the first dataset included 74 females and matched 74 males, and the second one included 42 males and matched 42 females. EEG microstate analysis based on modified k-means clustering method was applied, and temporal parameter and nonlinear characteristics (sample entropy and Lempel-Ziv complexity) of EEG microstate sequences were extracted to compare between males and females. More importantly, these microstate temporal parameters and complexity were tried to train six machine learning methods for gender classification. RESULTS We obtained five common microstates for each dataset and each group. Compared with the male group, the female group has significantly higher temporal parameters of microstate B, C, E and lower temporal parameters of microstate A and D, and higher complexity of microstate sequence. When using combination of microstate temporal parameters and complexity or only microstate temporal parameters as classification features in an independent test set (the second dataset), we achieved 95.2% classification accuracy. CONCLUSION Our research findings indicate that the dynamics of microstate have considerable Gender-specific alteration. EEG microstates can be used as neurophysiological biomarkers for gender classification.
Collapse
Affiliation(s)
- Yanxiang Niu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China
| | - Xin Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China
| | - Yuansen Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China
| | - Zixuan Yao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China
| | - Xuemei Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China
| | - Ziquan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China
| | - Yanqing Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China.
| | - Zongya Zhao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China.
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China; Wenzhou Safety (Emergency) Institute, Tianjin University, 325000, Wenzhou, China.
| |
Collapse
|
15
|
Tarailis P, Koenig T, Michel CM, Griškova-Bulanova I. The Functional Aspects of Resting EEG Microstates: A Systematic Review. Brain Topogr 2024; 37:181-217. [PMID: 37162601 DOI: 10.1007/s10548-023-00958-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023]
Abstract
A growing body of clinical and cognitive neuroscience studies have adapted a broadband EEG microstate approach to evaluate the electrical activity of large-scale cortical networks. However, the functional aspects of these microstates have not yet been systematically reviewed. Here, we present an overview of the existing literature and systematize the results to provide hints on the functional role of electrical brain microstates. Studies that evaluated and manipulated the temporal properties of resting-state microstates and utilized questionnaires, task-initiated thoughts, specific tasks before or between EEG session(s), pharmacological interventions, neuromodulation approaches, or localized sources of the extracted microstates were selected. Fifty studies that met the inclusion criteria were included. A new microstate labeling system has been proposed for a comprehensible comparison between the studies, where four classical microstates are referred to as A-D, and the others are labeled by the frequency of their appearance. Microstate A was associated with both auditory and visual processing and links to subjects' arousal/arousability. Microstate B showed associations with visual processing related to self, self-visualization, and autobiographical memory. Microstate C was related to processing personally significant information, self-reflection, and self-referential internal mentation rather than autonomic information processing. In contrast, microstate E was related to processing interoceptive and emotional information and to the salience network. Microstate D was associated with executive functioning. Microstate F is suggested to be a part of the Default Mode Network and plays a role in personally significant information processing, mental simulations, and theory of mind. Microstate G is potentially linked to the somatosensory network.
Collapse
Affiliation(s)
- Povilas Tarailis
- Life Sciences Centre, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | | |
Collapse
|
16
|
Kleinert T, Koenig T, Nash K, Wascher E. On the Reliability of the EEG Microstate Approach. Brain Topogr 2024; 37:271-286. [PMID: 37410275 PMCID: PMC10884204 DOI: 10.1007/s10548-023-00982-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
EEG microstates represent functional brain networks observable in resting EEG recordings that remain stable for 40-120ms before rapidly switching into another network. It is assumed that microstate characteristics (i.e., durations, occurrences, percentage coverage, and transitions) may serve as neural markers of mental and neurological disorders and psychosocial traits. However, robust data on their retest-reliability are needed to provide the basis for this assumption. Furthermore, researchers currently use different methodological approaches that need to be compared regarding their consistency and suitability to produce reliable results. Based on an extensive dataset largely representative of western societies (2 days with two resting EEG measures each; day one: n = 583; day two: n = 542) we found good to excellent short-term retest-reliability of microstate durations, occurrences, and coverages (average ICCs = 0.874-0.920). There was good overall long-term retest-reliability of these microstate characteristics (average ICCs = 0.671-0.852), even when the interval between measures was longer than half a year, supporting the longstanding notion that microstate durations, occurrences, and coverages represent stable neural traits. Findings were robust across different EEG systems (64 vs. 30 electrodes), recording lengths (3 vs. 2 min), and cognitive states (before vs. after experiment). However, we found poor retest-reliability of transitions. There was good to excellent consistency of microstate characteristics across clustering procedures (except for transitions), and both procedures produced reliable results. Grand-mean fitting yielded more reliable results compared to individual fitting. Overall, these findings provide robust evidence for the reliability of the microstate approach.
Collapse
Affiliation(s)
- Tobias Kleinert
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139, Dortmund, Germany.
- Department of Biological Psychology, Clinical Psychology, and Psychotherapy, University of Freiburg, Stefan-Meier Str. 8, 79104, Freiburg, Germany.
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, 3000, Bern, Switzerland
| | - Kyle Nash
- Department of Psychology, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Edmund Wascher
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139, Dortmund, Germany
| |
Collapse
|
17
|
Diezig S, Denzer S, Achermann P, Mast FW, Koenig T. EEG Microstate Dynamics Associated with Dream-Like Experiences During the Transition to Sleep. Brain Topogr 2024; 37:343-355. [PMID: 36402917 PMCID: PMC10884123 DOI: 10.1007/s10548-022-00923-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/21/2022] [Indexed: 11/21/2022]
Abstract
Consciousness always requires some representational content; that is, one can only be conscious about something. However, the presence of conscious experience (awareness) alone does not determine whether its content is in line with the external and physical world. Dreams, apart from certain forms of hallucinations, typically consist of non-veridical percepts, which are not recognized as false, but rather considered real. This type of experiences have been described as a state of dissociation between phenomenal and reflective awareness. Interestingly, during the transition to sleep, reflective awareness seems to break down before phenomenal awareness as conscious experience does not immediately fade with reduced wakefulness but is rather characterized by the occurrence of uncontrolled thinking and perceptual images, together with a reduced ability to recognize the internal origin of the experience. Relative deactivation of the frontoparietal and preserved activity in parieto-occipital networks has been suggested to account for dream-like experiences during the transition to sleep. We tested this hypothesis by investigating subjective reports of conscious experience and large-scale brain networks using EEG microstates in 45 healthy young subjects during the transition to sleep. We observed an inverse relationship between cognitive effects and physiological activation; dream-like experiences were associated with an increased presence of a microstate with sources in the superior and middle frontal gyrus and precuneus. Additionally, the presence of a microstate associated with higher-order visual areas was decreased. The observed inverse relationship might therefore indicate a disengagement of cognitive control systems that is mediated by specific, inhibitory EEG microstates.
Collapse
Affiliation(s)
- Sarah Diezig
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Simone Denzer
- Department of Psychology, University of Bern, Bern, Switzerland
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Fred W Mast
- Department of Psychology, University of Bern, Bern, Switzerland
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Di Muccio F, Simonet M, Brandner C, Ruggeri P, Barral J. Cardiorespiratory fitness modulates prestimulus EEG microstates during a sustained attention task. Front Neurosci 2023; 17:1188695. [PMID: 37397452 PMCID: PMC10308046 DOI: 10.3389/fnins.2023.1188695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Higher cardiorespiratory fitness is associated with an increased ability to perform sustained attention tasks and detect rare and unpredictable signals over prolonged periods. The electrocortical dynamics underlying this relationship were mainly investigated after visual stimulus onset in sustained attention tasks. Prestimulus electrocortical activity supporting differences in sustained attention performance according to the level of cardiorespiratory fitness have yet to be examined. Consequently, this study aimed to investigate EEG microstates 2 seconds before the stimulus onset in 65 healthy individuals aged 18-37, differing in cardiorespiratory fitness, while performing a psychomotor vigilance task. The analyses showed that a lower duration of the microstate A and a higher occurrence of the microstate D correlated with higher cardiorespiratory fitness in the prestimulus periods. In addition, increased global field power and occurrence of microstate A were associated with slower response times in the psychomotor vigilance task, while greater global explained variance, coverage, and occurrence of microstate D were linked to faster response times. Our collective findings showed that individuals with higher cardiorespiratory fitness exhibit typical electrocortical dynamics that allow them to allocate their attentional resources more efficiently when engaged in sustained attention tasks.
Collapse
Affiliation(s)
- Francesco Di Muccio
- Brain Electrophysiology Attention Movement Laboratory, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Marie Simonet
- Brain Electrophysiology Attention Movement Laboratory, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Catherine Brandner
- Brain Electrophysiology Attention Movement Laboratory, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Paolo Ruggeri
- Brain Electrophysiology Attention Movement Laboratory, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Jérôme Barral
- Brain Electrophysiology Attention Movement Laboratory, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Li W, Cheng S, Wang H, Chang Y. EEG microstate changes according to mental fatigue induced by aircraft piloting simulation: An exploratory study. Behav Brain Res 2023; 438:114203. [PMID: 36356722 DOI: 10.1016/j.bbr.2022.114203] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND A continuous flight task load can induce fatigue and lead to changes in electroencephalography (EEG). EEG microstates can reflect the activities of large-scale neural networks during mental fatigue. This exploratory experiment explored the effects of mental fatigue induced by continuous simulated flight multitasking on EEG microstate indices. METHODS Twenty-four participants performed continuous 2-hour aircraft piloting simulation while EEG were recorded. The Stanford sleepiness scale (SSS) and critical flicker fusion frequency (CFF) were measured before and after the task. Microstate analysis was applied to EEG. Four microstate classes (A-D) were identified during the pre-task, post-task, beginning, and end phases. The effects of mental fatigue were analyzed. RESULTS Compared with the pre-task, the post-task had a higher global explained variance (GEV) and time parameters of class C but lower occurrence and coverage of class D. The end had a higher GEV but lower duration and coverage of class D than at the beginning. After 2 h of multitasking, the transition probability between A and D, and between B and D decreased but between A and C increased. Subjective fatigue scores were negatively correlated with occurrence and coverage of class D. Task performance was negatively correlated with duration and coverage of class C but positively correlated with duration and occurrence of class B. CONCLUSION Time parameters and transition probability of EEG microstates can detect mental fatigue induced by continuous aircraft piloting simulation. The global brain network activation of mental fatigue can be detected by EEG microstates that can evaluate flight fatigue.
Collapse
Affiliation(s)
- Wenbin Li
- Department of Aerospace Hygiene, Faculty of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Shan Cheng
- Department of Aerospace Medical Equipment, Faculty of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Hang Wang
- Department of Aerospace Ergonomics, Faculty of Aerospace Medicine, Air Force Medical University, Xi'an, China.
| | - Yaoming Chang
- Department of Aerospace Hygiene, Faculty of Aerospace Medicine, Air Force Medical University, Xi'an, China.
| |
Collapse
|
20
|
Thiele JA, Richter A, Hilger K. Multimodal Brain Signal Complexity Predicts Human Intelligence. eNeuro 2023; 10:ENEURO.0345-22.2022. [PMID: 36657966 PMCID: PMC9910576 DOI: 10.1523/eneuro.0345-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 01/20/2023] Open
Abstract
Spontaneous brain activity builds the foundation for human cognitive processing during external demands. Neuroimaging studies based on functional magnetic resonance imaging (fMRI) identified specific characteristics of spontaneous (intrinsic) brain dynamics to be associated with individual differences in general cognitive ability, i.e., intelligence. However, fMRI research is inherently limited by low temporal resolution, thus, preventing conclusions about neural fluctuations within the range of milliseconds. Here, we used resting-state electroencephalographical (EEG) recordings from 144 healthy adults to test whether individual differences in intelligence (Raven's Advanced Progressive Matrices scores) can be predicted from the complexity of temporally highly resolved intrinsic brain signals. We compared different operationalizations of brain signal complexity (multiscale entropy, Shannon entropy, Fuzzy entropy, and specific characteristics of microstates) regarding their relation to intelligence. The results indicate that associations between brain signal complexity measures and intelligence are of small effect sizes (r ∼ 0.20) and vary across different spatial and temporal scales. Specifically, higher intelligence scores were associated with lower complexity in local aspects of neural processing, and less activity in task-negative brain regions belonging to the default-mode network. Finally, we combined multiple measures of brain signal complexity to show that individual intelligence scores can be significantly predicted with a multimodal model within the sample (10-fold cross-validation) as well as in an independent sample (external replication, N = 57). In sum, our results highlight the temporal and spatial dependency of associations between intelligence and intrinsic brain dynamics, proposing multimodal approaches as promising means for future neuroscientific research on complex human traits.
Collapse
Affiliation(s)
- Jonas A Thiele
- Department of Psychology I, University of Würzburg, Würzburg 97070, Germany
| | - Aylin Richter
- Department of Biology, University of Würzburg, Würzburg 97074, Germany
| | - Kirsten Hilger
- Department of Psychology I, University of Würzburg, Würzburg 97070, Germany
- Department of Psychology, Frankfurt University, Frankfurt am Main 60629, Germany
| |
Collapse
|
21
|
Hu W, Zhang Z, Zhao H, Zhang L, Li L, Huang G, Liang Z. EEG microstate correlates of emotion dynamics and stimulation content during video watching. Cereb Cortex 2023; 33:523-542. [PMID: 35262653 DOI: 10.1093/cercor/bhac082] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION EEG microstates have been widely adopted to understand the complex and dynamic-changing process in dynamic brain systems, but how microstates are temporally modulated by emotion dynamics is still unclear. An investigation of EEG microstates under video-evoking emotion dynamics modulation would provide a novel insight into the understanding of temporal dynamics of functional brain networks. METHODS In the present study, we postulate that emotional states dynamically modulate the microstate patterns, and perform an in-depth investigation between EEG microstates and emotion dynamics under a video-watching task. By mapping from subjective-experienced emotion states and objective-presented stimulation content to EEG microstates, we gauge the comprehensive associations among microstates, emotions, and multimedia stimulation. RESULTS The results show that emotion dynamics could be well revealed by four EEG microstates (MS1, MS2, MS3, and MS4), where MS3 and MS4 are found to be highly correlated to different emotion states (emotion task effect and level effect) and the affective information involved in the multimedia content (visual and audio). CONCLUSION In this work, we reveal the microstate patterns related to emotion dynamics from sensory and stimulation dimensions, which deepens the understanding of the neural representation under emotion dynamics modulation and will be beneficial for the future study of brain dynamic systems.
Collapse
Affiliation(s)
- Wanrou Hu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Zhiguo Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China.,Peng Cheng Laboratory, Shenzhen 518055, China.,Marshall Laboratory of Biomedical Engineering, Shenzhen 518060, China
| | - Huilin Zhao
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Li Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Linling Li
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Gan Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Zhen Liang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| |
Collapse
|
22
|
Férat V, Arns M, Deiber MP, Hasler R, Perroud N, Michel CM, Ros T. Electroencephalographic Microstates as Novel Functional Biomarkers for Adult Attention-Deficit/Hyperactivity Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:814-823. [PMID: 34823049 DOI: 10.1016/j.bpsc.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Research on the electroencephalographic (EEG) signatures of attention-deficit/hyperactivity disorder (ADHD) has historically concentrated on its frequency spectrum or event-related evoked potentials. In this work, we investigate EEG microstates (MSs), an alternative framework defined by the clustering of recurring topographical patterns, as a novel approach for examining large-scale cortical dynamics in ADHD. METHODS Using k-means clustering, we studied the spatiotemporal dynamics of ADHD during the rest condition by comparing the MS segmentations between adult patients with ADHD and neurotypical control subjects across two independent datasets: the first dataset consisted of 66 patients with ADHD and 66 control subjects, and the second dataset comprised 22 patients with ADHD and 22 control subjects and was used for out-of-sample validation. RESULTS Spatially, patients with ADHD and control subjects displayed equivalent MS topographies (canonical maps), indicating the preservation of prototypical EEG generators in patients with ADHD. However, this concordance was accompanied by significant differences in temporal dynamics. At the group level, and across both datasets, ADHD diagnosis was associated with longer mean durations of a frontocentral topography (MS D), indicating that its electrocortical generator(s) could be acting as pronounced attractors of global cortical dynamics. In addition, its spatiotemporal metrics were correlated with sleep disturbance, the latter being known to have a strong relationship with ADHD. Finally, in the first (larger) dataset, we also found evidence of decreased time coverage and mean duration of a left-right diagonal topography (MS A), which inversely correlated with ADHD scores. CONCLUSIONS Overall, our study underlines the value of EEG MSs as promising functional biomarkers for ADHD, offering an additional lens through which to examine its neurophysiological mechanisms.
Collapse
Affiliation(s)
- Victor Férat
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, Campus Biotech, University of Geneva, Geneva, Switzerland.
| | - Martijn Arns
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, The Netherlands; Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Location AMC, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Marie-Pierre Deiber
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Division of Psychiatric Specialties, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Roland Hasler
- Division of Psychiatric Specialties, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland; Department of Psychiatry, Dalhousie University, Nova Scotia, Halifax, Nova Scotia, Canada
| | - Nader Perroud
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Division of Psychiatric Specialties, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, Campus Biotech, University of Geneva, Geneva, Switzerland; Center for Biomedical Imaging, Lausanne, Geneva, Switzerland
| | - Tomas Ros
- Functional Brain Mapping Laboratory, Department of Basic Neurosciences, Campus Biotech, University of Geneva, Geneva, Switzerland; Division of Psychiatric Specialties, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland; Center for Biomedical Imaging, Lausanne, Geneva, Switzerland
| |
Collapse
|
23
|
Asai T, Hamamoto T, Kashihara S, Imamizu H. Real-Time Detection and Feedback of Canonical Electroencephalogram Microstates: Validating a Neurofeedback System as a Function of Delay. Front Syst Neurosci 2022; 16:786200. [PMID: 35283737 PMCID: PMC8913511 DOI: 10.3389/fnsys.2022.786200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Recent neurotechnology has developed various methods for neurofeedback (NF), in which participants observe their own neural activity to be regulated in an ideal direction. EEG-microstates (EEGms) are spatially featured states that can be regulated through NF training, given that they have recently been indicated as biomarkers for some disorders. The current study was conducted to develop an EEG-NF system for detecting “canonical 4 EEGms” in real time. There are four representative EEG states, regardless of the number of channels, preprocessing procedures, or participants. Accordingly, our 10 Hz NF system was implemented to detect them (msA, B, C, and D) and audio-visually inform participants of its detection. To validate the real-time effect of this system on participants’ performance, the NF was intentionally delayed for participants to prevent their cognitive control in learning. Our results suggest that the feedback effect was observed only under the no-delay condition. The number of Hits increased significantly from the baseline period and increased from the 1- or 20-s delay conditions. In addition, when the Hits were compared among the msABCD, each cognitive or perceptual function could be characterized, though the correspondence between each microstate and psychological ability might not be that simple. For example, msD should be generally task-positive and less affected by the inserted delay, whereas msC is more delay-sensitive. In this study, we developed and validated a new EEGms-NF system as a function of delay. Although the participants were naive to the inserted delay, the real-time NF successfully increased their Hit performance, even within a single-day experiment, although target specificity remains unclear. Future research should examine long-term training effects using this NF system.
Collapse
Affiliation(s)
- Tomohisa Asai
- Cognitive Mechanisms Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan
- *Correspondence: Tomohisa Asai,
| | - Takamasa Hamamoto
- Cognitive Mechanisms Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Shiho Kashihara
- Cognitive Mechanisms Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan
| | - Hiroshi Imamizu
- Cognitive Mechanisms Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Hu W, Zhang Z, Zhang L, Huang G, Li L, Liang Z. Microstate Detection in Naturalistic Electroencephalography Data: A Systematic Comparison of Topographical Clustering Strategies on an Emotional Database. Front Neurosci 2022; 16:812624. [PMID: 35237121 PMCID: PMC8882921 DOI: 10.3389/fnins.2022.812624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Electroencephalography (EEG) microstate analysis is a powerful tool to study the spatial and temporal dynamics of human brain activity, through analyzing the quasi-stable states in EEG signals. However, current studies mainly focus on rest-state EEG recordings, microstate analysis for the recording of EEG signals during naturalistic tasks is limited. It remains an open question whether current topographical clustering strategies for rest-state microstate analysis could be directly applied to task-state EEG data under the natural and dynamic conditions and whether stable and reliable results could still be achieved. It is necessary to answer the question and explore whether the topographical clustering strategies would affect the performance of microstate detection in task-state EEG microstate analysis. If it exists differences in microstate detection performance when different topographical clustering strategies are adopted, then we want to know how the alternations of the topographical clustering strategies are associated with the naturalistic task. To answer these questions, we work on a public emotion database using naturalistic and dynamic music videos as the stimulation to evaluate the effects of different topographical clustering strategies for task-state EEG microstate analysis. The performance results are systematically examined and compared in terms of microstate quality, task efficacy, and computational efficiency, and the impact of topographical clustering strategies on microstate analysis for naturalistic task data is discussed. The results reveal that a single-trial-based bottom-up topographical clustering strategy (bottom-up) achieves comparable results with the task-driven-based top-down topographical clustering (top-down). It suggests that, when task information is unknown, the single-trial-based topographical clustering could be a good choice for microstate analysis and neural activity study on naturalistic EEG data.
Collapse
Affiliation(s)
- Wanrou Hu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Zhiguo Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen, China
| | - Li Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Gan Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Linling Li
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
| | - Zhen Liang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen, China
- *Correspondence: Zhen Liang,
| |
Collapse
|
25
|
Nash K, Kleinert T, Leota J, Scott A, Schimel J. Resting-state networks of believers and non-believers: An EEG microstate study. Biol Psychol 2022; 169:108283. [PMID: 35114302 DOI: 10.1016/j.biopsycho.2022.108283] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/02/2022]
Abstract
Atheism and agnosticism are becoming increasingly popular, yet the neural processes underpinning individual differences in religious belief and non-belief remain poorly understood. In the current study, we examined differences between Believers and Non-Believers with regard to fundamental neural resting networks using EEG microstate analysis. Results demonstrated that Non-Believers show increased contribution from a resting-state network associated with deliberative or analytic processing (Microstate D), and Believers show increased contribution from a network associated with intuitive or automatic processing (Microstate C). Further, analysis of resting-state network communication suggested that Non-Believers may process visual information in a more deliberative or top-down manner, and Believers may process visual information in a more intuitive or bottom-up manner. These results support dual process explanations of individual differences in religious belief and add to the representation of non-belief as more than merely a lack of belief.
Collapse
Affiliation(s)
- Kyle Nash
- Department of Psychology, University of Alberta, Edmonton AB T6G 2R3, Canada.
| | - Tobias Kleinert
- Department of Psychology, University of Alberta, Edmonton AB T6G 2R3, Canada
| | - Josh Leota
- Department of Psychology, University of Alberta, Edmonton AB T6G 2R3, Canada
| | - Andy Scott
- Department of Psychology, University of Alberta, Edmonton AB T6G 2R3, Canada
| | - Jeff Schimel
- Department of Psychology, University of Alberta, Edmonton AB T6G 2R3, Canada
| |
Collapse
|
26
|
Relationship between Spatiotemporal Dynamics of the Brain at Rest and Self-Reported Spontaneous Thoughts: An EEG Microstate Approach. J Pers Med 2021; 11:jpm11111216. [PMID: 34834568 PMCID: PMC8625384 DOI: 10.3390/jpm11111216] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/17/2022] Open
Abstract
Rationale: The resting-state paradigm is frequently applied in electroencephalography (EEG) research; however, it is associated with the inability to control participants’ thoughts. To quantify subjects’ subjective experiences at rest, the Amsterdam Resting-State Questionnaire (ARSQ) was introduced covering ten dimensions of mind wandering. We aimed to estimate associations between subjective experiences and resting-state microstates of EEG. Methods: 5 min resting-state EEG data of 197 subjects was used to evaluate temporal properties of seven microstate classes. Bayesian correlation approach was implemented to assess associations between ARSQ domains assessed after resting and parameters of microstates. Results: Several associations between Comfort, Self and Somatic Awareness domains and temporal properties of neuroelectric microstates were revealed. The positive correlation between Comfort and duration of microstates E showed the strongest evidence (BF10 > 10); remaining correlations showed substantial evidence (10 > BF10 > 3). Conclusion: Our study indicates the relevance of assessments of spontaneous thought occurring during the resting-state for the understanding of the intrinsic brain activity reflected in microstates.
Collapse
|