1
|
Pan L, Li J, Xu Q, Gao Z, Yang M, Wu X, Li X. HER2/PI3K/AKT pathway in HER2-positive breast cancer: A review. Medicine (Baltimore) 2024; 103:e38508. [PMID: 38875362 PMCID: PMC11175886 DOI: 10.1097/md.0000000000038508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 06/16/2024] Open
Abstract
Breast cancer is currently the most commonly occurring cancer globally. Among breast cancer cases, the human epidermal growth factor receptor 2 (HER2)-positive breast cancer accounts for 15% to 20% and is a crucial focus in the treatment of breast cancer. Common HER2-targeted drugs approved for treating early and/or advanced breast cancer include trastuzumab and pertuzumab, which effectively improve patient prognosis. However, despite treatment, most patients with terminal HER2-positive breast cancer ultimately suffer death from the disease due to primary or acquired drug resistance. The prevalence of aberrantly activated the protein kinase B (AKT) signaling in HER2-positive breast cancer was already observed in previous studies. It is well known that p-AKT expression is linked to an unfavorable prognosis, and the phosphatidylinositol-3-kinase (PI3K)/AKT pathway, as the most common mutated pathway in breast cancer, plays a major role in the mechanism of drug resistance. Therefore, in the current review, we summarize the molecular alterations present in HER2-positive breast cancer, elucidate the relationships between HER2 overexpression and alterations in the PI3K/AKT signaling pathway and the pathways of the alterations in breast cancer, and summarize the resistant mechanism of drugs targeting the HER2-AKT pathway, which will provide an adjunctive therapeutic rationale for subsequent resistance to directed therapy in the future.
Collapse
Affiliation(s)
- Linghui Pan
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jinling Li
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Department of Laboratory Medicine, Chonggang General Hospital, Chongqing, China
| | - Qi Xu
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zili Gao
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Mao Yang
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiaoping Wu
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xuesen Li
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Sanz-Álvarez M, Luque M, Morales-Gallego M, Cristóbal I, Ramírez-Merino N, Rangel Y, Izarzugaza Y, Eroles P, Albanell J, Madoz-Gúrpide J, Rojo F. Generation and Characterization of Trastuzumab/Pertuzumab-Resistant HER2-Positive Breast Cancer Cell Lines. Int J Mol Sci 2023; 25:207. [PMID: 38203378 PMCID: PMC10779249 DOI: 10.3390/ijms25010207] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The combination of trastuzumab and pertuzumab as first-line therapy in patients with HER2-positive breast cancer has shown significant clinical benefits compared to trastuzumab alone. However, despite initial therapeutic success, most patients eventually progress, and tumors develop acquired resistance and invariably relapse. Therefore, there is an urgent need to improve our understanding of the mechanisms governing resistance in order to develop targeted therapeutic strategies with improved efficacy. We generated four novel HER2-positive cell lines via prolonged exposure to trastuzumab and pertuzumab and determined their resistance rates. Long-term resistance was confirmed by a significant increase in the colony-forming capacity of the derived cells. We authenticated the molecular identity of the new lines via both immunohistochemistry for the clinical phenotype and molecular profiling of point mutations. HER2 overexpression was confirmed in all resistant cell lines, and acquisition of resistance to trastuzumab and pertuzumab did not translate into differences in ER, PR, and HER2 receptor expression. In contrast, changes in the expression and activity of other HER family members, particularly HER4, were observed. In the same vein, analyses of the receptor and effector kinase status of different cellular pathways revealed that the MAPK pathway may be involved in the acquisition of resistance to trastuzumab and pertuzumab. Finally, proteomic analysis confirmed a significant change in the abundance patterns of more than 600 proteins with implications in key biological processes, such as ribosome formation, mitochondrial activity, and metabolism, which could be relevant mechanisms in the generation of resistance in HER2-positive breast cancer. We concluded that these resistant BCCLs may be a valuable tool to better understand the mechanisms of acquisition of resistance to trastuzumab and pertuzumab-based anti-HER2 therapy.
Collapse
Affiliation(s)
- Marta Sanz-Álvarez
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain; (M.S.-Á.); (M.L.); (M.M.-G.)
| | - Melani Luque
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain; (M.S.-Á.); (M.L.); (M.M.-G.)
| | - Miriam Morales-Gallego
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain; (M.S.-Á.); (M.L.); (M.M.-G.)
| | - Ion Cristóbal
- Translational Oncology Division, OncoHealth Institute, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain;
| | | | - Yamileth Rangel
- Department of Pathology, Infanta Elena University Hospital, 28342 Madrid, Spain;
| | - Yann Izarzugaza
- Department of Medical Oncology, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain;
| | - Pilar Eroles
- Institute of Health Research INCLIVA—CIBERONC, 46010 Valencia, Spain;
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Joan Albanell
- Cancer Research Program, IMIM (Hospital del Mar Research Institute), 08003 Barcelona, Spain;
- Department of Medical Oncology, Hospital del Mar—CIBERONC, 08003 Barcelona, Spain
- Department of Experimental and Health Sciences, Faculty of Medicine, Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Juan Madoz-Gúrpide
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain; (M.S.-Á.); (M.L.); (M.M.-G.)
| | - Federico Rojo
- Department of Pathology, Fundación Jiménez Díaz University Hospital Health Research Institute (IIS—FJD, UAM)—CIBERONC, 28040 Madrid, Spain; (M.S.-Á.); (M.L.); (M.M.-G.)
| |
Collapse
|
3
|
Szöőr Á, Szöllősi J, Vereb G. From antibodies to living drugs: Quo vadis cancer immunotherapy? Biol Futur 2021; 72:85-99. [PMID: 34554498 DOI: 10.1007/s42977-021-00072-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/12/2021] [Indexed: 01/16/2023]
Abstract
In the last few decades, monoclonal antibodies targeting various receptors and ligands have shown significant advance in cancer therapy. However, still a great percentage of patients experiences tumor relapse despite persistent antigen expression. Immune cell therapy with adoptively transferred modified T cells that express chimeric antigen receptors (CAR) is an engaging option to improve disease outcome. Designer T cells have been applied with remarkable success in the treatment for acute B cell leukemias, yielding unprecedented antitumor activity and significantly improved overall survival. Relying on the success of CAR T cells in leukemias, solid tumors are now emerging potential targets; however, their complexity represents a significant challenge. In preclinical models, CAR T cells recognized and efficiently killed the wide spectrum of tumor xenografts; however, in human clinical trials, limited antitumor efficacy and serious side effects, including cytokine release syndrome, have emerged as potential limitations. The next decade will be an exciting time to further optimize this novel cellular therapeutics to improve effector functions and, at the same time, keep adverse events in check. Moreover, we need to establish whether gene-modified T cells which are yet exclusively used for cancer patients could also be successful in the treatment for other diseases. Here, we provide a concise overview about the transition from monoclonal antibodies to the generation of chimeric antigen receptor T cells. We summarize lessons learned from preclinical models, including our own HER2-positive tumor models, as well as from clinical trials worldwide. We also discuss the challenges we are facing today and outline future prospects.
Collapse
Affiliation(s)
- Árpád Szöőr
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
- Faculty of Pharmacy, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
| |
Collapse
|
4
|
Li H, Zhang X, Xu Z, Li L, Liu W, Dai Z, Zhao Z, Xiao L, Li H, Hu C. Preclinical evaluation of MRG002, a novel HER2-targeting antibody-drug conjugate with potent antitumor activity against HER2-positive solid tumors. Antib Ther 2021; 4:175-184. [PMID: 34532642 DOI: 10.1093/abt/tbab017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022] Open
Abstract
Background ERBB2 is a proto-oncogene of multiple cancers including breast and gastric cancers with HER2 protein overexpression or gene amplification and has been proven clinically as a valid target for these cancers. HER2-targeting agents such as Herceptin®, Kadcyla® and ENHERTU® have been approved by the FDA for the treatment of breast cancer, but these drugs still face the challenge of acquired resistance and/or severe adverse reactions in clinical use. Therefore, there is significant unmet medical need for developing new agents that are more effective and safer for patients with advanced HER2-positive solid tumors including breast and gastric cancers. Methods We report here the making of MRG002, a novel HER2-targeted antibody drug conjugate (ADC), and preclinical characterization including pharmacology, pharmacodynamics and toxicology and discuss its potential as a novel agent for treating patients with HER2-positive solid tumors. Results MRG002 exhibited similar antigen binding affinity but much reduced antibody-dependent cellular cytotoxicity (ADCC) activity compared to trastuzumab. In addition to potent in vitro cytotoxicity, MRG002 showed tumor regression in both high- and medium-to-low HER2 expressing in vivo xenograft models. Furthermore, MRG002 showed enhanced antitumor activity when used in combination with an anti-PD-1 antibody. Main findings from toxicology studies are related to the payload and are consistent with literature report of other ADCs with monomethyl auristatinE. Conclusion MRG002 has demonstrated a favorable toxicity profile and potent antitumor activities in the breast and gastric PDX models with varying levels of HER2 expression, and/or resistance to trastuzumab or T-DM1. A phase I clinical study of MRG002 in patients with HER2-positive solid tumors is ongoing (CTR20181778).
Collapse
Affiliation(s)
- Hu Li
- Research and Development, Shanghai Miracogen, Suite 4E, Bldg. 3, No. 1238 Zhangjiang Road, Pudong District, Shanghai 201203, China
| | - Xiao Zhang
- Research and Development, Shanghai Miracogen, Suite 4E, Bldg. 3, No. 1238 Zhangjiang Road, Pudong District, Shanghai 201203, China
| | - Zhenyi Xu
- Research and Development, Shanghai Miracogen, Suite 4E, Bldg. 3, No. 1238 Zhangjiang Road, Pudong District, Shanghai 201203, China
| | - Lingrui Li
- Research and Development, Shanghai Miracogen, Suite 4E, Bldg. 3, No. 1238 Zhangjiang Road, Pudong District, Shanghai 201203, China
| | - Wenchao Liu
- Research and Development, Shanghai Miracogen, Suite 4E, Bldg. 3, No. 1238 Zhangjiang Road, Pudong District, Shanghai 201203, China
| | - Zhenyu Dai
- Research and Development, Shanghai Miracogen, Suite 4E, Bldg. 3, No. 1238 Zhangjiang Road, Pudong District, Shanghai 201203, China
| | - Zhongrun Zhao
- Research and Development, Shanghai Miracogen, Suite 4E, Bldg. 3, No. 1238 Zhangjiang Road, Pudong District, Shanghai 201203, China
| | - Lili Xiao
- Research and Development, Shanghai Miracogen, Suite 4E, Bldg. 3, No. 1238 Zhangjiang Road, Pudong District, Shanghai 201203, China
| | - Hongfeng Li
- Research and Development, Shanghai Miracogen, Suite 4E, Bldg. 3, No. 1238 Zhangjiang Road, Pudong District, Shanghai 201203, China
| | - Chaohong Hu
- Research and Development, Shanghai Miracogen, Suite 4E, Bldg. 3, No. 1238 Zhangjiang Road, Pudong District, Shanghai 201203, China
| |
Collapse
|
5
|
Murad R, Avanes A, Ma X, Geng S, Mortazavi A, Momand J. Transcriptome and chromatin landscape changes associated with trastuzumab resistance in HER2+ breast cancer cells. Gene 2021; 799:145808. [PMID: 34224831 DOI: 10.1016/j.gene.2021.145808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/29/2021] [Accepted: 06/30/2021] [Indexed: 12/09/2022]
Abstract
We set out to uncover transcriptome and chromatin landscape changes that occur in HER2 + breast cancer (BC) cells upon acquiring resistance to trastuzumab. RNA-seq analysis was applied to two independently-derived BC cell lines with acquired resistance to trastuzumab (SKBr3.HerR and BT-474HerR) and their parental drug-sensitive cell lines (SKBr3 and BT-474). Chromatin landscape analysis indicated that the most significant increase in accessibility in resistant cells occurs in PPP1R1B within a segment spanning introns 1b through intron 3. Footprint analysis of this segment revealed that FoxJ3 (within intron 2) and Pou5A1/Sox2 (within inton 3) transcription factor motifs are protected in resistant cells. Overall, 344 shared genes were upregulated in both resistant cell lines relative to their parental counterparts and 453 shared genes were downregulated in both resistant cell lines relative to their parental counterparts. In resistant cells, genes associated with autophagy and mitochondria organization are upregulated and genes associated with ribosome assembly and cell cycle are downregulated relative to parental cells. The five top upregulated genes in drug-resistant breast cancer cells are APOD, AZGP1, ETV5, ALPP, and PPP1R1B. This is the first report of increased chromatin accessibility within PPP1R1B associated with its t-Darpp transcript increase, and points to a possible mechanism for its activation in trastuzumab-resistant cells.
Collapse
Affiliation(s)
- Rabi Murad
- Department of Developmental & Cell Biology, University of California Irvine, Irvine, CA 92617, USA
| | - Arabo Avanes
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Xinyi Ma
- Department of Developmental & Cell Biology, University of California Irvine, Irvine, CA 92617, USA
| | - Shuhui Geng
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Ali Mortazavi
- Department of Developmental & Cell Biology, University of California Irvine, Irvine, CA 92617, USA.
| | - Jamil Momand
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, CA 90032, USA.
| |
Collapse
|
6
|
Al-Zahrani KN, Abou-Hamad J, Pascoal J, Labrèche C, Garland B, Sabourin LA. AKT-mediated phosphorylation of Sox9 induces Sox10 transcription in a murine model of HER2-positive breast cancer. Breast Cancer Res 2021; 23:55. [PMID: 33985544 PMCID: PMC8120776 DOI: 10.1186/s13058-021-01435-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Background Approximately 5–10% of HER2-positive breast cancers can be defined by low expression of the Ste20-like kinase, SLK, and high expression of SOX10. Our lab has observed that genetic deletion of SLK results in the induction of Sox10 and significantly accelerates tumor initiation in a HER2-induced mammary tumor model. However, the mechanism responsible for the induction of SOX10 gene expression in this context remains unknown. Methods Using tumor-derived cell lines from MMTV-Neu mice lacking SLK and biochemical approaches, we have characterized the signaling mechanisms and relevant DNA elements driving Sox10 expression. Results Biochemical and genetic analyses of the SOX10 regulatory region in SLK-deficient mammary tumor cells show that Sox10 expression is dependent on a novel −7kb enhancer that harbors three SoxE binding sites. ChIP analyses demonstrate that Sox9 is bound to those elements in vivo. Our data show that AKT can directly phosphorylate Sox9 in vitro at serine 181 and that AKT inhibition blocks Sox9 phosphorylation and Sox10 expression in SLK(-/-) tumor cells. AKT-mediated Sox9 phosphorylation increases its transcriptional activity on the Sox10 −7kb enhancer without altering its DNA-binding activity. Interestingly, analysis of murine and human mammary tumors reveals a direct correlation between the levels of active phospho-Sox9 S181 and Sox10 expression. Conclusions Our results have identified a novel Sox10 enhancer and validated Sox9 as a direct target for AKT. As Sox10 is a biomarker for triple-negative breast cancers (TNBC), these findings might have major implications in the targeting and treatment of those cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01435-6.
Collapse
Affiliation(s)
- Khalid N Al-Zahrani
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - John Abou-Hamad
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Julia Pascoal
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Cédrik Labrèche
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Brennan Garland
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Luc A Sabourin
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
7
|
Loss of the Ste20-like kinase induces a basal/stem-like phenotype in HER2-positive breast cancers. Oncogene 2020; 39:4592-4602. [PMID: 32393835 DOI: 10.1038/s41388-020-1315-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 01/20/2023]
Abstract
HER2 is overexpressed in 20-30% of all breast cancers and is associated with an invasive disease and poor clinical outcome. The Ste20-like kinase (SLK) is activated downstream of HER2/Neu and is required for efficient epithelial-to-mesenchymal transition, cell cycle progression, and migration in the mammary epithelium. Here we show that loss of SLK in a murine model of HER2/Neu-positive breast cancers significantly accelerates tumor onset and decreases overall survival. Transcriptional profiling of SLK knockout HER2/Neu-derived tumor cells revealed a strong induction in the triple-negative breast cancer marker, Sox10, accompanied by an increase in mammary stem/progenitor activity. Similarly, we demonstrate that SLK and Sox10 expression are inversely correlated in patient samples, with the loss of SLK and acquisition of Sox10 marking the triple-negative subtype. Furthermore, pharmacological inhibition of AKT reduces SLK-null tumor growth in vivo and is rescued by ectopic Sox10 expression, suggesting that Sox10 is a critical regulator of tumor growth downstream of SLK/AKT. These findings highlight a role for SLK in negatively regulating HER2-induced mammary tumorigenesis and provide mechanistic insight into the regulation of Sox10 expression in breast cancer.
Collapse
|
8
|
Barok M, Le Joncour V, Martins A, Isola J, Salmikangas M, Laakkonen P, Joensuu H. ARX788, a novel anti-HER2 antibody-drug conjugate, shows anti-tumor effects in preclinical models of trastuzumab emtansine-resistant HER2-positive breast cancer and gastric cancer. Cancer Lett 2020; 473:156-163. [PMID: 31904483 DOI: 10.1016/j.canlet.2019.12.037] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/09/2019] [Accepted: 12/28/2019] [Indexed: 01/19/2023]
Abstract
The majority of HER2-positive breast or gastric cancers treated with T-DM1 eventually show resistance to this agent. We compared the effects of T-DM1 and ARX788, a novel anti-HER2 antibody-drug conjugate, on cell growth and apoptosis in HER2-positive breast cancer and gastric cancer cell lines sensitive to T-DM1, gastric cancer cell lines resistant to T-DM1, HER2-negative breast cancer cell lines, and T-DM1-resistant xenograft models. ARX788 was effective in T-DM1-resistant in vitro and in vivo models of HER2-positive breast cancer and gastric cancer. ARX788 showed a pronounced growth inhibitory effect on all five HER2-positive cell lines tested, of which two gastric cancer cell lines had acquired resistance to T-DM1. ARX788 evoked more apoptotic events compared to T-DM1. While JIMT-1 and RN-87 xenograft tumors progressed on T-DM1 treatment, all such tumors responded to ARX788, and four out of the six JIMT-1 tumors and nine out of the twelve RN-87 tumors disappeared during the ARX788 treatment. Mice treated with ARX788 survived longer than those treated with T-DM1. The data support evaluation of ARX788 in patients with HER2-positive breast cancer or gastric cancer including cancers that progress during T-DM1 therapy.
Collapse
Affiliation(s)
- Mark Barok
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland; Laboratory of Molecular Oncology, University of Helsinki, Helsinki, FIN-00290, Finland.
| | - Vadim Le Joncour
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
| | - Ana Martins
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
| | - Jorma Isola
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Marko Salmikangas
- Laboratory of Molecular Oncology, University of Helsinki, Helsinki, FIN-00290, Finland.
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland; Laboratory Animal Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Heikki Joensuu
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland; Laboratory of Molecular Oncology, University of Helsinki, Helsinki, FIN-00290, Finland; Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki, FIN-00029, Finland.
| |
Collapse
|
9
|
Sanad MF, Shalan AE, Bazid SM, Abu Serea ES, Hashem EM, Nabih S, Ahsan MA. A graphene gold nanocomposite-based 5-FU drug and the enhancement of the MCF-7 cell line treatment. RSC Adv 2019; 9:31021-31029. [PMID: 35529359 PMCID: PMC9072570 DOI: 10.1039/c9ra05669f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/31/2019] [Indexed: 11/21/2022] Open
Abstract
There is no doubt that cancer is now one of the most formidable diseases in the world; despite all the efforts and research, common treatment routes, including chemotherapy, photodynamic therapy, and photothermal therapy, suffer from different limitations in terms of their efficiency and performance. For this reason, different strategies are being explored to improve the efficiency of the traditional drugs reported to date. In this study, we have redirected the function of one of these drugs (5-fluorouracil, 5-FU) by combining it with a graphene-gold nanocomposite in different molar ratios that has been exceedingly used for biological research development. The high activity of the graphene-gold material enables it to produce reactive oxygen and ions, which display good anticancer and antioxidant activity through the scavenging of the DPPH, SOD and GP x radicals; in addition, different characterizations have been used to confirm the structure and morphology of the obtained samples. Highly potent cytotoxicity against the MCF-7 cells was achieved with the drug combination containing the nanocomposite. All the results, including those obtained via cytometry, indicate that the combination of 5% graphene-gold nanocomposites with 5-FU exhibits a higher antitumor impact and more drug stability than pure 5-FU.
Collapse
Affiliation(s)
- Mohamed Fathi Sanad
- Basic Science Departments, Modern Academy for Engineering and Technology Maadi Egypt
- The University of Texas at El Paso 500 W University Ave El Paso TX 79968 USA
| | - Ahmed Esmail Shalan
- Central Metallurgical Research and Development Institute (CMRDI) P.O. Box 87 Helwan Cairo 11421 Egypt
| | - Shereen Magdy Bazid
- Departments of Biochemistry, Faculty of Science, Mansoura University Mansoura Egypt
| | - Esraa Samy Abu Serea
- Chemistry & Biochemistry Department, Faculty of Science, Cairo University Cairo Egypt
| | - Elhussein M Hashem
- Chemistry Department, Faculty of Science, Ain-Shams University Abbasia Cairo Egypt
| | - Shimaa Nabih
- Basic Science Departments, Modern Academy for Engineering and Technology Maadi Egypt
| | - Md Ariful Ahsan
- The University of Texas at El Paso 500 W University Ave El Paso TX 79968 USA
| |
Collapse
|
10
|
Darini C, Ghaddar N, Chabot C, Assaker G, Sabri S, Wang S, Krishnamoorthy J, Buchanan M, Aguilar-Mahecha A, Abdulkarim B, Deschenes J, Torres J, Ursini-Siegel J, Basik M, Koromilas AE. An integrated stress response via PKR suppresses HER2+ cancers and improves trastuzumab therapy. Nat Commun 2019; 10:2139. [PMID: 31086176 PMCID: PMC6513990 DOI: 10.1038/s41467-019-10138-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
Trastuzumab is integral to HER2+ cancer treatment, but its therapeutic index is narrowed by the development of resistance. Phosphorylation of the translation initiation factor eIF2α (eIF2α-P) is the nodal point of the integrated stress response, which promotes survival or death in a context-dependent manner. Here, we show an anti-tumor function of the protein kinase PKR and its substrate eIF2α in a mouse HER2+ breast cancer model. The anti-tumor function depends on the transcription factor ATF4, which upregulates the CDK inhibitor P21CIP1 and activates JNK1/2. The PKR/eIF2α-P arm is induced by Trastuzumab in sensitive but not resistant HER2+ breast tumors. Also, eIF2α-P stimulation by the phosphatase inhibitor SAL003 substantially increases Trastuzumab potency in resistant HER2+ breast and gastric tumors. Increased eIF2α-P prognosticates a better response of HER2+ metastatic breast cancer patients to Trastuzumab therapy. Hence, the PKR/eIF2α-P arm antagonizes HER2 tumorigenesis whereas its pharmacological stimulation improves the efficacy of Trastuzumab therapy. The HER2 monoclonal antibody, Trastuzumab, is the current standard treatment for HER2+ cancers but resistance to therapy occurs. Here, the authors show that activation of the PKR/eIF2α-P pathway exhibits anti-tumor effects in HER2+ cancer and is required for the response to Trastuzumab.
Collapse
Affiliation(s)
- Cedric Darini
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Nour Ghaddar
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada.,Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Catherine Chabot
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Gloria Assaker
- Department of Pathology, Faculty of Medicine, McGill University, Montreal, QC, H3A 2B4, Canada.,Research Institute of McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Siham Sabri
- Department of Pathology, Faculty of Medicine, McGill University, Montreal, QC, H3A 2B4, Canada.,Research Institute of McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Shuo Wang
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Jothilatha Krishnamoorthy
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Marguerite Buchanan
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Adriana Aguilar-Mahecha
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Bassam Abdulkarim
- Research Institute of McGill University Health Centre, Montreal, QC, H4A 3J1, Canada.,Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, H4A 3T2, Canada
| | - Jean Deschenes
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Jose Torres
- Department of Pathology, Faculty of Medicine, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Josie Ursini-Siegel
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada.,Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, H4A 3T2, Canada
| | - Mark Basik
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada.,Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, H4A 3T2, Canada
| | - Antonis E Koromilas
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, H3T 1E2, Canada. .,Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, H4A 3T2, Canada.
| |
Collapse
|
11
|
Li F, Zhang L, Feng F, Zheng K, Li Y, Wang T, Ren G. Livin participates in resistance to trastuzumab therapy for breast cancer through ERK1/2 and AKT pathways and promotes EMT-like phenotype. RSC Adv 2018; 8:28588-28601. [PMID: 35542453 PMCID: PMC9084334 DOI: 10.1039/c8ra05727c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/25/2018] [Indexed: 01/29/2023] Open
Abstract
Trastuzumab resistance has emerged as a major issue in anti-human epidermal growth factor receptor-2 (HER2) therapy for breast cancers. The cell lines maintain overexpression of HER2. Upon treatment with trastuzumab, R-SKBR3 and R-BT474 cell lines displayed an increased growth rate and invasiveness, accompanied by activation of the ERK1/2 and AKT signaling pathways, and also a parental EMT-like transition (epithelial–mesenchymal transition) was promoted, with increases in N-cadherin, vimentin, and fibronectin and a decrease in E-cadherin. A further investigation found that livin played a key role in the development of trastuzumab resistance. Knockdown of the expression of livin by livin-shRNA3 in R-SKBR3 and R-BT474 cells decreased ERK1/2 and AKT, resensitized the resistant cells to the therapeutic activities of trastuzumab by inducing growth arrest, inhibition of proliferation, and G1-S cell cycle checking in the presence of the antibody, and they also exhibited an EMT-like transition (epithelial–mesenchymal transition), with a decrease in N-cadherin and an increase in E-cadherin, and the cell invasiveness was inhibited in response to the downregulation of livin. Conversely, SKBR3 and BT474 cells that had been stably transfected with pcDNA3.1-livin underwent promotion of an EMT-like transition and displayed a significant decrease in E-cadherin and increases in N-cadherin, vimentin, and fibronectin, and ectopic expression of livin in HER2-overexpressing breast cancer cells conferred resistance to trastuzumab. In vivo, the administration of livin AS (antisense oligonucleotides) restored sensitivity to trastuzumab in resistant breast cancer xenografts via the ERK1/2 and AKT signaling pathways. Patients with livin-overexpressing breast cancers exhibited significantly poorer responses to trastuzumab-based therapy than those with normal livin levels. In summary, our data suggest that the upregulation of livin activates the ERK1/2 and AKT signaling pathways and promotes an EMT-like transition. This could be an important mechanism that leads to trastuzumab resistance in HER2-overexpressing breast cancer cells. Trastuzumab resistance has emerged as a major issue in anti-human epidermal growth factor receptor-2 (HER2) therapy for breast cancers.![]()
Collapse
Affiliation(s)
- Fan Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University Chongqing China +86-23-89012558 +86-23-89012558.,Breast Cancer Center of Chongqing, The First Affiliated Hospital of Chongqing Medical University Chongqing China.,Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Lu Zhang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University Chongqing China +86-23-89012558 +86-23-89012558.,Breast Cancer Center of Chongqing, The First Affiliated Hospital of Chongqing Medical University Chongqing China.,Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Fan Feng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University Chongqing China +86-23-89012558 +86-23-89012558.,Breast Cancer Center of Chongqing, The First Affiliated Hospital of Chongqing Medical University Chongqing China.,Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Ke Zheng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University Chongqing China +86-23-89012558 +86-23-89012558.,Breast Cancer Center of Chongqing, The First Affiliated Hospital of Chongqing Medical University Chongqing China.,Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - YuJing Li
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University Chongqing China +86-23-89012558 +86-23-89012558.,Breast Cancer Center of Chongqing, The First Affiliated Hospital of Chongqing Medical University Chongqing China.,Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - TieLin Wang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University Chongqing China +86-23-89012558 +86-23-89012558.,Breast Cancer Center of Chongqing, The First Affiliated Hospital of Chongqing Medical University Chongqing China.,Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - GuoSheng Ren
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University Chongqing China +86-23-89012558 +86-23-89012558.,Breast Cancer Center of Chongqing, The First Affiliated Hospital of Chongqing Medical University Chongqing China.,Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
12
|
Canonici A, Qadir Z, Conlon NT, Collins DM, O'Brien NA, Walsh N, Eustace AJ, O'Donovan N, Crown J. The HSP90 inhibitor NVP-AUY922 inhibits growth of HER2 positive and trastuzumab-resistant breast cancer cells. Invest New Drugs 2018; 36:581-589. [PMID: 29396630 DOI: 10.1007/s10637-017-0556-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/19/2017] [Indexed: 12/29/2022]
Abstract
As HER2 is a client protein of the molecular chaperone Hsp90, targeting Hsp90 may be beneficial in HER2-positive breast cancer. In this study, the activity of the Hsp90 inhibitor NVP-AUY922 was assessed in HER2 overexpressing breast cancer cell lines, including two cell line models of acquired trastuzumab-resistance. The seven HER2-positive breast cancer cell lines tested showed significant sensitivity to NVP-AUY922 in vitro, with IC50 values between 6 and 17 nM. Combining NVP-AUY922 with chemotherapy did not improve response. NVP-AUY922 in combination with trastuzumab, significantly enhanced growth inhibition in three of the seven cell lines tested. In conclusion, our data shows that NVP-AUY922 displays potent anti-cancer activity in HER2-positive and trastuzumab-resistant breast cancer cells, and supports further testing of NVP-AUY922 in patients with HER2-positive breast cancer.
Collapse
Affiliation(s)
- Alexandra Canonici
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Zulfiqar Qadir
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Neil T Conlon
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Denis M Collins
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Neil A O'Brien
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, CA, Los Angeles, USA
| | - Naomi Walsh
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Alex J Eustace
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Norma O'Donovan
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - John Crown
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
13
|
|
14
|
Lenz G, Hamilton A, Geng S, Hong T, Kalkum M, Momand J, Kane SE, Huss JM. t-Darpp Activates IGF-1R Signaling to Regulate Glucose Metabolism in Trastuzumab-Resistant Breast Cancer Cells. Clin Cancer Res 2017; 24:1216-1226. [PMID: 29180608 DOI: 10.1158/1078-0432.ccr-17-0824] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/31/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Increased glycolysis and glucose dependence is a hallmark of malignancy that enables tumors to maximize cell proliferation. In HER2+ cancers, an increase in glycolytic capacity is associated with trastuzumab resistance. IGF-1R activation and t-Darpp overexpression both confer trastuzumab resistance in breast cancer. We therefore investigated a role for IGF-1R and t-Darpp in regulating glycolytic capacity in HER2+ breast cancers.Experimental Design: We examined the relationship between t-Darpp and IGF-1R expression in breast tumors and their respective relationships with patient survival. To assess t-Darpp's metabolic effects, we used the Seahorse flux analyzer to measure glucose metabolism in trastuzumab-resistant SK-BR-3 cells (SK.HerR) that have high endogenous t-Darpp levels and SK.tDrp cells that stably overexpress exogenous t-Darpp. To investigate t-Darpp's mechanism of action, we evaluated t-Darpp:IGF-1R complexes by coimmunoprecipitation and proximity ligation assays. We used pathway-specific inhibitors to study the dependence of t-Darpp effects on IGF-1R signaling. We used siRNA knockdown to determine whether glucose reliance in SK.HerR cells was mediated by t-Darpp.Results: In breast tumors, PPP1R1B mRNA levels were inversely correlated with IGF-1R mRNA levels and directly associated with shorter overall survival. t-Darpp overexpression was sufficient to increase glucose metabolism in SK.tDrp cells and essential for the glycolytic phenotype of SK.HerR cells. Recombinant t-Darpp stimulated glucose uptake, glycolysis, and IGF-1R-Akt signaling in SK-BR-3 cells. Finally, t-Darpp stimulated IGF-1R heterodimerization with ErbB receptors and required IGF-1R signaling to confer its metabolic effects.Conclusions: t-Darpp activates IGF-1R signaling through heterodimerization with EGFR and HER2 to stimulate glycolysis and confer trastuzumab resistance. Clin Cancer Res; 24(5); 1216-26. ©2017 AACR.
Collapse
Affiliation(s)
- Gal Lenz
- Department of Cancer Biology, City of Hope, Duarte, California.
| | - Angelica Hamilton
- Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, California
| | - Shuhui Geng
- Department of Cancer Biology, City of Hope, Duarte, California
| | - Teresa Hong
- Department of Immunology, City of Hope, Duarte, California
| | - Markus Kalkum
- Department of Immunology, City of Hope, Duarte, California
| | - Jamil Momand
- Department of Chemistry and Biochemistry, California State University Los Angeles, Los Angeles, California
| | - Susan E Kane
- Department of Cancer Biology, City of Hope, Duarte, California
| | - Janice M Huss
- Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, California
| |
Collapse
|
15
|
Hsu PY, Wu VS, Kanaya N, Petrossian K, Hsu HK, Nguyen D, Schmolze D, Kai M, Liu CY, Lu H, Chu P, Vito CA, Kruper L, Mortimer J, Chen S. Dual mTOR Kinase Inhibitor MLN0128 Sensitizes HR +/HER2 + Breast Cancer Patient-Derived Xenografts to Trastuzumab or Fulvestrant. Clin Cancer Res 2017; 24:395-406. [PMID: 29079660 DOI: 10.1158/1078-0432.ccr-17-1983] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/24/2017] [Accepted: 10/23/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Therapeutic strategies against hormonal receptor-positive (HR+)/HER2+ breast cancers with poor response to trastuzumab need to be optimized.Experimental Design: Two HR+/HER2+ patient-derived xenograft (PDX) models named as COH-SC1 and COH-SC31 were established to explore targeted therapies for HER2+ breast cancers. RNA sequencing and RPPA (reverse phase protein array) analyses were conducted to decipher molecular features of the two PDXs and define the therapeutic strategy of interest, validated by in vivo drug efficacy examination and in vitro cell proliferation analysis.Results: Estrogen acted as a growth driver of trastuzumab-resistant COH-SC31 tumors but an accelerator in the trastuzumab-sensitive COH-SC1 model. In vivo trastuzumab efficacy examination further confirmed the consistent responses between PDXs and the corresponding tumors. Integrative omics analysis revealed that mammalian target of rapamycin (mTOR) and ERα signaling predominantly regulate tumor growth of the two HR+/HER2+ PDXs. Combination of the dual mTOR complex inhibitor MLN0128 and anti-HER2 trastuzumab strongly suppressed tumor growth of COH-SC1 PDX accompanied by increasing ER-positive cell population in vivo Instead, MLN0128 in combination with antiestrogen fulvestrant significantly halted the growth of HR+/HER2+ cancer cells in vitro and trastuzumab-resistant COH-SC31 as well as trastuzumab-sensitive COH-SC1 tumors in vivoConclusions: Compared with the standard trastuzumab treatment, this study demonstrates alternative therapeutic strategies against HR+/HER2+ tumors through establishment of two PDXs coupled with integrative omics analyses and in vivo drug efficacy examination. This work presents a prototype of future "co-clinical" trials to tailor personalized medicine in clinical practice. Clin Cancer Res; 24(2); 395-406. ©2017 AACR.
Collapse
Affiliation(s)
- Pei-Yin Hsu
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Victoria Shang Wu
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Karineh Petrossian
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Hang-Kai Hsu
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Duc Nguyen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Daniel Schmolze
- Department of Pathology, City of Hope Medical Center, Duarte, California
| | - Masaya Kai
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Chun-Yu Liu
- Department of Oncology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hannah Lu
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California
| | - Peiguo Chu
- Department of Pathology, City of Hope Medical Center, Duarte, California
| | - Courtney A Vito
- Department of Surgery, City of Hope Medical Center, Duarte, California
| | - Laura Kruper
- Department of Surgery, City of Hope Medical Center, Duarte, California
| | - Joanne Mortimer
- Department of Medical Oncology and Therapeutic Research, City of Hope Medical Center, Duarte, California
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California.
| |
Collapse
|
16
|
Wang H, Wang W, Xu Y, Yang Y, Chen X, Quan H, Lou L. Aberrant intracellular metabolism of T-DM1 confers T-DM1 resistance in human epidermal growth factor receptor 2-positive gastric cancer cells. Cancer Sci 2017; 108:1458-1468. [PMID: 28388007 PMCID: PMC5497802 DOI: 10.1111/cas.13253] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 12/12/2022] Open
Abstract
Trastuzumab emtansine (T-DM1), an antibody-drug conjugate (ADC) consisting of human epidermal growth factor receptor 2 (HER2)-targeted mAb trastuzumab linked to antimicrotubule agent mertansine (DM1), has been approved for the treatment of HER2-positive metastatic breast cancer. Acquired resistance has been a major obstacle to T-DM1 treatment, and mechanisms remain incompletely understood. In the present study, we established a T-DM1-resistant N87-KR cell line from HER2-positive N87 gastric cancer cells to investigate mechanisms of acquired resistance and develop strategies for overcoming it. Although the kinetics of binding, internalization, and externalization of T-DM1 were the same in N87-KR cells and N87 cells, N87-KR was strongly resistant to T-DM1, but remained sensitive to both trastuzumab and DM1. T-DM1 failed to inhibit microtubule polymerization in N87-KR cells. Consistently, lysine-MCC-DM1, the active T-DM1 metabolite that inhibits microtubule polymerization, accumulated much less in N87-KR cells than in N87 cells. Furthermore, lysosome acidification, achieved by vacuolar H+ -ATPase (V-ATPase), was much diminished in N87-KR cells. Notably, treatment of sensitive N87 cells with the V-ATPase selective inhibitor bafilomycin A1 induced T-DM1 resistance, suggesting that aberrant V-ATPase activity decreases T-DM1 metabolism, leading to T-DM1 resistance in N87-KR cells. Interestingly, HER2-targeted ADCs containing a protease-cleavable linker, such as hertuzumab-vc-monomethyl auristatin E, were capable of efficiently overcoming this resistance. Our results show for the first time that a decrease in T-DM1 metabolites induced by aberrant V-ATPase activity contributes to T-DM1 resistance, which could be overcome by HER2-targeted ADCs containing different linkers, including a protease-cleavable linker. Accordingly, we propose that V-ATPase activity in lysosomes is a novel biomarker for predicting T-DM1 resistance.
Collapse
MESH Headings
- Ado-Trastuzumab Emtansine
- Animals
- Antibodies, Monoclonal, Humanized/metabolism
- Antibodies, Monoclonal, Humanized/pharmacology
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- Blotting, Western
- Cell Line, Tumor
- Drug Resistance, Neoplasm/physiology
- Humans
- Immunoconjugates/metabolism
- Immunoconjugates/pharmacology
- Maytansine/analogs & derivatives
- Maytansine/metabolism
- Maytansine/pharmacology
- Mice
- Mice, Nude
- Microscopy, Fluorescence
- Receptor, ErbB-2/biosynthesis
- Stomach Neoplasms/metabolism
- Trastuzumab
- Vacuolar Proton-Translocating ATPases/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hongbin Wang
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wenqian Wang
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Yongping Xu
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Yong Yang
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Xiaoyan Chen
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Haitian Quan
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Liguang Lou
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| |
Collapse
|
17
|
Li H, Yu C, Jiang J, Huang C, Yao X, Xu Q, Yu F, Lou L, Fang J. An anti-HER2 antibody conjugated with monomethyl auristatin E is highly effective in HER2-positive human gastric cancer. Cancer Biol Ther 2016; 17:346-54. [PMID: 26853765 DOI: 10.1080/15384047.2016.1139248] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Antibody-drug conjugate (ADC) is a novel class of therapeutics for cancer target therapy. This study assessed antitumor activity of ADC with an antimitotic agent, monomethyl auristatin E (MMAE) and a humanized monoclonal anti-HER2 antibody, hertuzumab, in gastric cancer. The efficacy of hertuzumab-MC-Val-Cit-PAB-MMAE (hertuzumab-vcMMAE) on human epidermal growth factor receptor 2 (HER2) positive human gastric cancer cells, NCI-N87, was evaluated in vitro and in vivo. The cytotoxicity of hertuzumab was significantly enhanced after conjugation with MMAE. Compared to trastuzumab, hertuzumab had a higher affinity to HER2 and had more potent antibody-dependent cell-mediated cytotoxicity (ADCC) activity in vitro. After conjugation with MMAE, the binding specificity for HER2 was not affected. Furthermore, the internalization of hertuzumab-vcMMAE in HER2 positive gastric cancer cells was verified. Although the conjugation of hertuzumab and MMAE decreased the ADCC effect, the overall cytotoxicity was dramatically increased in HER2 positive gastric cancer cells. In vitro data on this hertuzumab-vcMMAE has exerted much stronger antitumor activity compared to trastuzumab-DM1 in HER2 positive gastric cancer cells. A single administration of hertuzumab-vcMMAE at 5 or 10 mg/kg showed high potency and a sustained tumor inhibitory effect on NCI-N87 xenografts in mice. In conclusion, hertuzumab-vcMMAE conjugate is a highly effective anti-HER2 targeted therapy for HER2-positive gastric cancer.
Collapse
Affiliation(s)
- Hongwen Li
- a School of Life Sciences and Technology, Tongji University , Shanghai , China
| | - Chao Yu
- b RemeGen, Ltd. , Yantai , Shandong , China
| | - Jing Jiang
- c School of Pharmacy, Binzhou Medical University , Yantai , Shandong , China
| | | | - Xuejing Yao
- a School of Life Sciences and Technology, Tongji University , Shanghai , China
| | - Qiaoyu Xu
- b RemeGen, Ltd. , Yantai , Shandong , China
| | - Fang Yu
- b RemeGen, Ltd. , Yantai , Shandong , China
| | - Liguang Lou
- d Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
| | - Jianmin Fang
- a School of Life Sciences and Technology, Tongji University , Shanghai , China.,e Tongji University Suzhou Institute , Suzhou , Jiangsu , China.,f Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| |
Collapse
|
18
|
Kanzaki H, Mukhopadhya NK, Cui X, Ramanujan VK, Murali R. Trastuzumab-Resistant Luminal B Breast Cancer Cells Show Basal-Like Cell Growth Features Through NF-κB-Activation. Monoclon Antib Immunodiagn Immunother 2016; 35:1-11. [PMID: 26871511 DOI: 10.1089/mab.2015.0056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A major clinical problem in the treatment of breast cancer is mortality due to metastasis. Understanding the molecular mechanisms associated with metastasis should aid in designing new therapeutic approaches for breast cancer. Trastuzumab is the main therapeutic option for HER2+ breast cancer patients; however, the molecular basis for trastuzumab resistance (TZR) and subsequent metastasis is not known. Earlier, we found expression of basal-like molecular markers in TZR tissues from patients with invasive breast cancer.(( 1 )) The basal-like phenotype is a particularly aggressive form of breast cancer. This observation suggests that TZR might contribute to an aggressive phenotype. To understand if resistance to TZR can lead to basal-like phenotype, we generated a trastuzumab-resistant human breast cancer cell line (BT-474-R) that maintained human epidermal growth factor receptor 2 (HER2) overexpression and HER2 mediated signaling. Analysis showed that nuclear factor-kappa B (NF-κB) was constitutively activated in the BT-474-R cells, a feature similar to the basal-like tumor phenotype. Pharmacologic inhibition of NF-κB improved sensitivity of BT-474-R cells to trastuzumab. Interestingly, activation of HER2 independent NF-κB is not shown in luminal B breast cancer cells. Our study suggests that by activating the NF-κB pathway, luminal B cells may acquire a HER2+ basal-like phenotype in which NF-κB is constitutively activated; this notion is consistent with the recently proposed "progression through grade" or "evolution of resistance" hypothesis. Furthermore, we identified IKK-α/IKK-β and nuclear accumulation of RelA/p65 as the major determinants in the resistant cells. Thus our study additionally suggests that the nuclear accumulation of p65 may be a useful marker for identifying metastasis-initiating tumor cells and targeting RelA/p65 may limit metastasis of breast and other cancers associated with NF-κB activation.
Collapse
Affiliation(s)
- Hirotaka Kanzaki
- 1 Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center , Los Angeles, California.,5 Current address: Department of Pharmacy, Okayama University Hospital , Okayama, Japan
| | - Nishit K Mukhopadhya
- 1 Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center , Los Angeles, California.,6 University of Illinois at Chicago , Department of Biochemistry and Molecular Genetics, Chicago, Illinois
| | - Xiaojiang Cui
- 2 Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center , Los Angeles, California.,3 Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center , Los Angeles, California
| | - V Krishnan Ramanujan
- 2 Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center , Los Angeles, California.,4 Department of Surgery, Cedars-Sinai Medical Center , Los Angeles, California
| | - Ramachandran Murali
- 1 Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center , Los Angeles, California.,2 Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center , Los Angeles, California
| |
Collapse
|
19
|
Asić K. Dominant mechanisms of primary resistance differ from dominant mechanisms of secondary resistance to targeted therapies. Crit Rev Oncol Hematol 2016; 97:178-96. [DOI: 10.1016/j.critrevonc.2015.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 06/18/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023] Open
|
20
|
Denny EC, Kane SE. t-Darpp Promotes Enhanced EGFR Activation and New Drug Synergies in Her2-Positive Breast Cancer Cells. PLoS One 2015; 10:e0132267. [PMID: 26121470 PMCID: PMC4488293 DOI: 10.1371/journal.pone.0132267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/11/2015] [Indexed: 11/18/2022] Open
Abstract
Trastuzumab has led to improved survival rates of HER2+ breast cancer patients. However, acquired resistance remains a problem in the majority of cases. t-Darpp is over-expressed in trastuzumab-resistant cell lines and its over-expression is sufficient for conferring the resistance phenotype. Although its mechanism of action is unknown, t-Darpp has been shown to increase cellular proliferation and inhibit apoptosis. We have reported that trastuzumab-resistant BT.HerR cells that over-express endogenous t-Darpp are sensitized to EGFR inhibition in the presence (but not the absence) of trastuzumab. The purpose of the current study was to determine if t-Darpp might modulate sensitivity to EGFR inhibitors in trastuzumab-resistant cells. Using EGFR tyrosine kinase inhibitors AG1478, gefitinib and erlotinib, we found that trastuzumab-resistant SK.HerR cells were sensitized to EGFR inhibition, compared to SK-Br-3 controls, even in the absence of trastuzumab. t-Darpp knock-down in SK.HerR cells reversed their sensitivity to EGFR inhibition. Increased EGFR sensitivity was also noted in SK.tDp cells that stably over-express t-Darpp. High levels of synergy between trastuzumab and the EGFR inhibitors were observed in all cell lines with high t-Darpp expression. These cells also demonstrated more robust activation of EGFR signaling and showed greater EGFR stability than parental cells. The T75A phosphorylation mutant of t-Darpp did not confer sensitivity to EGFR inhibition nor activation of EGFR signaling. The over-expression of t-Darpp might facilitate enhanced EGFR signaling as part of the trastuzumab resistance phenotype. This study suggests that the presence of t-Darpp in HER2+ cancers might predict the enhanced response to dual HER2/EGFR targeting.
Collapse
Affiliation(s)
- Erin C. Denny
- Department of Cancer Biology, Beckman Research Institute at City of Hope, Duarte, California, United States of America
| | - Susan E. Kane
- Department of Cancer Biology, Beckman Research Institute at City of Hope, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Zuo Q, Liu J, Zhang J, Wu M, Guo L, Liao W. Development of trastuzumab-resistant human gastric carcinoma cell lines and mechanisms of drug resistance. Sci Rep 2015; 5:11634. [PMID: 26108989 PMCID: PMC4479993 DOI: 10.1038/srep11634] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 05/27/2015] [Indexed: 12/14/2022] Open
Abstract
Trastuzumab has been successfully employed for the treatment of Her-2-positive gastric cancer. However, there are problems with both primary and secondary resistance to trastuzumab. In this study, we employed the human gastric carcinoma cell line NCI-N87 with high Her-2 expression to create trastuzumab-resistant NCI-N87/TR cells by stepwise exposure to increasing doses of trastuzumab. Western blotting and Real-time PCR were conducted to detect protein and gene levels. Compared with NCI-N87 cells, the expression of P-IGF-1R and P-AKT proteins was significantly increased in NCI-N87/TR cells (both P = 0.000), while PTEN gene and protein expression showed a significant decrease (both P = 0.000). In addition, mutations of the PTEN gene were detected at exons 5, 7, and 8. The sensitivity of NCI-N87/TR cells to trastuzumab was increased by transfection with the PTEN gene, or by incubation with a PI3K inhibitor (LY294002) or an IGF-IR inhibitor (AG1024), as well as siRNA targeting PI3K p110 or IGF-1R. Taken together, our findings showed that activation of the PI3K-AKT signaling pathway was one of the major mechanisms leading to resistance of NCI-N87/TR gastric cancer cells to trastuzumab, which was probably associated with PTEN gene down-regulation and mutation, as well as with over-activity of the IGF-1R signaling pathway.
Collapse
Affiliation(s)
- Qiang Zuo
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jing Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jingwen Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Mengwan Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lihong Guo
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
22
|
Diver EJ, Foster R, Rueda BR, Growdon WB. The Therapeutic Challenge of Targeting HER2 in Endometrial Cancer. Oncologist 2015; 20:1058-68. [PMID: 26099744 DOI: 10.1634/theoncologist.2015-0149] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/12/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Endometrial cancer is the most common gynecologic cancer in the United States, diagnosed in more than 50,000 women annually. While the majority of women present with low-grade tumors that are cured with surgery and adjuvant radiotherapy, a significant subset of women experience recurrence and do not survive their disease. A disproportionate number of the more than 8,000 annual deaths attributed to endometrial cancer are due to high-grade uterine cancers, highlighting the need for new therapies that target molecular alterations specific to this subset of tumors. Numerous correlative scientific investigations have demonstrated that the HER2 (ERBB2) gene is amplified in 17%-33% of carcinosarcoma, uterine serous carcinoma, and a subset of high-grade endometrioid endometrial tumors. In breast cancer, this potent signature has directed women to anti-HER2-targeted therapies such as trastuzumab and lapatinib. In contrast to breast cancer, therapy with trastuzumab alone revealed no responses in women with recurrent HER2 overexpressing endometrial cancer, suggesting that these tumors may possess acquired or innate trastuzumab resistance mechanisms. This review explores the literature surrounding HER2 expression in endometrial cancer, focusing on trastuzumab and other anti-HER2 therapy and resistance mechanisms characterized in breast cancer but germane to endometrial tumors. Understanding resistance pathways will suggest combination therapies that target both HER2 and key oncogenic escape pathways in endometrial cancer. IMPLICATIONS FOR PRACTICE This review summarizes the role of HER2 in endometrial cancer, with a focus on uterine serous carcinoma. The limitations to date of anti-HER2 therapy in this disease site are examined, and mechanisms of drug resistance are outlined based on the experience in breast cancer. Potential opportunities to overcome inherent resistance to anti-HER2 therapy in endometrial cancer are detailed, offering opportunities for further clinical study with the goal to improve outcomes in this challenging disease.
Collapse
Affiliation(s)
- Elisabeth J Diver
- Vincent Center for Reproductive Biology and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Rosemary Foster
- Vincent Center for Reproductive Biology and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Bo R Rueda
- Vincent Center for Reproductive Biology and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Whitfield B Growdon
- Vincent Center for Reproductive Biology and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Autorisation de mise sur le marché du trastuzumab emtansine (Kadcyla®) dans les cancers du sein métastatiques HER2-positifs. Bull Cancer 2015; 102:390-7. [DOI: 10.1016/j.bulcan.2015.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/17/2014] [Indexed: 11/17/2022]
|
24
|
Subbiah IM, Gonzalez-Angulo AM. Advances and future directions in the targeting of HER2-positive breast cancer: implications for the future. Curr Treat Options Oncol 2014; 15:41-54. [PMID: 24323591 DOI: 10.1007/s11864-013-0262-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OPINION STATEMENT The natural history of HER2-positive breast cancer significantly changed in the past 15 years. Form being the most aggressive type of breast cancer, it became treatable with important cure rates. However, with new and successful drugs, resistance emerges. Progress in research and drug development continues to make available effective anti-HER2 therapies. Our challenge today is to use these tools correctly by looking at the data that support the indications of each compound and to continue clinical trial participation.
Collapse
Affiliation(s)
- Ishwaria M Subbiah
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030-4009, USA
| | | |
Collapse
|
25
|
Verderio P, Pandolfi L, Mazzucchelli S, Marinozzi MR, Vanna R, Gramatica F, Corsi F, Colombo M, Morasso C, Prosperi D. Antiproliferative Effect of ASC-J9 Delivered by PLGA Nanoparticles against Estrogen-Dependent Breast Cancer Cells. Mol Pharm 2014; 11:2864-75. [DOI: 10.1021/mp500222k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Paolo Verderio
- Dipartimento
di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza
della Scienza 2, 20126 Milano, Italy
- Nerviano Medical Sciences s.r.l., Viale Pasteur 10, 20014 Nerviano, Italy
| | - Laura Pandolfi
- Dipartimento
di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza
della Scienza 2, 20126 Milano, Italy
- Dipartimento
di Scienze Biomediche e Cliniche “Luigi Sacco”, Università di Milano, Ospedale L. Sacco, Via G.B. Grassi 74, 20157 Milano, Italy
| | - Serena Mazzucchelli
- Dipartimento
di Scienze Biomediche e Cliniche “Luigi Sacco”, Università di Milano, Ospedale L. Sacco, Via G.B. Grassi 74, 20157 Milano, Italy
| | - Maria Rosaria Marinozzi
- Dipartimento
di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza
della Scienza 2, 20126 Milano, Italy
| | - Renzo Vanna
- LABION
- Laboratory of Nanomedicine and Clinical Biophotonics, Fondazione Don Carlo Gnocchi ONLUS, Piazzale R. Morandi 6, 20121 Milano, Italy
| | - Furio Gramatica
- LABION
- Laboratory of Nanomedicine and Clinical Biophotonics, Fondazione Don Carlo Gnocchi ONLUS, Piazzale R. Morandi 6, 20121 Milano, Italy
| | - Fabio Corsi
- Dipartimento
di Scienze Biomediche e Cliniche “Luigi Sacco”, Università di Milano, Ospedale L. Sacco, Via G.B. Grassi 74, 20157 Milano, Italy
| | - Miriam Colombo
- Dipartimento
di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza
della Scienza 2, 20126 Milano, Italy
| | - Carlo Morasso
- LABION
- Laboratory of Nanomedicine and Clinical Biophotonics, Fondazione Don Carlo Gnocchi ONLUS, Piazzale R. Morandi 6, 20121 Milano, Italy
| | - Davide Prosperi
- Dipartimento
di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza
della Scienza 2, 20126 Milano, Italy
- Dipartimento
di Scienze Biomediche e Cliniche “Luigi Sacco”, Università di Milano, Ospedale L. Sacco, Via G.B. Grassi 74, 20157 Milano, Italy
- LABION
- Laboratory of Nanomedicine and Clinical Biophotonics, Fondazione Don Carlo Gnocchi ONLUS, Piazzale R. Morandi 6, 20121 Milano, Italy
| |
Collapse
|
26
|
Park YH, Jung HA, Choi MK, Chang W, Choi YL, Do IG, Ahn JS, Im YH. Role of HER3 expression and PTEN loss in patients with HER2-overexpressing metastatic breast cancer (MBC) who received taxane plus trastuzumab treatment. Br J Cancer 2013; 110:384-91. [PMID: 24346286 PMCID: PMC3899777 DOI: 10.1038/bjc.2013.757] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/27/2013] [Accepted: 10/31/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the role of human epidermal growth factor receptor (HER3) and PTEN expression in patients with HER2-overexpressing metastatic breast cancer (MBC). METHODS One hundred twenty-five MBC patients who were treated with taxane plus trastuzumab chemotherapy as first-line therapy were included in this analysis. Immunohistochemical (IHC) staining with HER3 and PTEN antibodies were conducted retrospectively. RESULTS Patients who had negative HER3 staining (62.4%) had a better progression-free survival (PFS) than did those who had positive HER3 staining (P=0.001; median PFS, 21 vs 11 months). Patients who had a PTEN score >20 (78.1%) showed longer PFS than did those with a PTEN score ≤20 (P=0.006; median PFS, 13 vs 9 months). Patients who had a PTEN score >20 exhibited a longer overall survival (OS) than did those with a PTEN score ≤20 (P=0.005; median OS, 48 vs 25 months). HER3 negativity and PTEN loss were identified as independent risk factors for PFS. PTEN loss was identified as an independent risk factor for OS. CONCLUSION HER3 and PTEN expressions may be predictive markers, and PTEN expression may be a predictive and prognostic biomarker for trastuzumab treatment in HER2-positive MBCs.
Collapse
Affiliation(s)
- Y H Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - H A Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - M K Choi
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - W Chang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Y L Choi
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - I-g Do
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - J S Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Y-H Im
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Brouxhon SM, Kyrkanides S, Teng X, Raja V, O'Banion MK, Clarke R, Byers S, Silberfeld A, Tornos C, Ma L. Monoclonal antibody against the ectodomain of E-cadherin (DECMA-1) suppresses breast carcinogenesis: involvement of the HER/PI3K/Akt/mTOR and IAP pathways. Clin Cancer Res 2013; 19:3234-46. [PMID: 23620408 PMCID: PMC4014632 DOI: 10.1158/1078-0432.ccr-12-2747] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Although targeted therapies against HER2 have been one of the most successful therapeutic strategies for breast cancer, patients eventually developed acquired resistance from compensatory upregulation of alternate HERs and mitogen-activated protein kinase-phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling. As we and others have shown that the soluble ectodomain fragment of E-cadherin exerts prooncogenic effects via HER1/2-mediated binding and activation of downstream prosurvival pathways, we explored whether targeting this ectodomain [DECMA-1 monoclonal antibody (mAb)] was effective in the treatment of HER2-positive (HER2(+)) breast cancers. EXPERIMENTAL DESIGN MMTV-PyMT transgenic mice and HER2(+)/E-cadherin-positive MCF-7 and BT474 trastuzumab-resistant (TtzmR) cells were treated with the DECMA-1 mAb. Antitumor responses were assessed by bromodeoxyuridine incorporation, apoptosis, and necrosis. The underlying intracellular prooncogenic pathways were explored using subcellular fractionation, immunoprecipitation, fluorescence microscopy, and immunoblotting. RESULTS Treatment with DECMA-1 mAb significantly delayed tumor onset and attenuated tumor burden in MMTV-PyMT mice by reducing tumor cell proliferation and inducing apoptosis without any detectable cytotoxicity to mice or end-organs. In vitro treatment of MCF-7 and BT474 TtzmR cells reduced proliferation and induced cancer cell apoptosis. Importantly, this inhibition of breast tumorigenesis was due to concomitant downregulation, via ubiquitin-mediated degradation through the lysosome and proteasome pathways, of all HER family members, components of downstream PI3K/Akt/mTOR prosurvival signaling and suppression of inhibitor of apoptosis proteins. CONCLUSIONS Our results establish that the E-cadherin ectodomain-specific mAb DECMA-1 inhibits Ecad(+)/HER2(+) breast cancers by hindering tumor growth and inducing apoptosis via downregulation of key oncogenic pathways involved in trastuzumab resistance, thereby establishing a novel therapeutic platform for the treatment of HER2(+) breast cancers.
Collapse
Affiliation(s)
- Sabine M Brouxhon
- Department of Emergency Medicine, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Han M, Deng HY, Jiang R. Effect of Trastuzumab on Notch-1 Signaling Pathway in Breast Cancer SK-BR3 Cells. Chin J Cancer Res 2013; 24:213-9. [PMID: 23358465 DOI: 10.1007/s11670-012-0213-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 11/20/2011] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To investigate the effects and mechanisms of trastuzumab on Notch-1 pathway in breast cancer cells, recognizing the significance of Notch-1 signaling pathway in trastuzumab resistance. METHODS Immunocytochemistry staining and Western blotting were employed to justify the expression of Notch-1 protein in HER2-overexpressing SK-BR3 cells and HER2-non-overexpressing breast cancer MDA-MB-231 cells. Western blotting and reverse transcription PCR (RT-PCR) were used to detect the activated Notch-1 and Notch-1 target gene HES-1 mRNA expression after SK-BR3 cells were treated with trastuzumab. Double immunofluorescence staining and co-immunoprecipitation were used to analyze the relationship of Notch-1 and HER2 proteins. RESULTS The level of Notch-1 nuclear localization and activated Notch-1 proteins in HER2-overexpressing cells were significantly lower than in HER2-non-overexpressing cells (P<0.01), and the expressions of activated Notch-1 and HES-1 mRNA were obviously increased after trastuzumab treatment (P<0.05), but HER2 expression did not change significantly for trastuzumab treating (P>0.05). Moreover, Notch-1 was discovered to co-localize and interact with HER2 in SK-BR3 cells. CONCLUSION Overexpression of HER2 decreased Notch-1 activity by the formation of a HER2-Notch1 complex, and trastuzumab can restore the activity of Notch-1 signaling pathway, which could be associated with cell resistance to trastuzumab.
Collapse
Affiliation(s)
- Ming Han
- Department of Pathophysiology, Laboratory for Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | | | | |
Collapse
|
29
|
Activation of the unfolded protein response bypasses trastuzumab-mediated inhibition of the PI-3K pathway. Cancer Lett 2012. [PMID: 23200669 DOI: 10.1016/j.canlet.2012.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
HER2-positive breast cancer initially responds to trastuzumab treatment, but over time, resistance develops and rapid cancer progression occurs, for which various explanations have been proposed. Here we tested the hypothesis that induction of the unfolded protein response (UPR) could override HER2 inhibition by trastuzumab, leading to the re-activation of growth signaling and the activation of the downstream target Lipocalin 2 (LCN2). Trastuzumab significantly inhibited the basal expression of LCN2 in HER2 (+) SKBr3 human breast cancer cells. The induction of the UPR completely abrogated trastuzumab-mediated LCN2 downregulation, and, in fact caused an increase in transcription and secretion of LCN2 over baseline. Reduction of the UPR using 4-phenyl butyric acid (PBA) a chemical chaperone that ameliorates ER stress, restored trastuzumab-mediated inhibition. Inhibition of the PI3K/AKT signaling pathway in trastuzumab-treated/UPR-induced SKBr3 cells partially reduced the upregulation of LCN2. These results suggest that the UPR is a possible way to override the effect of trastuzumab in HER2(+) cancer cells.
Collapse
|
30
|
Wu Y, Ginther C, Kim J, Mosher N, Chung S, Slamon D, Vadgama JV. Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells. Mol Cancer Res 2012; 10:1597-606. [PMID: 23071104 DOI: 10.1158/1541-7786.mcr-12-0155-t] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To understand the mechanisms leading to trastuzumab resistance in HER2-overexpressing breast tumors, we created trastuzumab-insensitive cell lines (SKBR3/100-8 and BT474/100-2). The cell lines maintain HER2 receptor overexpression and show increase in EGF receptor (EGFR). Upon trastuzumab treatment, SKBR3/100-8 and BT474/100-2 cell lines displayed increased growth rate and invasiveness. The trastuzumab resistance in SKBR3/100-8 and BT474/100-2 was accompanied with activation of the Wnt/β-catenin signaling pathway. Further investigation found that Wnt3 overexpression played a key role toward the development of trastuzumab resistance. The expression of Wnt3 in trastuzumab-resistant cells increased nuclear expression of β-catenin and transactivated expression of EGFR. The increased Wnt3 in the trastuzumab-resistant cells also promoted a partial EMT-like transition (epithelial-to-mesenchymal transition); increased N-cadherin, Twist, Slug; and decreased E-cadherin. Knockdown of Wnt3 by siRNA restored cytoplasmic expression of β-catenin and decreased EGFR expression in trastuzumab-resistant cells. Furthermore, the EMT markers were decreased, E-cadherin was increased, and the cell invasiveness was inhibited in response to the Wnt3 downregulation. Conversely, SKBR3 cells which had been stably transfected with full-length Wnt3 exhibited EMT-like transition. The Wnt3 transfectants, SKBR3/Wnt3-7 and SKBR3/Wnt3-9, showed a significant decrease in E-cadherin and increase in N-cadherin, Twist, and Slug. The cells were less sensitive to trastuzumab than parental SKBR3 and vector-transfected cells. In summary, our data suggest that Wnt3 overexpression activates Wnt/β-catenin signaling pathway that leads to transactivation of EGFR and promotes EMT-like transition. This could be an important mechanism leading to trastuzumab resistance in HER2-overexpressing breast cancer cells.
Collapse
Affiliation(s)
- Yanyuan Wu
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Ceran C, Cokol M, Cingoz S, Tasan I, Ozturk M, Yagci T. Novel anti-HER2 monoclonal antibodies: synergy and antagonism with tumor necrosis factor-α. BMC Cancer 2012; 12:450. [PMID: 23033967 PMCID: PMC3517359 DOI: 10.1186/1471-2407-12-450] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/11/2012] [Indexed: 11/13/2022] Open
Abstract
Background One-third of breast cancers display amplifications of the ERBB2 gene encoding the HER2 kinase receptor. Trastuzumab, a humanized antibody directed against an epitope on subdomain IV of the extracellular domain of HER2 is used for therapy of HER2-overexpressing mammary tumors. However, many tumors are either natively resistant or acquire resistance against Trastuzumab. Antibodies directed to different epitopes on the extracellular domain of HER2 are promising candidates for replacement or combinatorial therapy. For example, Pertuzumab that binds to subdomain II of HER2 extracellular domain and inhibits receptor dimerization is under clinical trial. Alternative antibodies directed to novel HER2 epitopes may serve as additional tools for breast cancer therapy. Our aim was to generate novel anti-HER2 monoclonal antibodies inhibiting the growth of breast cancer cells, either alone or in combination with tumor necrosis factor-α (TNF-α). Methods Mice were immunized against SK-BR-3 cells and recombinant HER2 extracellular domain protein to produce monoclonal antibodies. Anti-HER2 antibodies were characterized with breast cancer cell lines using immunofluorescence, flow cytometry, immunoprecipitation, western blot techniques. Antibody epitopes were localized using plasmids encoding recombinant HER2 protein variants. Antibodies, either alone or in combination with TNF-α, were tested for their effects on breast cancer cell proliferation. Results We produced five new anti-HER2 monoclonal antibodies, all directed against conformational epitope or epitopes restricted to the native form of the extracellular domain. When tested alone, some antibodies inhibited modestly but significantly the growth of SK-BR-3, BT-474 and MDA-MB-361 cells displaying ERBB2 amplification. They had no detectable effect on MCF-7 and T47D cells lacking ERBB2 amplification. When tested in combination with TNF-α, antibodies acted synergistically on SK-BR-3 cells, but antagonistically on BT-474 cells. A representative anti-HER2 antibody inhibited Akt and ERK1/2 phosphorylation leading to cyclin D1 accumulation and growth arrest in SK-BR-3 cells, independently from TNF-α. Conclusions Novel antibodies against extracellular domain of HER2 may serve as potent anti-cancer bioactive molecules. Cell-dependent synergy and antagonism between anti-HER2 antibodies and TNF-α provide evidence for a complex interplay between HER2 and TNF-α signaling pathways. Such complexity may drastically affect the outcome of HER2-directed therapeutic interventions.
Collapse
Affiliation(s)
- Ceyhan Ceran
- BilGen Genetics and Biotechnology Research Center, Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
32
|
Li Y, Shi L, Han C, Wang Y, Yang J, Cao C, Jiao S. Effects of ARHI on cell cycle progression and apoptosis levels of breast cancer cells. Tumour Biol 2012; 33:1403-10. [PMID: 22528939 DOI: 10.1007/s13277-012-0388-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/21/2012] [Indexed: 12/12/2022] Open
Abstract
The purposes of this study were to investigate the role of Aplysia Ras Homolog I (ARHI) on cell growth, proliferation, apoptosis, and other biological characteristics of HER2-positive breast cancer cells. Our goal was to provide experimental evidence for the development of future effective treatments of HER2-positive breast cancer. A pcDNA3.1-ARHI eukaryotic expression vector was constructed and transfected into the human HER2-positive breast cancer cell lines SK-BR-3 and JIMT-1. Then, various experimental methods were utilized to analyze the biological characteristics of ARHI-expressing breast cancer cells and to examine the impact of expression of the ARHI gene on cyclin D1, p27(Kip1), and calpain1 expression. We further analyzed the cells in each group after treatment with trastuzumab to examine the effects of this drug on various cellular characteristics. When we compared pcDNA3.1-ARHI-expressing SK-BR-3 and JIMT-1 cells to their respective empty vector and control groups, we found that cell viability was significantly lower (p < 0.05) in the ARHI-expressing cells, and the proportions of G1 phase cells and apoptotic cells were significantly higher in the ARHI-expressing cells (p < 0.05). In all groups of SK-BR-3 cells, trastuzumab treatment significantly decreased cell growth (p < 0.05). The proportion of cells in G1 phase and the number of apoptotic cells in the pcDNA3.1-ARHI-expressing group were significantly higher than that in the empty vector group and the control group (p < 0.05). The growth of pcDNA3.1-ARHI-transfected JIMT-1 cells was significantly decreased (p < 0.05), while the proportion of apoptotic cells was significantly increased (p < 0.05). Cell growth, viability, and the percentage of apoptotic cells were similar between the JIMT-1 empty vector and control groups. ARHI expression inhibited cyclin D1 expression in SK-BR-3 cells and JIMT-1 cells, while it promoted p27(Kip1) and calpain1 expression in these cells. ARHI expression inhibits the growth and proliferation of HER2-positive breast cancer cells, while it also promotes apoptosis in these cells. ARHI expression also improves the sensitivity of JIMT-1 cells to trastuzumab by inducing apoptosis.
Collapse
Affiliation(s)
- Ying Li
- Department of Oncology, Chinese PLA General Hospital, No. 28, FuXing Road, Beijing, 100853, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Somlo G, Martel CL, Lau SK, Frankel P, Ruel C, Gu L, Hurria A, Chung C, Luu T, Morgan R, Leong L, Koczywas M, McNamara M, Russell CA, Kane SE. A phase I/II prospective, single arm trial of gefitinib, trastuzumab, and docetaxel in patients with stage IV HER-2 positive metastatic breast cancer. Breast Cancer Res Treat 2011; 131:899-906. [PMID: 22042372 DOI: 10.1007/s10549-011-1850-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/19/2011] [Indexed: 10/16/2022]
Abstract
Inhibition of the HER-2 pathway via the monoclonal antibody trastuzumab has had a major impact in treatment of HER-2 positive breast cancer, but de novo or acquired resistance may reduce its effectiveness. The known interplay between the epidermal growth factor receptor (EGFR) and HER-2 receptors and pathways creates a rationale for combined anti-EGFR and anti-HER-2 therapy in HER-2 positive metastatic breast cancer (MBC), and toxicities associated with the use of multiple chemotherapeutic agents together with biological therapies may also be reduced. We conducted a prospective, single arm, phase I/II trial to determine the efficacy and toxicity of the combination of trastuzumab with the EGFR inhibitor gefitinib and docetaxel, in patients with HER-2 positive MBC. The maximum tolerated dose (MTD) was determined in the phase I portion. The primary end point of the phase II portion was progression-free survival (PFS). Immunohistochemical analysis of biomarker expression of the PKA-related proteins cAMP response element-binding protein (CREB), phospho-CREB and DARPP-32 (dopamine and cAMP-regulated phosphoprotein of 32 kDa) plus t-DARPP (the truncated isoform of DARPP-32); PTEN; p-p70 S6K; and EGFR was conducted on tissue from metastatic sites. Nine patients were treated in the phase I portion of the study and 22 in the phase II portion. The MTD was gefitinib 250 mg on days 2-14, trastuzumab 6 mg/kg, and docetaxel 60 mg/m(2) every 21 days. For the 29 patients treated at the MTD, median PFS was 12.7 months, with complete and partial response rates of 18 and 46%, and a stable disease rate of 29%. No statistically significant correlation was found between response and expression of any biomarkers. We conclude that the combination of gefitinib, trastuzumab, and docetaxel is feasible and effective. Expression of the biomarkers examined did not predict outcome in this sample of HER-2 overexpressing metastatic breast cancer.
Collapse
Affiliation(s)
- G Somlo
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, California, 91010, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gong C, Yao Y, Wang Y, Liu B, Wu W, Chen J, Su F, Yao H, Song E. Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J Biol Chem 2011; 286:19127-37. [PMID: 21471222 DOI: 10.1074/jbc.m110.216887] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trastuzumab resistance emerges to be a major issue in anti-human epidermal growth factor receptor 2 (HER2) therapy for breast cancers. Here, we demonstrated that miR-21 expression was up-regulated and its function was elevated in HER2(+) BT474, SKBR3, and MDA-MB-453 breast cancer cells that are induced to acquire trastuzumab resistance by long-term exposure to the antibody, whereas protein expression of the PTEN gene, a miR-21 target, was reduced. Blocking the action of miR-21 with antisense oligonucleotides re-sensitized the resistant cells to the therapeutic activities of trastuzumab by inducing growth arrest, proliferation inhibition, and G(1)-S cell cycle checking in the presence of the antibody. Ectopic expression of miR-21 in HER2(+) breast cancer cells confers resistance to trastuzumab. Rescuing PTEN expression with a p3XFLAG-PTEN-mut construct with deleted miR-21 targeting sequence at its 3' UTR restored the growth inhibition of trastuzumab in the resistant cells by inducing PTEN activation and AKT inhibition. In vivo, administering miR-21 antisense oligonucleotides restored trastuzumab sensitivity in the resistant breast cancer xenografts by inducing PTEN expression, whereas injection of miR-21 mimics conferred trastuzumab resistant in the sensitive breast tumors via PTEN silence. Up-regulatin of miR-21 in tumor biopsies obtained from patients receiving pre-operative trastuzumab therapy was associated with poor trastuzumab response. Therefore, miR-21 overexpression contributes to trastuzumab resistance in HER2(+) breast cancers and antagonizing miR-21 demonstrates therapeutic potential by sensitizing the malignancy to anti-HER2 treatment.
Collapse
Affiliation(s)
- Chang Gong
- Breast Tumor Center, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou 510120, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Esteva FJ, Guo H, Zhang S, Santa-Maria C, Stone S, Lanchbury JS, Sahin AA, Hortobagyi GN, Yu D. PTEN, PIK3CA, p-AKT, and p-p70S6K status: association with trastuzumab response and survival in patients with HER2-positive metastatic breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1647-56. [PMID: 20813970 DOI: 10.2353/ajpath.2010.090885] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphatase and tensin homolog (PTEN) is a key modulator of trastuzumab sensitivity in HER2-overexpressing breast cancer. Because PTEN opposes the downstream signaling of phosphoinositide 3-kinase (PI3K), we investigated the role of PTEN and other components of the PI3K pathway in trastuzumab resistance. We analyzed the status of PTEN, p-AKT-Ser473, and p-p70S6K-Thr389 using immunohistochemistry. PIK3CA mutation status was analyzed by direct sequencing. Primary tumor tissue was available from 137 patients with HER2-overexpressing metastatic breast cancer who had received trastuzumab-based chemotherapy. We observed that each of the four biomarkers alone did not significantly correlate with trastuzumab response, whereas PTEN loss alone significantly correlated with shorter survival times (P = 0.023). PI3K pathway activation, defined as PTEN loss and/or PIK3CA mutation, was associated with a poor response to trastuzumab (P = 0.047) and a shorter survival time (P = 0.015). PTEN loss was significantly associated with a poor response to trastuzumab (P = 0.028) and shorter survival time (P = 0.008) in patients who had received first-line trastuzumab and in patients with estrogen receptor- (P = 0.029) and progesterone receptor-negative tumors (P = 0.033). p-AKT-Ser473 and p-p70S6K-Thr389 each had a limited correlation with trastuzumab response. When these markers were combined with PTEN loss, an increased correlation with patient outcome was observed. In conclusion, PI3K pathway activation plays a pivotal role in trastuzumab resistance. Our findings may facilitate the evaluation of tumor response to trastuzumab-based and targeted therapies.
Collapse
Affiliation(s)
- Francisco J Esteva
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Metzger-Filho O, Vora T, Awada A. Management of metastatic HER2-positive breast cancer progression after adjuvant trastuzumab therapy - current evidence and future trends. Expert Opin Investig Drugs 2010; 19 Suppl 1:S31-9. [PMID: 20374028 DOI: 10.1517/13543781003730135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Trastuzumab is now considered the standard of care for the adjuvant treatment of human epidermal growth factor receptor-2 (HER2)-positive breast cancer patients, yet a sizable number of HER2-positive patients do not benefit from this treatment. For patients who progress on or after completion of adjuvant trastuzumab therapy, the standard of care is uncertain. Newer tyrosine kinase inhibitors and monoclonal antibodies are being evaluated in clinical trials for optimisation of treatment in this group. The interplay of HER2 and hormonal signalling pathways is being manipulated to see if response rates can be bettered. In this reveiw we explain the present role of the new molecules with a case scenario. The new anti-HER2 drugs have the potential to change clinical practise of targeting HER2 in the future. Better understanding of HER2 functions and interactions of different signalling pathways will be essential for optimal targetted therapies.
Collapse
|
37
|
O'Brien NA, Browne BC, Chow L, Wang Y, Ginther C, Arboleda J, Duffy MJ, Crown J, O'Donovan N, Slamon DJ. Activated Phosphoinositide 3-Kinase/AKT Signaling Confers Resistance to Trastuzumab but not Lapatinib. Mol Cancer Ther 2010; 9:1489-502. [DOI: 10.1158/1535-7163.mct-09-1171] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Wong ST. Emerging treatment combinations: integrating therapy into clinical practice. Am J Health Syst Pharm 2010; 66:S9-S14. [PMID: 19923318 DOI: 10.2146/ajhp090439] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To review data supporting the effectiveness of emerging treatment options for metastatic breast cancer. SUMMARY Recent research has focused on several signal-transduction pathways important in the pathogenesis of breast cancer. Mammalian target of rapamycin (mTOR) is a serine-threonine protein kinase that is involved in cell growth and survival. Everolimus, an orally active inhibitor of mTOR, has demonstrated promising efficacy results and a favorable safety profile in initial studies. Epidermal growth factor receptor (EGFR), a cell-surface molecule that has been implicated in the pathogenesis of breast cancer, may also be important in the emergence of resistance to endocrine therapy. Initial clinical studies have suggested that EGFR inhibitors such as gefitinib may delay the development of resistance to endocrine therapy in patients with breast cancer when given concurrently with tamoxifen or an aromatase inhibitor. Finally, considerable recent research has examined the role of epigenetic gene silencing, in which acetylation or deacetylation of DNA modifies the expression of tumor-suppressing genes. The enzyme histone deacetylase (HDAC) suppresses gene transcription by modifying chromatin into a more compact form. HDAC inhibitors have emerged as a potential new treatment option for several cancer types, including breast cancer. The HDAC inhibitor vorinostat has recently been examined in combination with other treatments, including cytotoxic agents and bevacizumab, for the treatment of breast cancer. In one small Phase I and II study, first-line treatment with the combination of vorinostat, paclitaxel, and bevacizumab produced objective responses (partial or complete) in more than 50% of patients with recurrent or metastatic breast cancer. CONCLUSIONS Although the results of the described studies are promising, randomized controlled clinical trials are needed to better understand the efficacy and safety of emerging treatment options for patients with metastatic breast cancer.
Collapse
Affiliation(s)
- Serena T Wong
- The Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08903-2681, USA.
| |
Collapse
|
39
|
Abstract
HER2 is a transmembrane oncoprotein encoded by the HER2/neu gene and is overexpressed in approximately 20 to 25% of invasive breast cancers. It can be therapeutically targeted by trastuzumab, a humanized IgG1 kappa light chain monoclonal antibody. Although trastuzumab is currently considered one of the most effective treatments in oncology, a significant number of patients with HER2-overexpressing breast cancer do not benefit from it. Understanding the mechanisms of action and resistance to trastuzumab is therefore crucial for the development of new therapeutic strategies. This review discusses proposed trastuzumab mode of action as well as proposed mechanisms for resistance. Mechanisms for resistance are grouped into four main categories: (1) obstacles preventing trastuzumab binding to HER2; (2) upregulation of HER2 downstream signaling pathways; (3) signaling through alternate pathways; and (4) failure to trigger an immune-mediated mechanism to destroy tumor cells. These potential mechanisms through which trastuzumab resistance may arise have been used as a guide to develop drugs, presently in clinical trials, to overcome resistance. The mechanisms conferring trastuzumab resistance, when completely understood, will provide insight on how best to treat HER2-overexpressing breast cancer. The understanding of each mechanism of resistance is therefore critical for the educated development of strategies to overcome it, as well as for the development of tools that would allow definitive and efficient patient selection for each therapy. (Clin Cancer Res 2009;15(24):7479-91).
Collapse
Affiliation(s)
- Paula R. Pohlmann
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ingrid A. Mayer
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Breast Cancer Research Program, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ray Mernaugh
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
40
|
Calpain regulates sensitivity to trastuzumab and survival in HER2-positive breast cancer. Oncogene 2009; 29:1339-50. [PMID: 19946330 DOI: 10.1038/onc.2009.422] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Resistance to anti-HER2 (human epithelial growth factor receptor 2) trastuzumab therapy occurs commonly in HER2-positive breast cancer and involves overactivation of HER2 and/or AKT1. Using the model of trastuzumab-sensitive or trastuzumab-resistant HER2-positive cells with wild-type PTEN, negative regulator of AKT1, we explore the involvement of cysteine protease calpain in mechanisms of trastuzumab resistance. Overexpression of calpain1 or activation of endogenous calpain during adhesion or trastuzumab treatment of trastuzumab-sensitive cells induces cleavage of cytoplasmic domains of HER2/phospho-HER2; cleavage occurs in HER2-positive tumors. Expression of the catalytically inactive mutant of calpain1 reduces the cleavage to enhance the activity of HER2, inactivates PTEN to enhance the activation of AKT1, induces desensitization to trastuzumab and promotes survival of trastuzumab-sensitive cells. In the model of trastuzumab resistance, constitutive overactivation of HER2 and AKT1 correlates with reduced activation of calpain. Moreover, inhibitors of the catalytic site of calpain reduce the increase in constitutive activity of AKT1 and survival of trastuzumab-resistant cells selectively. Together, by regulating the activation of HER2 and PTEN/AKT1, calpain regulates trastuzumab sensitivity and survival, and the deregulation of the activation of calpain promotes trastuzumab resistance. Trastuzumab-resistant cells activate AKT1 in a mechanism dependent on the residual calpain activity, inhibition of which restores trastuzumab sensitivity and rescues resistance. These data identify calpain as a new therapeutic target in HER2-positive breast cancer.
Collapse
|
41
|
Gu L, Lau SK, Loera S, Somlo G, Kane SE. Protein kinase A activation confers resistance to trastuzumab in human breast cancer cell lines. Clin Cancer Res 2009; 15:7196-206. [PMID: 19920112 DOI: 10.1158/1078-0432.ccr-09-0585] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE Trastuzumab is a monoclonal antibody targeted to the Her2 receptor and approved for treatment of Her2-positive breast cancer. Among patients who initially respond to trastuzumab therapy, resistance typically arises within 1 year. BT/Her(R) cells are trastuzumab-resistant variants of Her2-positive BT474 breast cancer cells. The salient feature of BT/Her(R) cells is failure to downregulate phosphoinositide 3-kinase/Akt signaling on trastuzumab binding. The current work addresses the mechanism of sustained signaling in BT/Her(R) cells, focusing on the protein kinase A (PKA) pathway. EXPERIMENTAL DESIGN We performed microarray analysis on BT/Her(R) and BT474 cell lines to identify genes that were upregulated or downregulated in trastuzumab-resistant cells. Specific genes in the PKA pathway were quantified using reverse transcription-PCR and Western hybridization. Small interfering RNA transfection was used to determine the effects of gene knockdown on cellular response to trastuzumab. Electrophoretic mobility shift assays were used to measure cyclic AMP-responsive element binding activity under defined conditions. Immunohistochemistry was used to analyze protein expression in clinical samples. RESULTS BT/Her(R) cells had elevated PKA signaling activity and several genes in the PKA regulatory network had altered expression in these cells. Downregulation of one such gene, the PKA-RIIalpha regulatory subunit, conferred partial trastuzumab resistance in Her2-positive BT474 and SK-Br-3 cell lines. Forskolin activation of PKA also produced significant protection against trastuzumab-mediated Akt dephosphorylation. In patient samples, PKA signaling appeared to be enhanced in residual disease remaining after trastuzumab-containing neoadjuvant therapy. CONCLUSIONS Activation of PKA signaling may be one mechanism contributing to trastuzumab resistance in Her2-positive breast cancer. We propose a molecular model by which PKA confers its effects.
Collapse
Affiliation(s)
- Long Gu
- Division of Tumor Cell Biology, City of Hope Comprehensive Cancer Center, Duarte, California 91107, USA
| | | | | | | | | |
Collapse
|
42
|
Wong ST, Goodin S. Overcoming drug resistance in patients with metastatic breast cancer. Pharmacotherapy 2009; 29:954-65. [PMID: 19637949 DOI: 10.1592/phco.29.8.954] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Metastatic breast cancer is generally considered to be incurable, with response rates and duration of response progressively declining with subsequent lines of treatment. Tumors are either intrinsically resistant to systemic therapy or acquire resistance at some point during multiple courses of therapy. Mechanisms of drug resistance are numerous and include accelerated drug efflux, drug activation and inactivation, alterations in drug target, processing of drug-induced damage, and evasion of apoptosis. Targeted anticancer agents for the treatment of breast cancer, such as hormonal agents or the more recently approved epidermal growth factor receptor inhibitors, are also associated with intrinsic and acquired resistance. A variety of strategies have been devised to prevent or overcome resistance to systemic anticancer therapy, including drug combinations and sequential regimens. However, it appears that resistance to established cytotoxic and targeted agents is inevitable. Novel agents with reduced susceptibility to resistance may prevent or delay the emergence of resistance and improve survival in patients with common solid tumors, including metastatic breast cancer. We are hopeful that further elucidation of the cellular and molecular processes that allow tumor cells to develop resistance and the use of new agents to combat these mechanisms will improve outcomes for patients with metastatic breast cancer.
Collapse
Affiliation(s)
- Serena T Wong
- Department of Medicine, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey 08903, USA
| | | |
Collapse
|
43
|
Darpp-32 and its truncated variant t-Darpp have antagonistic effects on breast cancer cell growth and herceptin resistance. PLoS One 2009; 4:e6220. [PMID: 19593441 PMCID: PMC2704867 DOI: 10.1371/journal.pone.0006220] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 06/11/2009] [Indexed: 11/30/2022] Open
Abstract
Background Herceptin (trastuzumab) is a humanized monoclonal antibody that is approved for the treatment of metastatic breast cancer patients whose tumors overexpress Her2 (erbB2/neu). Up to 70% of Her2-positive breast cancers demonstrate a response to Herceptin-based therapies, but resistance almost inevitably arises within a year of the initial response. To help understand the mechanism of Herceptin resistance, we isolated clonal variants of Her2-positive BT474 human breast cancer cells (BT/HerR) that are highly resistant to Herceptin. These cell lines exhibit sustained PI3K/Akt signaling as an essential component of Herceptin-resistant proliferation. Several genes in the protein kinase A (PKA) signaling network have altered expression in BT/HerR cells, including PPP1R1B, which encodes a 32 kDa protein known as Darpp-32 and its amino-terminal truncated variant, t-Darpp. The purpose of the current work was to determine the role of Darpp-32 and t-Darpp in Herceptin resistance. Methodology and Results We determined expression of Darpp-32 and t-Darpp in BT/HerR cells selected for resistance to Herceptin. Subsequently, cDNAs encoding the two isoforms of Darpp-32 were transfected, separately and together, into Her2-positive SK-Br-3 breast cancer cells. Transfected cells were tested for resistance to Herceptin and Herceptin-mediated dephosphorylation of Akt. DNA binding activity by the cAMP response element binding protein (CREB) was also measured. We found that BT/HerR cells overexpressed t-Darpp but not Darpp-32. Moreover, t-Darpp overexpression in SK-Br-3 cells was sufficient for conferring resistance to Herceptin and Herceptin-mediated dephosphorylation of Akt. Darpp-32 co-expression reversed t-Darpp's effects on Herceptin resistance and Akt phosphorylation. t-Darpp overexpression led to increased CREB binding activity, which was also reversible by Darpp-32. Conclusions t-Darpp and Darpp-32 appear to have antagonistic effects on Herceptin resistance. We present a unified model by which these effects might be mediated via the PKA regulatory network.
Collapse
|
44
|
Abstract
Significant advances in molecular-targeted therapies have provided more effective and less aggressive forms of therapy for patients with HER2-overexpressing metastatic breast cancers. Despite the initial encouraging results of many therapeutic randomized trials that have been undertaken in this setting, de novo and acquired resistance to trastuzumab, the first anti-HER2 monoclonal antibody to demonstrate significant activity in this setting, can occur. Because recent studies strongly support a role for trastuzumab in not only the management of metastatic disease but also the adjuvant setting for HER2-overexpressing breast cancers, the clinical problem of trastuzumab resistance is becoming increasingly important. Specific recommendations for the optimal treatment of HER2-overexpressing metastatic disease are challenging because considerable advances in the field have been made. This article will review some of the main points to be considered for decision-making in anti-HER2 treatment in the metastatic setting: (1) the benefit of continued trastuzumab after progression on a first-line trastuzumab-containing regimen, (2) novel agents that have been recently added to the plethora of drugs available to treat HER2-overexpressing breast cancers, and (3) molecular mechanisms that contribute to trastuzumab resistance. These issues are imperative in identifying novel therapeutic targets with the goal of increasing the magnitude and duration of response to trastuzumab-based treatment.
Collapse
Affiliation(s)
- Ingrid A Mayer
- Department of Medicine and Breast Cancer Research Program, Vanderbilt-Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
45
|
MUC1* is a determinant of trastuzumab (Herceptin) resistance in breast cancer cells. Breast Cancer Res Treat 2009; 118:113-24. [PMID: 19415485 DOI: 10.1007/s10549-009-0412-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 04/21/2009] [Indexed: 12/13/2022]
Abstract
In the United States, 211,000 women are diagnosed each year with breast cancer. Of the 42,000 breast cancer patients who overexpress the HER2 growth factor receptor, <35% are responsive to treatment with the HER2-disabling antibody, called trastuzumab (Herceptin). Despite those statistics, women diagnosed with breast cancer are now tested to determine how much of this important growth factor receptor is present in their tumor because patients whose treatment includes trastuzumab are three-times more likely to survive for at least 5 years and are two-times more likely to survive without a cancer recurrence. Unfortunately, even among the group whose cancers originally respond to trastuzumab, 25% of the metastatic breast cancer patients acquire resistance to trastuzumab within the first year of treatment. Follow-on "salvage" therapies have prolonged life for this group but have not been curative. Thus, it is critically important to understand the mechanisms of trastuzumab resistance and develop therapies that reverse or prevent it. Here, we report that molecular analysis of a cancer cell line that was induced to acquire trastuzumab resistance showed a dramatic increase in the amount of the cleaved form of the MUC1 protein, called MUC1*. We recently reported that MUC1* functions as a growth factor receptor on cancer cells and on embryonic stem cells. Here, we show that treating trastuzumab-resistant cancer cells with a combination of MUC1* antagonists and trastuzumab, reverses the drug resistance. Further, HER2-positive cancer cells that are intrinsically resistant to trastuzumab became trastuzumab-sensitive when treated with MUC1* antagonists and trastuzumab. Additionally, we found that tumor cells that had acquired Herceptin resistance had also acquired resistance to standard chemotherapy agents like Taxol, Doxorubicin, and Cyclophosphamide. Acquired resistance to these standard chemotherapy drugs was also reversed by combined treatment with the original drug plus a MUC1* inhibitor.
Collapse
|
46
|
Cho HY, Thomas S, Golden EB, Gaffney KJ, Hofman FM, Chen TC, Louie SG, Petasis NA, Schönthal AH. Enhanced killing of chemo-resistant breast cancer cells via controlled aggravation of ER stress. Cancer Lett 2009; 282:87-97. [PMID: 19345476 DOI: 10.1016/j.canlet.2009.03.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/10/2009] [Accepted: 03/02/2009] [Indexed: 11/17/2022]
Abstract
Moderate activity of the endoplasmic reticulum (ER) stress response system exerts anti-apoptotic function and supports tumor cell survival and chemoresistance, whereas its more severe aggravation may exceed the protective capacity of this system and turn on its pro-apoptotic module. In this study, we investigated whether the combination of two pharmacologic agents with known ability to trigger ER stress via different mechanisms would synergize and lead to enhanced tumor cell death. We combined the HIV protease inhibitor nelfinavir (Viracept) and the cyclooxygenase 2 (COX-2) inhibitor celecoxib (Celebrex) and investigated their combined effect on ER stress and on the viability of breast cancer cells. We found that this drug combination aggravated ER stress and caused pronounced toxicity in human breast cancer cell lines, inclusive of variants that were highly resistant to other therapeutic treatments, such as doxorubicin, paclitaxel, or trastuzumab. The anti-tumor effects of celecoxib were mimicked at increased potency by its non-coxib analog, 2,5-dimethyl-celecoxib (DMC), but were substantially weaker in the case of unmethylated-celecoxib (UMC), a derivative with superior COX-2 inhibitory efficacy. We conclude that the anti-tumor effects of nelfinavir can be enhanced by celecoxib analogs in a COX-2 independent fashion via the aggravation of ER stress, and such drug combinations should be considered as a beneficial adjunct to the treatment of drug-resistant breast cancers.
Collapse
Affiliation(s)
- Hee-Yeon Cho
- Department of Molecular Microbiology and Immunology, University of Southern California, 2011 Zonal Ave., Los Angeles, CA 90089-9094, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Both t-Darpp and DARPP-32 can cause resistance to trastuzumab in breast cancer cells and are frequently expressed in primary breast cancers. Breast Cancer Res Treat 2009; 120:47-57. [DOI: 10.1007/s10549-009-0364-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 02/28/2009] [Indexed: 11/26/2022]
|
48
|
Jo Chien A, Rugo HS. Lapatinib: new directions in HER2 directed therapy for early stage breast cancer. Cancer Treat Res 2009; 151:197-215. [PMID: 19593514 DOI: 10.1007/978-0-387-75115-3_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- A Jo Chien
- University of California San Francisco, San Francisco, CA, US.
| | | |
Collapse
|
49
|
Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, Blättler WA, Lambert JM, Chari RVJ, Lutz RJ, Wong WLT, Jacobson FS, Koeppen H, Schwall RH, Kenkare-Mitra SR, Spencer SD, Sliwkowski MX. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 2008; 68:9280-90. [PMID: 19010901 DOI: 10.1158/0008-5472.can-08-1776] [Citation(s) in RCA: 1232] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
HER2 is a validated target in breast cancer therapy. Two drugs are currently approved for HER2-positive breast cancer: trastuzumab (Herceptin), introduced in 1998, and lapatinib (Tykerb), in 2007. Despite these advances, some patients progress through therapy and succumb to their disease. A variation on antibody-targeted therapy is utilization of antibodies to deliver cytotoxic agents specifically to antigen-expressing tumors. We determined in vitro and in vivo efficacy, pharmacokinetics, and toxicity of trastuzumab-maytansinoid (microtubule-depolymerizing agents) conjugates using disulfide and thioether linkers. Antiproliferative effects of trastuzumab-maytansinoid conjugates were evaluated on cultured normal and tumor cells. In vivo activity was determined in mouse breast cancer models, and toxicity was assessed in rats as measured by body weight loss. Surprisingly, trastuzumab linked to DM1 through a nonreducible thioether linkage (SMCC), displayed superior activity compared with unconjugated trastuzumab or trastuzumab linked to other maytansinoids through disulfide linkers. Serum concentrations of trastuzumab-MCC-DM1 remained elevated compared with other conjugates, and toxicity in rats was negligible compared with free DM1 or trastuzumab linked to DM1 through a reducible linker. Potent activity was observed on all HER2-overexpressing tumor cells, whereas nontransformed cells and tumor cell lines with normal HER2 expression were unaffected. In addition, trastuzumab-DM1 was active on HER2-overexpressing, trastuzumab-refractory tumors. In summary, trastuzumab-DM1 shows greater activity compared with nonconjugated trastuzumab while maintaining selectivity for HER2-overexpressing tumor cells. Because trastuzumab linked to DM1 through a nonreducible linker offers improved efficacy and pharmacokinetics and reduced toxicity over the reducible disulfide linkers evaluated, trastuzumab-MCC-DM1 was selected for clinical development.
Collapse
|
50
|
Chan CT, Paulmurugan R, Reeves RE, Solow-Cordero D, Gambhir SS. Molecular imaging of phosphorylation events for drug development. Mol Imaging Biol 2008; 11:144-58. [PMID: 19048345 DOI: 10.1007/s11307-008-0187-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/23/2008] [Accepted: 07/23/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE Protein phosphorylation mediated by protein kinases controls numerous cellular processes. A genetically encoded, generalizable split firefly luciferase (FL)-assisted complementation system was developed for noninvasive monitoring phosphorylation events and efficacies of kinase inhibitors in cell culture and in small living subjects by optical bioluminescence imaging. PROCEDURES An Akt sensor (AST) was constructed to monitor Akt phosphorylation and the effect of different PI-3K and Akt inhibitors. Specificity of AST was determined using a non-phosphorylable mutant sensor containing an alanine substitution (ASA). RESULTS The PI-3K inhibitor LY294002 and Akt kinase inhibitor perifosine led to temporal- and dose-dependent increases in complemented FL activities in 293T human kidney cancer cells stably expressing AST (293T/AST) but not in 293T/ASA cells. Inhibition of endogenous Akt phosphorylation and kinase activities by perifosine also correlated with increase in complemented FL activities in 293T/AST cells but not in 293T/ASA cells. Treatment of nude mice bearing 293T/AST xenografts with perifosine led to a 2-fold increase in complemented FL activities compared to that of 293T/ASA xenografts. Our system was used to screen a small chemical library for novel modulators of Akt kinase activity. CONCLUSION This generalizable approach for noninvasive monitoring of phosphorylation events will accelerate the discovery and validation of novel kinase inhibitors and modulators of phosphorylation events.
Collapse
Affiliation(s)
- C T Chan
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|