1
|
Shang Y, Pang Y, Liu T, Wang W. Application of mass cytometry in the immune microenvironment of breast cancer. Med Oncol 2025; 42:215. [PMID: 40388018 DOI: 10.1007/s12032-025-02770-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/29/2025] [Indexed: 05/20/2025]
Abstract
The rapid development of immunotherapy has shown preliminary clinical efficacy and significant anti-tumor effects in some cancer patients. Although immunotherapy has been approved for breast cancer, some breast cancer patients still do not benefit from it due to issues such as immunotherapy insensitivity and resistance. Mass cytometry, as a mature single-cell proteomic analysis method, with its high-throughput capabilities, has been widely used in the analysis of tumor immune microenvironments and immune cell subpopulations. Using mass cytometry to analyze the immune microenvironment of breast cancer and explore new immunotherapy targets can help improve the current status of breast cancer immunotherapy and develop personalized treatment plans for more patients. This review surveys the recent advancements in analyzing the single-cell components of breast cancer using mass cytometry technology and reviews the immune microenvironment of breast cancer as well as potential targets for immunotherapy. These results provide new insights for the subsequent research of the immune microenvironment of breast cancer and targeted immunotherapy.
Collapse
Affiliation(s)
- Yuefeng Shang
- Department of Radiation Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Yuheng Pang
- Department of Radiation Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Tong Liu
- Department of Radiation Oncology, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, No.8, Xi Tou Tiao, Youanmen Wai, Fengtai District, Beijing, 100069, People's Republic of China.
| |
Collapse
|
2
|
Otaibi AA, Sherwani S, Al-Zahrani SA, Alshammari EM, Khan WA, Alsukaibi AKD, Khan SN, Khan MWA. Biologically Active α-Amino Amide Analogs and γδ T Cells-A Unique Anticancer Approach for Leukemia. Front Oncol 2021; 11:706586. [PMID: 34322393 PMCID: PMC8311656 DOI: 10.3389/fonc.2021.706586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/16/2021] [Indexed: 12/29/2022] Open
Abstract
Advanced stage cancers are aggressive and difficult to treat with mono-therapeutics, substantially decreasing patient survival rates. Hence, there is an urgent need to develop unique therapeutic approaches to treat cancer with superior potency and efficacy. This study investigates a new approach to develop a potent combinational therapy to treat advanced stage leukemia. Biologically active α-amino amide analogs (RS)-N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl)-N-phenylpropiolamide (α-AAA-A) and (RS)-N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl)-N-phenylbut2-enamide (α-AAA-B) were synthesized using linear Ugi multicomponent reaction. Cytotoxicities and IC50 values of α-AAA-A and α-AAA-B against leukemia cancer cell lines (HL-60 and K562) were analyzed though MTT assay. Cytotoxic assay analyzed percent killing of leukemia cell lines due to the effect of γδ T cells alone or in combination with α-AAA-A or α-AAA-B. Synthesized biologically active molecule α-AAA-A exhibited increased cytotoxicity of HL-60 (54%) and K562 (44%) compared with α-AAA-B (44% and 36% respectively). Similarly, α-AAA-A showed low IC50 values for HL-60 (1.61 ± 0.11 μM) and K562 (3.01 ± 0.14 μM) compared to α-AAA-B (3.12 ± 0.15 μM and 6.21 ± 0.17 μM respectively). Additive effect of amide analogs and γδ T cells showed significantly high leukemia cancer cell killing as compared to γδ T cells alone. A unique combinational therapy with γδ T cells and biologically active anti-cancer molecules (α-AAA-A/B), concomitantly may be a promising cancer therapy.
Collapse
Affiliation(s)
- Ahmed Al Otaibi
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Subuhi Sherwani
- Department of Biology, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | | | | | - Wahid Ali Khan
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | | | - Shahper Nazeer Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, India
| | - Mohd Wajid Ali Khan
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il, Saudi Arabia
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| |
Collapse
|
3
|
Chen S, Li Z, Huang W, Wang Y, Fan S. Prognostic and Therapeutic Significance of BTN3A Proteins in Tumors. J Cancer 2021; 12:4505-4512. [PMID: 34149914 PMCID: PMC8210570 DOI: 10.7150/jca.57831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
The Butyrophilin 3A (BTN3A) family is a type I transmembrane protein belonging to the immunoglobulin (Ig) superfamily. The family contains three members: BTN3A1, BTN3A2 and BTN3A3, which share 95% homology in the extracellular domain. The expression of BTN3A family members is different in different types of tumors, which plays an important role in tumor prognosis. Among them, there are many studies on tumor immunity of BTN3A1, which shows that it is essential for the activation of Vγ9Vδ2 T cells, while BTN3A3 is expected to become a potential therapeutic target for breast cancer. Recent studies have shown that the BTN3A family is closely related to the occurrence and development of tumors. Now the BTN3A family has become one of the research hotspots and is expected to become new tumor prediction and treatment targets.
Collapse
Affiliation(s)
- Sihan Chen
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Zhangyun Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Wenyi Huang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yanyan Wang
- Department of Ultrasonic Medicine, Xuzhou First People's Hospital, Jiangsu, China
| | - Shaohua Fan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
4
|
Chen Y, Meng Z, Zhang L, Liu F. CD2 Is a Novel Immune-Related Prognostic Biomarker of Invasive Breast Carcinoma That Modulates the Tumor Microenvironment. Front Immunol 2021; 12:664845. [PMID: 33968066 PMCID: PMC8102873 DOI: 10.3389/fimmu.2021.664845] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/07/2021] [Indexed: 12/18/2022] Open
Abstract
Female breast cancer (BCa) is the most commonly occurring cancer worldwide. The tumor microenvironment (TME) plays an essential role in tumor invasion, angiogenesis, unlimited proliferation, and even immune escape, but we know little about the TME of BCa. In this study, we aimed to find a TME-related biomarker for BCa, especially for invasive breast carcinoma (BRCA), that could predict prognosis and immunotherapy efficacy. Based on RNA-seq transcriptome data and the clinical characteristics of 1222 samples (113 normal and 1109 tumor samples) from The Cancer Genome Atlas (TCGA) database, we used the ESTIMATE algorithm to calculate the ImmuneScore and StromalScore and then identified differentially expressed genes (DEGs) between the high and low ImmuneScore groups and the high and low StromalScore groups. Thereafter, a protein–protein interaction (PPI) network analysis and univariate Cox regression analyses of overall survival were used to identify potential key genes. Five candidate genes were identified, comprising CD2, CCL19, CD52, CD3E, and ITK. Thereafter, we focused on CD2, analyzing CD2 expression and its association with survival. CD2 expression was associated with tumor size (T stage) to some extent, but not with overall TNM stage, lymph node status (N stage), or distant metastasis (M stage). High CD2 expression was associated with longer survival. METABRIC data were used to validate the survival result (n = 276). Gene set enrichment analysis (GSEA) showed that the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were significantly associated with high CD2 expression were mainly immune-related pathways. Furthermore, CD2 expression was correlated with 16 types of tumor-infiltrating immune cells (TICs). Hence, CD2 might be a novel biomarker in terms of molecular typing, and it may serve as a complementary approach to TNM staging to improve clinical outcome prediction for BCa patients.
Collapse
Affiliation(s)
- Yanzhu Chen
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhishang Meng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhang
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Feng Liu
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
5
|
Craven KE, Gökmen-Polar Y, Badve SS. CIBERSORT analysis of TCGA and METABRIC identifies subgroups with better outcomes in triple negative breast cancer. Sci Rep 2021; 11:4691. [PMID: 33633150 PMCID: PMC7907367 DOI: 10.1038/s41598-021-83913-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Studies have shown that the presence of tumor infiltrating lymphocytes (TILs) in Triple Negative Breast Cancer (TNBC) is associated with better prognosis. However, the molecular mechanisms underlying these immune cell differences are not well delineated. In this study, analysis of hematoxylin and eosin images from The Cancer Genome Atlas (TCGA) breast cancer cohort failed to show a prognostic benefit of TILs in TNBC, whereas CIBERSORT analysis, which quantifies the proportion of each immune cell type, demonstrated improved overall survival in TCGA TNBC samples with increased CD8 T cells or CD8 plus CD4 memory activated T cells and in Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) TNBC samples with increased gamma delta T cells. Twenty-five genes showed mutational frequency differences between the TCGA high and low T cell groups, and many play important roles in inflammation or immune evasion (ATG2B, HIST1H2BC, PKD1, PIKFYVE, TLR3, NOTCH3, GOLGB1, CREBBP). Identification of these mutations suggests novel mechanisms by which the cancer cells attract immune cells and by which they evade or dampen the immune system during the cancer immunoediting process. This study suggests that integration of mutations with CIBERSORT analysis could provide better prediction of outcomes and novel therapeutic targets in TNBC cases.
Collapse
Affiliation(s)
- Kelly E Craven
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Yesim Gökmen-Polar
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sunil S Badve
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
6
|
Fattori S, Gorvel L, Granjeaud S, Rochigneux P, Rouvière MS, Ben Amara A, Boucherit N, Paul M, Dauplat MM, Thomassin-Piana J, Paciencia-Gros M, Avenin M, Pakradouni J, Barrou J, Charafe-Jauffret E, Houvenaeghel G, Lambaudie E, Bertucci F, Goncalves A, Tarpin C, Nunès JA, Devillier R, Chretien AS, Olive D. Quantification of Immune Variables from Liquid Biopsy in Breast Cancer Patients Links Vδ2 + γδ T Cell Alterations with Lymph Node Invasion. Cancers (Basel) 2021; 13:441. [PMID: 33503843 PMCID: PMC7865589 DOI: 10.3390/cancers13030441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 01/12/2023] Open
Abstract
The rationale for therapeutic targeting of Vδ2+ γδ T cells in breast cancer is strongly supported by in vitro and murine preclinical investigations, characterizing them as potent breast tumor cell killers and source of Th1-related cytokines, backing cytotoxic αβ T cells. Nonetheless, insights regarding Vδ2+ γδ T cell phenotypic alterations in human breast cancers are still lacking. This paucity of information is partly due to the challenging scarcity of these cells in surgical specimens. αβ T cell phenotypic alterations occurring in the tumor bed are detectable in the periphery and correlate with adverse clinical outcomes. Thus, we sought to determine through an exploratory study whether Vδ2+ γδ T cells phenotypic changes can be detected within breast cancer patients' peripheral blood, along with association with tumor progression. By using mass cytometry, we quantified 130 immune variables from untreated breast cancer patients' peripheral blood. Supervised analyses and dimensionality reduction algorithms evidenced circulating Vδ2+ γδ T cell phenotypic alterations already established at diagnosis. Foremost, terminally differentiated Vδ2+ γδ T cells displaying phenotypes of exhausted senescent T cells associated with lymph node involvement. Thereby, our results support Vδ2+ γδ T cells implication in breast cancer pathogenesis and progression, besides shedding light on liquid biopsies to monitor surrogate markers of tumor-infiltrating Vδ2+ γδ T cell antitumor activity.
Collapse
Affiliation(s)
- Stéphane Fattori
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Laurent Gorvel
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Samuel Granjeaud
- Systems Biology Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France;
| | - Philippe Rochigneux
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France; (F.B.); (A.G.); (C.T.)
| | - Marie-Sarah Rouvière
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Amira Ben Amara
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Nicolas Boucherit
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Magali Paul
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Marie Mélanie Dauplat
- Department of Pathology, Institut Paoli-Calmettes, 13009 Marseille, France; (M.M.D.); (J.T.-P.); (M.P.-G.); (M.A.); (E.C.-J.)
| | - Jeanne Thomassin-Piana
- Department of Pathology, Institut Paoli-Calmettes, 13009 Marseille, France; (M.M.D.); (J.T.-P.); (M.P.-G.); (M.A.); (E.C.-J.)
| | - Maria Paciencia-Gros
- Department of Pathology, Institut Paoli-Calmettes, 13009 Marseille, France; (M.M.D.); (J.T.-P.); (M.P.-G.); (M.A.); (E.C.-J.)
| | - Morgan Avenin
- Department of Pathology, Institut Paoli-Calmettes, 13009 Marseille, France; (M.M.D.); (J.T.-P.); (M.P.-G.); (M.A.); (E.C.-J.)
| | - Jihane Pakradouni
- Department of Clinical Research and Innovations, Institut Paoli-Calmettes, 13009 Marseille, France;
| | - Julien Barrou
- Department of Surgical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France; (J.B.); (G.H.); (E.L.)
| | - Emmanuelle Charafe-Jauffret
- Department of Pathology, Institut Paoli-Calmettes, 13009 Marseille, France; (M.M.D.); (J.T.-P.); (M.P.-G.); (M.A.); (E.C.-J.)
- Team Epithelial Stem Cells and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix Marseille University, UM 105, 13005 Marseille, France
| | - Gilles Houvenaeghel
- Department of Surgical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France; (J.B.); (G.H.); (E.L.)
- Faculty of Medical and Paramedic Sciences, Aix Marseille University, UM 105, 13005 Marseille, France
| | - Eric Lambaudie
- Department of Surgical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France; (J.B.); (G.H.); (E.L.)
- Faculty of Medical and Paramedic Sciences, Aix Marseille University, UM 105, 13005 Marseille, France
| | - François Bertucci
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France; (F.B.); (A.G.); (C.T.)
- Team Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France
| | - Anthony Goncalves
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France; (F.B.); (A.G.); (C.T.)
- Team Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France
| | - Carole Tarpin
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France; (F.B.); (A.G.); (C.T.)
| | - Jacques A. Nunès
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
| | - Raynier Devillier
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix Marseille University, UM 105, 13005 Marseille, France
- Department of Haematology, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Anne-Sophie Chretien
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix Marseille University, UM 105, 13005 Marseille, France
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, UM 105, 13009 Marseille, France; (S.F.); (L.G.); (P.R.); (M.-S.R.); (A.B.A.); (N.B.); (M.P.); (J.A.N.); (R.D.)
- Cancer Immunomonitoring Platform, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068, CNRS, UMR7258, Institut Paoli-Calmettes, 13009 Marseille, France
- Faculty of Medical and Paramedic Sciences, Aix Marseille University, UM 105, 13005 Marseille, France
| |
Collapse
|
7
|
Song Y, Zhu Y, Hu B, Liu Y, Lin D, Jin Z, Yin Z, Dong C, Wu D, Liu H. Donor γδT Cells Promote GVL Effect and Mitigate aGVHD in Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2020; 11:558143. [PMID: 33178187 PMCID: PMC7596318 DOI: 10.3389/fimmu.2020.558143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/22/2020] [Indexed: 01/03/2023] Open
Abstract
Disease relapse and graft-versus-host disease (GVHD) are the major complications affecting the outcomes of allogeneic hematopoietic stem cell transplantation (allo-HSCT). While the functions of αβT cells are extensively studied, the role of donor γδT cells in allo-HSCT is less well defined. Using TCRδ-/- donors lacking γδT cells, we demonstrated that donor γδT cells were critical in mediating graft-versus-leukemia (GVL) effect during allo-HSCT. In the absence of donor γδT cells, IFN-γ production by CD8+ T cells was severely impaired. Vγ4 subset was the major γδT cell subset mediating the GVL effect in vivo, which was partially dependent on IL-17A. Meanwhile, donor γδT cells could mitigate acute GVHD in a murine allo-HSCT model by suppressing CD4+ T cell activation and the major γδT cell subset that exerted this protective function was also Vγ4 γδT cells. Therefore, our findings provide evidence that donor γδT cells, especially Vγ4 subset, can enhance GVL effect and mitigate aGVHD during allo-HSCT.
Collapse
Affiliation(s)
- Yuan Song
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ying Zhu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bo Hu
- Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, China
| | - Yonghao Liu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dandan Lin
- Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, China
| | - Ziqi Jin
- Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, China
| | - Zhinan Yin
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Depei Wu
- Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, China
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Siegers GM, Dutta I, Kang EY, Huang J, Köbel M, Postovit LM. Aberrantly Expressed Embryonic Protein NODAL Alters Breast Cancer Cell Susceptibility to γδ T Cell Cytotoxicity. Front Immunol 2020; 11:1287. [PMID: 32636849 PMCID: PMC7319087 DOI: 10.3389/fimmu.2020.01287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/21/2020] [Indexed: 01/18/2023] Open
Abstract
Gamma delta (γδ) T cells kill transformed cells, and increased circulating γδ T cells levels correlate with improved outcome in cancer patients; however, their function within the breast tumor microenvironment (TME) remains controversial. As tumors progress, they begin to express stem-cell associated proteins, concomitant with the emergence of therapy resistant metastatic disease. For example, invasive breast cancers often secrete the embryonic morphogen, NODAL. NODAL has been shown to promote angiogenesis, therapy resistance and metastasis in breast cancers. However, to date, little is known about how this secreted protein may interact with cells in the TME. Herein we explore how NODAL in the TME may influence γδ T cell function. We have assessed the proximity of γδ T cells to NODAL in a cohort of triple negative breast tumors. In all cases in which γδ T cells could be identified in these tumors, γδ T cells were found in close proximity to NODAL-expressing tumor cells. Migration of γδ and αβ T cells was similar toward MDA-MB-231 cells in which NODAL had been knocked down (shN) and MDA-MB-231 scrambled control cells (shC). Furthermore, Vδ1 γδ T cells did not migrate preferentially toward conditioned medium from these cell lines. While 24-h exposure to NODAL did not impact CD69, PD-1, or T cell antigen receptor (TCR) expression on γδ T cells, long term exposure resulted in decreased Vδ2 TCR expression. Maturation of γδ T cells was not significantly influenced by NODAL stimulation. While neither short- nor long-term NODAL stimulation impacted the ability of γδ T cells to kill MCF-7 breast cancer cells, the absence of NODAL resulted in greater sensitivity of targets to γδ T cell cytotoxicity, while overexpression of NODAL conferred resistance. This appeared to be at least in part due to an inverse correlation between NODAL and surface MICA/B expression on breast cancer target lines. As such, it appears that NODAL may play a role in strategies employed by breast cancer cells to evade γδ T cell targeting, and this should be considered in the development of safe and effective γδ T cell immunotherapies.
Collapse
Affiliation(s)
| | - Indrani Dutta
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Eun Young Kang
- Department of Pathology and Laboratory Medicine, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
| | - Jing Huang
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, Foothills Medical Centre, University of Calgary, Calgary, AB, Canada
| | - Lynne-Marie Postovit
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
9
|
Morrow ES, Roseweir A, Edwards J. The role of gamma delta T lymphocytes in breast cancer: a review. Transl Res 2019; 203:88-96. [PMID: 30194922 DOI: 10.1016/j.trsl.2018.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/10/2018] [Accepted: 08/12/2018] [Indexed: 12/11/2022]
Abstract
Gammadelta T (γδT) lymphocytes have provoked interest in oncology, particularly as regards their potential use in immunotherapy, because of their unique ability to recognise antigens without a requirement for major histocompatibility complex antigen presentation, and to quickly activate an anti-tumour response. However, work in some cancers has suggested that they also have pro-tumourigenic activity. Their role in breast cancer is unclear. This review outlines the evidence to date in in vitro studies, in vivo mouse models and in human studies regarding the role of γδT lymphocytes in breast cancer. We describe the seemingly opposing roles of the predominantly circulating Vγ9Vδ2+ subtype, which can suppress tumour growth through direct cytotoxicity, induction of apoptosis and inhibition of angiogenesis, and the predominantly tumour-infiltrating γδ1+ subtype which can promote tumour growth and spread through immunosuppressant effects. We summarise the evidence in breast cancer for the mechanisms of action of γδT lymphocytes and describe how factors in the tumour microenvironment may affect their function, polarising them towards a pro-tumourigenic, immune-suppressing role. We also describe the experience to date of γδT lymphocytes in immunotherapy for breast cancer and suggest the direction of work going forward, particularly as regards different breast cancer subtypes.
Collapse
Affiliation(s)
- Elizabeth S Morrow
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Translational Cancer Research Centre, Garscube Estate, Bearsden, Glasgow, UK; Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow, UK.
| | - Antonia Roseweir
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Translational Cancer Research Centre, Garscube Estate, Bearsden, Glasgow, UK.
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Translational Cancer Research Centre, Garscube Estate, Bearsden, Glasgow, UK.
| |
Collapse
|
10
|
Sawaisorn P, Tangchaikeeree T, Chan-On W, Leepiyasakulchai C, Udomsangpetch R, Hongeng S, Jangpatarapongsa K. Antigen-Presenting Cell Characteristics of Human γδ T Lymphocytes in Chronic Myeloid Leukemia. Immunol Invest 2018; 48:11-26. [PMID: 30321079 DOI: 10.1080/08820139.2018.1529039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human γδ T lymphocytes play a role in the immune system defense against cancer. Their broad anti-cancer activity against different types of cancers makes them outstanding candidates for cancer immunotherapy. An issue of recent interest is whether their antigen presentation features are similar to mature dendritic cells. The antigen-presenting cell (APC)-like phenotype and function of γδ T lymphocytes have been confirmed in many clinical trials. In this study, to support the strong role played by Vγ9Vδ2 T cells against cancer, we provide evidence that Vγ9Vδ2 T cells activated with chronic myeloid leukemia (CML) cell lysate antigens can efficiently express an APC phenotype and function. Vγ9Vδ2 T cells derived from normal peripheral blood mononuclear cells were activated with tumor cell lysate, and the tumor-activated Vγ9Vδ2 T cells could recognize and kill CML through their cytotoxic activity. In conclusion, the Vγ9Vδ2 T cells activated by cancer cell lysate showed APC characteristics, and this may greatly increase interest in investigating their therapeutic potential in hematologic malignancies. Abbreviations: CML: chronic myeloid leukemia; APC: antigen-presenting cell; TCR: T cell receptor; MHC: major histocompatibility complex; N-BPs: nitrogen-containing bisphosphonates; IPP: isopentenyl pyrophosphate; PBMC: peripheral blood mononuclear cells; NKG2D: natural killer receptor group 2, member D; TRAIL: tumor necrosis factor-related apoptosis-inducing ligand.
Collapse
Affiliation(s)
- Piamsiri Sawaisorn
- a Center for Research and Innovation, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Tienrat Tangchaikeeree
- a Center for Research and Innovation, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Waraporn Chan-On
- a Center for Research and Innovation, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Chaniya Leepiyasakulchai
- b Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Rachanee Udomsangpetch
- a Center for Research and Innovation, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| | - Suradej Hongeng
- c Department of Pediatrics , Ramathibodi Hospital, Mahidol University , Bangkok , Thailand
| | - Kulachart Jangpatarapongsa
- a Center for Research and Innovation, Faculty of Medical Technology , Mahidol University , Bangkok , Thailand
| |
Collapse
|
11
|
Siegers GM, Dutta I, Lai R, Postovit LM. Functional Plasticity of Gamma Delta T Cells and Breast Tumor Targets in Hypoxia. Front Immunol 2018; 9:1367. [PMID: 29963058 PMCID: PMC6013583 DOI: 10.3389/fimmu.2018.01367] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022] Open
Abstract
Interactions between immune and tumor cells in the tumor microenvironment (TME) often impact patient outcome, yet remain poorly understood. In addition, the effects of biophysical features such as hypoxia [low oxygen (O2)] on cells within the TME may lead to tumor evasion. Gamma delta T cells (γδTcs) naturally kill transformed cells and are therefore under development as immunotherapy for various cancers. Clinical trials have proven the safety of γδTc immunotherapy and increased circulating γδTc levels correlate with improved patient outcome. Yet, the function of γδTc tumor infiltrating lymphocytes in human breast cancer remains controversial. Breast tumors can be highly hypoxic, thus therapy must be effective under low O2 conditions. We have found increased infiltration of γδTc in areas of hypoxia in a small cohort of breast tumors; considering their inherent plasticity, it is important to understand how hypoxia influences γδTc function. In vitro, the cell density of expanded primary healthy donor blood-derived human γδTc decreased in response to hypoxia (2% O2) compared to normoxia (20% O2). However, the secretion of macrophage inflammatory protein 1α (MIP1α)/MIP1β, regulated on activation, normal T cell expressed and secreted (RANTES), and CD40L by γδTc were increased after 40 h in hypoxia compared to normoxia concomitant with the stabilization of hypoxia inducible factor 1-alpha protein. Mechanistically, we determined that natural killer group 2, member D (NKG2D) on γδTc and the NKG2D ligand MHC class I polypeptide-related sequence A (MICA)/B on MCF-7 and T47D breast cancer cell lines are important for γδTc cytotoxicity, but that MIP1α, RANTES, and CD40L do not play a direct role in cytotoxicity. Hypoxia appeared to enhance the cytotoxicity of γδTc such that exposure for 48 h increased cytotoxicity of γδTc against breast cancer cells that were maintained in normoxia; conversely, breast cancer lines incubated in hypoxia for 48 h prior to the assay were largely resistant to γδTc cytotoxicity. MICA/B surface expression on both MCF-7 and T47D remained unchanged upon exposure to hypoxia; however, ELISAs revealed increased MICA shedding by MCF-7 under hypoxia, potentially explaining resistance to γδTc cytotoxicity. Despite enhanced γδTc cytotoxicity upon pre-incubation in hypoxia, these cells were unable to overcome hypoxia-induced resistance of MCF-7. Thus, such resistance mechanisms employed by breast cancer targets must be overcome to develop more effective γδTc immunotherapies.
Collapse
Affiliation(s)
- Gabrielle M Siegers
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Department of Anatomy and Cell Biology, Robarts Research Institute, Western University, London, ON, Canada
| | - Indrani Dutta
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Raymond Lai
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Lynne-Marie Postovit
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Department of Anatomy and Cell Biology, Robarts Research Institute, Western University, London, ON, Canada
| |
Collapse
|
12
|
Cytokine-mediated activation of human ex vivo-expanded Vγ9Vδ2 T cells. Oncotarget 2018; 8:45928-45942. [PMID: 28521284 PMCID: PMC5542238 DOI: 10.18632/oncotarget.17498] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 04/07/2017] [Indexed: 11/25/2022] Open
Abstract
Vγ9Vδ2 T cells, the major subset of the human peripheral blood γδ T-cell, respond to microbial infection and stressed cells through the recognition of phosphoantigens. In contrast to the growing knowledge of antigen-mediated activation mechanisms, the antigen-independent and cytokine-mediated activation mechanisms of Vγ9Vδ2 T cells are poorly understood. Here, we show that interleukin (IL) -12 and IL-18 synergize to activate human ex vivo-expanded Vγ9Vδ2 T cells. Vγ9Vδ2 T cells treated with IL-12 and IL-18 enhanced effector functions, including the expression of IFN-γ and granzyme B, and cytotoxicity. These enhanced effector responses following IL-12 and IL-18 treatment were associated with homotypic aggregation, enhanced expression of ICAM-1 and decreased expression of the B- and T-lymphocyte attenuator (BTLA), a co-inhibitory receptor. IL-12 and IL-18 also induced the antigen-independent proliferation of Vγ9Vδ2 T cells. Increased expression of IκBζ, IL-12Rβ2 and IL-18Rα following IL-12 and IL-18 stimulation resulted in sustained activation of STAT4 and NF-κB. The enhanced production of IFN-γ and cytotoxic activity are critical for cancer immunotherapy using Vγ9Vδ2 T cells. Thus, the combined treatment of ex vivo-expanded Vγ9Vδ2 T cells with IL-12 and IL-18 may serve as a new strategy for the therapeutic activation of these cells.
Collapse
|
13
|
Dutta I, Postovit LM, Siegers GM. Apoptosis Induced via Gamma Delta T Cell Antigen Receptor "Blocking" Antibodies: A Cautionary Tale. Front Immunol 2017; 8:776. [PMID: 28713391 PMCID: PMC5492911 DOI: 10.3389/fimmu.2017.00776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/19/2017] [Indexed: 01/25/2023] Open
Abstract
Mechanistic studies contribute greatly to our understanding of γδ T cell (γδTc) biology, aiding development of these cells as immunotherapeutic agents. The antibody blocking assay is an accepted method to determine the receptors involved in γδTc killing of tumor targets. Effectors and/or targets are preincubated with microgram quantities of monoclonal antibodies (mAb), often described by commercial sources to be useful for blocking assays. We and others have used such assays extensively in the past, correlating decreases in cytotoxicity against specific targets with involvement of the blocked receptor(s). However, we wondered whether other mechanisms might be at play beyond cytotoxicity inhibition. Indeed, administration of certain “blocking” mAb to the γδ T cell antigen receptor (γδTCR) induced γδTc death. Upon further investigation, we discovered that γδTc underwent apoptosis triggered by incubation with mAb to the γδTCR. This effect was specific, as no apoptosis was observed when αβ T cells (αβTc) were incubated with these mAb. Apoptosis was further potentiated by the presence of interleukin (IL)-2, often included in cytotoxicity assays; however, exogenous interleukin-2 (IL-2) did not contribute significantly to γδTc cytotoxicity against breast cancer cell lines. Here, we have investigated the usefulness of four mAb for use in blocking assays by assessing blocking properties in conjunction with their propensity to induce apoptosis in cultured primary human γδTc. We found that the 5A6.E9 clone was usually a better alternative to the commonly used B1 (or B1.1) and 11F2 clones; however, some variability in susceptibility to apoptosis induction was observed among donor cultures. Thus, viability assessment of primary effector cells treated with mAb alone should be undertaken in parallel with cytotoxicity assays employing blocking antibodies, to account for cytotoxicity reduction caused by effector cell death. Previous findings should be reassessed in this light.
Collapse
Affiliation(s)
- Indrani Dutta
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | | | | |
Collapse
|
14
|
Wesch D, Peters C, Siegers GM. Human gamma delta T regulatory cells in cancer: fact or fiction? Front Immunol 2014; 5:598. [PMID: 25477885 PMCID: PMC4238407 DOI: 10.3389/fimmu.2014.00598] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/07/2014] [Indexed: 11/13/2022] Open
Abstract
While gamma delta T cell (γδTc) anticancer immunotherapies are being developed, recent reports suggest a regulatory role for γδTc tumor-infiltrating lymphocytes. This mini-review surveys available evidence, determines strengths and weaknesses thereof and suggest directions for further exploration. We focus on human γδTc, as mouse and human γδTc repertoires differ. Regulatory γδTc are defined and compared to conventional Tregs and their roles in health and disease (focusing in on cancer) are discussed. We contrast the suggested regulatory roles for γδTc in breast and colorectal cancer with their cytotoxic capabilities in other malignancies, emphasizing the context dependence of γδTc functional plasticity. Since γδTc can be induced to exhibit regulatory properties (in some cases reversible), we carefully scrutinize experimental procedures in published reports. As γδTc garner increasing interest for their therapeutic potential, it is critical that we appreciate the full extent of their role(s) and interactions with other cell types in both the circulation and the tumor microenvironment. A comprehensive understanding will enable manipulation of γδTc to improve anti-tumor efficacy and patient outcomes.
Collapse
Affiliation(s)
- Daniela Wesch
- Institute of Immunology, Christian-Albrechts University of Kiel , Kiel , Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel , Kiel , Germany
| | | |
Collapse
|
15
|
Li Z. Potential of human γδ T cells for immunotherapy of osteosarcoma. Mol Biol Rep 2012; 40:427-37. [PMID: 23065272 DOI: 10.1007/s11033-012-2077-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 10/03/2012] [Indexed: 12/26/2022]
Abstract
Recurrent or metastatic osteosarcomas remain a challenging malignancy to treat. Therefore, development and testing of novel therapeutic strategies to target these patients are needed. Adoptive cellular therapy strategies are being evaluated intensively as a novel therapeutic strategy for cancer. Unlike αβ T cells requiring antigen processing and MHC-restricted peptide displayed by antigen-presenting cells, γδ T cells exhibit the potent MHC-unrestricted lytic activity against various tumors in vitro and in vivo. The recent considerable success of γδ T cell-based immunotherapy in lung metastasis of renal cell carcinoma warrants further efforts to apply this treatment to other cancers including osteosarcoma, especially recurrent and metastatic osteosarcomas. In this review, we summarize the available evidence on γδ T cell-based immunotherapy for osteosarcoma that has been achieved to date. More importantly, we discuss potential strategies of the combination of expanded γδ T cells and bisphosphonates, and modification and expansion of αβ TCR modified γδ T cells for improving its efficacy for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Zhaoxu Li
- Department of Orthopaedics, No. 2, Affiliated Hospital of Guilin Medical University, Guilin Medical University, No. 15, Lequn Road, Guilin 541004, People's Republic of China.
| |
Collapse
|
16
|
Clinical evaluation of autologous gamma delta T cell-based immunotherapy for metastatic solid tumours. Br J Cancer 2011; 105:778-86. [PMID: 21847128 PMCID: PMC3171009 DOI: 10.1038/bjc.2011.293] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Adoptive transfer of ex vivo expanded autologous Vγ9Vδ2 T cells may be of therapeutic benefit for cancer because of their potent direct cytotoxicity towards tumour cells, synergistic cytotoxicity when combined with aminobisphosphonates and enhancement of antibody-dependent cell-mediated cytotoxicity. METHODS To determine the feasibility and clinical safety of therapy with ex vivo expanded, activated Vγ9Vδ2 T cells in combination with zoledronate, we enrolled 18 subjects with advanced solid tumours into a phase I clinical study. Administered indium(111)-oxine-labelled Vγ9Vδ2 T cells were tracked in a cohort of patients. RESULTS Administered Vγ9Vδ2 T cells had an activated effector memory phenotype, expressed chemokine receptors predictive of homing to peripheral tissues and were cytotoxic in vitro against tumour targets. Adoptively transferred Vγ9Vδ2 T cells trafficked predominantly to the lungs, liver and spleen and, in some patients, to metastatic tumour sites outside these organs. No dose-limiting toxicity was observed, but most patients progressed on study therapy. However, three patients administered Vγ9Vδ2 T cells while continuing previously ineffective therapy had disease responses, suggesting an additive effect. CONCLUSION Therapy with aminobisphosphonate-activated Vγ9Vδ2 T cells is feasible and well tolerated, but therapeutic benefits appear only likely when used in combination with other therapies.
Collapse
|
17
|
Chiplunkar S, Dhar S, Wesch D, Kabelitz D. gammadelta T cells in cancer immunotherapy: current status and future prospects. Immunotherapy 2011; 1:663-78. [PMID: 20635991 DOI: 10.2217/imt.09.27] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
gammadelta T lymphocytes are a distinct T-cell subset that display unique features with respect to T-cell receptor (TCR) gene usage, tissue tropism and antigen recognition. Phosphoantigens contributed by a dysregulated mevalonate pathway or the bacterial nonmevalonate pathway and aminobisphosphonates are capable of activating Vgamma9Vdelta2 T cells. With the aid of synthetic phosphoantigens, large-scale expansion of gammadelta T cells and their adoptive transfer into human hosts is now possible. The present review summarizes triumphs and tribulations of clinical trials using gammadelta T-cell immunotherapy. Adoptive transfer of phosphoantigen-activated gammadelta T cells or coadministration with aminobisphosphonates/cytokines/monoclonal antibodies appear to be promising approaches for cancer immunotherapy. It can be predicted that a comprehensive understanding of the molecular interactions of this unique T-cell subset with other key immune regulators (dendritic cells and regulatory T cells) will provide an impetus to bring this modality of treatment from bench to bedside.
Collapse
Affiliation(s)
- Shubhada Chiplunkar
- Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, Maharashtra, India.
| | | | | | | |
Collapse
|
18
|
Dokouhaki P, Han M, Joe B, Li M, Johnston MR, Tsao MS, Zhang L. Adoptive immunotherapy of cancer using ex vivo expanded human γδ T cells: A new approach. Cancer Lett 2010; 297:126-36. [DOI: 10.1016/j.canlet.2010.05.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 03/05/2010] [Accepted: 05/04/2010] [Indexed: 01/07/2023]
|
19
|
Repertoire development and the control of cytotoxic/effector function in human gammadelta T cells. Clin Dev Immunol 2010; 2010:732893. [PMID: 20396597 PMCID: PMC2854522 DOI: 10.1155/2010/732893] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 02/16/2010] [Indexed: 11/18/2022]
Abstract
T cells develop into two major populations distinguished by their T cell receptor (TCR) chains. Cells with the alphabeta TCR generally express CD4 or CD8 lineage markers and mostly fall into helper or cytotoxic/effector subsets. Cells expressing the alternate gammadelta TCR in humans generally do not express lineage markers, do not require MHC for antigen presentation, and recognize nonpeptidic antigens. We are interested in the dominant Vgamma2Vdelta2+ T cell subset in human peripheral blood and the control of effector function in this population. We review the literature on gammadelta T cell generation and repertoire selection, along with recent work on CD56 expression and defining a cytotoxic/effector lineage within the phosphoantigen-reactive Vgamma2Vdelta2 cells. A unique mechanism for MHC-independent repertoire selection is linked to the control of effector function that is vital to the role for gammadelta T cells in tumor surveillance. Better understanding of these mechanisms will improve our ability to exploit this population for tumor immunotherapy.
Collapse
|
20
|
Shojaei H, Oberg HH, Juricke M, Marischen L, Kunz M, Mundhenke C, Gieseler F, Kabelitz D, Wesch D. Toll-like receptors 3 and 7 agonists enhance tumor cell lysis by human gammadelta T cells. Cancer Res 2009; 69:8710-7. [PMID: 19887600 DOI: 10.1158/0008-5472.can-09-1602] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Toll-like receptor (TLR) agonists are considered adjuvants in clinical trials of cancer immunotherapy. Here, we investigated the modulation of gammadelta T cell-mediated tumor cell lysis by TLR ligands. gammadelta T-cell cytotoxicity and granzyme A/B production were enhanced after pretreatment of tumor cells with TLR3 [poly(I:C)] or TLR7 ligand (imiquimod). We examined TLR3- and TLR7-expressing pancreatic adenocarcinomas, squamous cell carcinomas of head and neck and lung carcinomas. Poly(I:C) treatment of pancreatic adenocarcinomas followed by coculture with gammadelta T cells resulted in an upregulation of CD54 on the tumor cells. The interaction of CD54 and the corresponding ligand CD11a/CD18 expressed on gammadelta T cells is responsible for triggering effector function in gammadelta T cells. Moreover, treatment with imiquimod downregulated MHC class I molecules on tumor cells possibly resulting in a reduced binding affinity for inhibitory receptor NKG2A expressed on gammadelta T cells. These results indicate that TLR3 or TLR7 ligand stimulation of tumor cells enhances the cytotoxic activity of expanded gammadelta T cells of cancer patients in vitro.
Collapse
Affiliation(s)
- Hamed Shojaei
- Institute of Immunology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Beck BH, Kim HG, Kim H, Samuel S, Liu Z, Shrestha R, Haines H, Zinn K, Lopez RD. Adoptively transferred ex vivo expanded gammadelta-T cells mediate in vivo antitumor activity in preclinical mouse models of breast cancer. Breast Cancer Res Treat 2009; 122:135-44. [PMID: 19763820 DOI: 10.1007/s10549-009-0527-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 08/25/2009] [Indexed: 01/08/2023]
Abstract
In contrast to antigen-specific alphabeta-T cells (adaptive immune system), gammadelta-T cells can recognize and lyse malignantly transformed cells almost immediately upon encounter in a manner that does not require the recognition of tumor-specific antigens (innate immune system). Given the well-documented capacity of gammadelta-T cells to innately kill a variety of malignant cells, efforts are now actively underway to exploit the antitumor properties of gammadelta-T cells for clinical purposes. Here, we present for the first time preclinical in vivo mouse models of gammadelta-T cell-based immunotherapy directed against breast cancer. These studies were explicitly designed to approximate clinical situations in which adoptively transferred gammadelta-T cells would be employed therapeutically against breast cancer. Using radioisotope-labeled gammadelta-T cells, we first show that adoptively transferred gammadelta-T cells localize to breast tumors in a mouse model (4T1 mammary adenocarcinoma) of human breast cancer. Moreover, by using an antibody directed against the gammadelta-T cell receptor (TCR), we determined that localization of adoptively transferred gammadelta-T cells to tumor is a TCR-dependant process. Additionally, biodistribution studies revealed that adoptively transferred gammadelta-T cells traffic differently in tumor-bearing mice compared to healthy mice with fewer gammadelta-T cells localizing into the spleens of tumor-bearing mice. Finally, in both syngeneic (4T1) and xenogeneic (2Lmp) models of breast cancer, we demonstrate that adoptively transferred gammadelta-T cells are both effective against breast cancer and are otherwise well-tolerated by treated animals. These findings provide a strong preclinical rationale for using ex vivo expanded adoptively transferred gammadelta-T cells as a form of cell-based immunotherapy for the treatment of breast cancer. Additionally, these studies establish that clinically applicable methods for radiolabeling gammadelta-T cells allows for the tracking of adoptively transferred gammadelta-T cells in tumor-bearing hosts.
Collapse
Affiliation(s)
- Benjamin H Beck
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, SHEL 571, 1825 University Boulevard, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tandem-epitope peptide: a novel stimulator for gammadeltaT cells in tumor immunotherapy. Cancer Lett 2009; 288:86-93. [PMID: 19665289 DOI: 10.1016/j.canlet.2009.06.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 06/16/2009] [Accepted: 06/24/2009] [Indexed: 11/23/2022]
Abstract
T cells bearing the gammadeltaTCR have become the new candidate effectors in tumor immunotherapy because of their potent cytotoxicity toward various tumor cells. However, a crucial issue in using gammadeltaT cells as effectors is how to effectively expand tumor-reactive gammadeltaT cells and enhance their functions. In previously studies, we used synthesized CDR3-peptide derived from ovarian epithelial carcinoma (OEC) infiltrating gammadeltaT cells (gammadeltaTILs) as specific probe to screen a phage display peptide library and identified seven putative epitopes named EP1-EP7. All seven putative epitopes could not only bind to gammadeltaT cells, but also activate them in vitro. To enhance the activating capability of these identified gammadeltaT cell ligands, we have constructed four types of GST epitope fusion proteins containing single epitope or tandem epitopes. These GST epitope fusion proteins could not only promote the secretion of cytokines, but also enhance the proliferation and cytotoxicity of gammadeltaT cells in vitro. Significant difference between GST tandem-epitope groups and GST single-epitope group in their activating capability was observed (P<0.05). Furthermore, GST epitope fusion proteins could suppress the growth of tumor and prolong the survival of BALB/c nude mice inoculated with human OEC cell line (P<0.05). In conclusion, these results provide a novel approach for tumor immunotherapy based on gammadeltaT cells.
Collapse
|
23
|
Puan KJ, Low JSH, Tan TWK, Wee JTS, Tan EH, Fong KW, Chua ET, Jin C, Giner JL, Morita CT, Goh CHK, Hui KM. Phenotypic and functional alterations of Vgamma2Vdelta2 T cell subsets in patients with active nasopharyngeal carcinoma. Cancer Immunol Immunother 2009; 58:1095-107. [PMID: 19043708 PMCID: PMC2695875 DOI: 10.1007/s00262-008-0629-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 11/12/2008] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Human Vgamma2Vdelta2 T cells play important role in immunity to infection and cancer by monitoring self and foreign isoprenoid metabolites with their gammadelta T cell antigen receptors. Like CD4 and CD8 alphabeta T cells, adult peripheral Vgamma2Vdelta2 T cells represent a pool of heterogeneous cells with distinct functional capabilities. PURPOSE The aim of this study was to characterize the phenotypes and functions of various Vgamma2Vdelta2 T cell subsets in patients with nasopharyngeal carcinoma (NPC). We sought to develop a better understanding of the role of these cells during the course of disease and to facilitate the development of immunotherapeutic strategies against NPC. RESULTS Although similar total percentages of peripheral blood Vgamma2Vdelta2 T cells were found in both NPC patients and normal donors, Vgamma2Vdelta2 T cells from NPC patients showed decreased cytotoxicity against tumor cells whereas Vgamma2Vdelta2 T cells from normal donors showed potent cytotoxicity. To investigate further, we compared the phenotypic characteristics of Vgamma2Vdelta2 T cells from 96 patients with NPC and 54 healthy controls. The fraction of late effector memory Vgamma2Vdelta2 T cells (T(EM RA)) was significantly increased in NPC patients with corresponding decreases in the fraction of early memory Vgamma2Vdelta2 T cells (T(CM)) compared with those in healthy controls. Moreover, T(EM RA) and T(CM) Vgamma2Vdelta2 cells from NPC patients produced significantly less IFN-gamma and TNF-alpha, potentially contributing to their impaired cytotoxicity. Radiotherapy or concurrent chemo-radiotherapy further increased the T(EM RA) Vgamma2Vdelta2 T cell population but did not correct the impaired production of IFN-gamma and TNF-alpha observed for T(EM RA) Vgamma2Vdelta2 T cells. CONCLUSION We have identified distinct alterations in the Vgamma2Vdelta2 T cell subsets of patients with NPC. Moreover, the overall cellular effector function of gammadelta T cells is compromised in these patients. Our data suggest that the contribution of Vgamma2Vdelta2 T cells to control NPC may depend on the activation state and differentiation of these cells.
Collapse
Affiliation(s)
- Kia Joo Puan
- Bek Chai Heah Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu Z, Guo B, Lopez RD. Expression of intercellular adhesion molecule (ICAM)-1 or ICAM-2 is critical in determining sensitivity of pancreatic cancer cells to cytolysis by human gammadelta-T cells: implications in the design of gammadelta-T-cell-based immunotherapies for pancreatic cancer. J Gastroenterol Hepatol 2009; 24:900-11. [PMID: 19175829 DOI: 10.1111/j.1440-1746.2008.05668.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS gammadelta-T cells can recognize and kill malignant cells, particularly those of epithelial origin, through mechanisms which do not require the recognition of tumor-specific antigens (innate immune response). This natural ability of gammadelta-T cells to kill tumor cells in a tumor antigen-independent manner provides a strong rationale for developing clinical trials designed to exploit the innate antitumor properties of gammadelta-T cells. METHODS In vitro studies were carried out to asses the sensitivity of pancreatic cancer cells (MIA PaCa2, BxPC-3, PANC-1) to killing by ex vivo expanded human gammadelta-T cells. RESULTS The capacity of gammadelta-T cells to bind to as well as to kill pancreatic cancer cells correlated with the degree of surface expression of key intercellular adhesion molecules (ICAM) present on pancreatic cancer cells. Moreover, pancreatic cancer cells expressing neither ICAM-1 nor ICAM-2 were bound poorly by gammadelta-T cells and were found to be resistant to gammadelta-T-cell killing. However, upon transfection of resistant cells with ICAM-1 or ICAM-2, gammadelta-T cells were then able to bind to and subsequently kill these cells. CONCLUSION In vitro, the expression of ICAM-1 or ICAM-2 on human pancreatic cancer cells is critically important in determining the extent to which these cells are sensitive to killing by human gammadelta-T cells. Accordingly, in ongoing and future clinical studies using gammadelta-T cells for the treatment of a variety of epithelial-derived solid tumors-including pancreatic cancer-interventions intended to modulate ICAM expression on tumor cells may become important adjuncts to gammadelta-T-cell-based immunotherapies.
Collapse
Affiliation(s)
- Zhiyong Liu
- Division of Hematology and Oncology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
25
|
Alexander AA, Maniar A, Cummings JS, Hebbeler AM, Schulze DH, Gastman BR, Pauza CD, Strome SE, Chapoval AI. Isopentenyl pyrophosphate-activated CD56+ {gamma}{delta} T lymphocytes display potent antitumor activity toward human squamous cell carcinoma. Clin Cancer Res 2008; 14:4232-40. [PMID: 18594005 PMCID: PMC2614380 DOI: 10.1158/1078-0432.ccr-07-4912] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE The expression of CD56, a natural killer cell-associated molecule, on alphabeta T lymphocytes correlates with their increased antitumor effector function. CD56 is also expressed on a subset of gammadelta T cells. However, antitumor effector functions of CD56(+) gammadelta T cells are poorly characterized. EXPERIMENTAL DESIGN To investigate the potential effector role of CD56(+) gammadelta T cells in tumor killing, we used isopentenyl pyrophosphate and interleukin-2-expanded gammadelta T cells from peripheral blood mononuclear cells of healthy donors. RESULTS Thirty to 70% of expanded gammadelta T cells express CD56 on their surface. Interestingly, although both CD56(+) and CD56(-) gammadelta T cells express comparable levels of receptors involved in the regulation of gammadelta T-cell cytotoxicity (e.g., NKG2D and CD94), only CD56(+) gammadelta T lymphocytes are capable of killing squamous cell carcinoma and other solid tumor cell lines. This effect is likely mediated by the enhanced release of cytolytic granules because CD56(+) gammadelta T lymphocytes expressed higher levels of CD107a compared with CD56(-) controls following exposure to tumor cell lines. Lysis of tumor cell lines is blocked by concanamycin A and a combination of anti-gammadelta T-cell receptor + anti-NKG2D monoclonal antibody, suggesting that the lytic activity of CD56(+) gammadelta T cells involves the perforin-granzyme pathway and is mainly gammadelta T-cell receptor/NKG2D dependent. Importantly, CD56-expressing gammadelta T lymphocytes are resistant to Fas ligand and chemically induced apoptosis. CONCLUSIONS Our data indicate that CD56(+) gammadelta T cells are potent antitumor effectors capable of killing squamous cell carcinoma and may play an important therapeutic role in patients with head and neck cancer and other malignancies.
Collapse
Affiliation(s)
- Alan A.Z. Alexander
- Department of Otorhinolaryngology – Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Amudhan Maniar
- Department of Otorhinolaryngology – Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Jean-Saville Cummings
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD
- Graduate Program in Molecular Medicine, University of Maryland, Baltimore, MD
| | - Andrew M. Hebbeler
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD
- Graduate Program in Molecular Medicine, University of Maryland, Baltimore, MD
| | - Dan H. Schulze
- Department of Otorhinolaryngology – Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD
| | - Brian R. Gastman
- Department of Otorhinolaryngology – Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| | - C. David Pauza
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Scott E. Strome
- Department of Otorhinolaryngology – Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD
| | - Andrei I. Chapoval
- Department of Otorhinolaryngology – Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
26
|
Liu Z, Eltoum IEA, Guo B, Beck BH, Cloud GA, Lopez RD. Protective Immunosurveillance and Therapeutic Antitumor Activity of γδ T Cells Demonstrated in a Mouse Model of Prostate Cancer. THE JOURNAL OF IMMUNOLOGY 2008; 180:6044-53. [DOI: 10.4049/jimmunol.180.9.6044] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Abstract
Gamma-delta T (gammadelta T) cells form a subgroup which has been reported to play a role in both natural and acquired immunity. Their levels have been found to increase in some tumour tissues. The aim of this study was to investigate the ratio of gammadelta T cells to all T cells in the peripheral blood of advanced-stage cancer patients; the level of gammadelta T cells expressing the Vdelta2-T-cell receptor (TCR) chain; NKG2D receptor expression; and apoptotic (Annexin-V) gammadelta T-cell levels. Twenty patients with advanced-stage cancer and 13 healthy controls were included. No statistical differences were found between control and patient groups in terms of the gammadelta T/total T-cell ratio (P=0.53), the Vgamma2-TCR expressing gammadelta T-cell ratio (P=0.19) or the Annexin-V ratio (P=0.48). However, NKG2D expression in gammadelta T cells was significantly different between the control and patient groups (P=0.014). In summary it was shown that the levels of NKG2D receptors, which are responsible for the cytolytic effect of gammadelta T cells, were lower in cancer patients than in healthy adults. However, no significant differences were observed in the other parameters studied between groups.
Collapse
|
28
|
Wrobel P, Shojaei H, Schittek B, Gieseler F, Wollenberg B, Kalthoff H, Kabelitz D, Wesch D. Lysis of a broad range of epithelial tumour cells by human gamma delta T cells: involvement of NKG2D ligands and T-cell receptor- versus NKG2D-dependent recognition. Scand J Immunol 2007; 66:320-8. [PMID: 17635809 DOI: 10.1111/j.1365-3083.2007.01963.x] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human gammadelta T cells expressing a V gamma 9V delta 2 T-cell receptor (TCR) kill various tumour cells including autologous tumours. In addition to TCR-dependent recognition, activation of NKG2D-positive gammadelta T cells by tumour cell-expressed NKG2D ligands can also trigger cytotoxic effector function. In this study, we investigated the involvement of TCR versus NKG2D in tumour cell recognition as a prerequisite to identify tumour types suitable for gammadelta T-cell-based immunotherapy. We have characterized epithelial tumour cells of different origin with respect to cell surface expression of the known NKG2D ligands MHC class I-chain-related antigens (MIC) A/B and UL16-binding proteins (ULBP), and susceptibility to gammadelta T-cell killing. Most tumour cells expressed comparable levels of MICA and MICB as well as ULBP with the exception of ULBP-1 which was absent or only weakly expressed. Most epithelial tumours were susceptible to allogeneic gammadelta T-cell lysis and in the case of an established ovarian carcinoma to autologous gammadelta T-cell killing. Lysis of resistant cells was enhanced by pre-treatment of tumour cells with aminobisphosphonates or pre-activation of gammadelta T cells with phosphoantigens. A potential involvement of TCR and/or NKG2D was investigated by antibody blockade. These experiments revealed three patterns of inhibition, i.e. preferential inhibition by anti-TCR antibody, preferential inhibition by anti-NKG2D antibody, or additive blockade by anti-TCR plus anti-NKG2D antibodies. Our results indicate for the first time that the NKG2D pathway is involved in the lysis of different melanomas, pancreatic adenocarcinomas, squamous cell carcinomas of the head and neck, and lung carcinoma.
Collapse
MESH Headings
- Adenocarcinoma/immunology
- Adenocarcinoma/therapy
- Adult
- Caco-2 Cells
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/therapy
- Cell Line
- Cytotoxicity, Immunologic
- Female
- Head and Neck Neoplasms/immunology
- Head and Neck Neoplasms/therapy
- Humans
- Ligands
- Lung Neoplasms/immunology
- Lung Neoplasms/therapy
- Male
- Melanoma/immunology
- Melanoma/therapy
- Middle Aged
- NK Cell Lectin-Like Receptor Subfamily K
- Neoplasms, Glandular and Epithelial/immunology
- Neoplasms, Glandular and Epithelial/pathology
- Neoplasms, Glandular and Epithelial/therapy
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/therapy
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- Receptors, Natural Killer Cell
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- P Wrobel
- Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Salot S, Laplace C, Saïagh S, Bercegeay S, Tenaud I, Cassidanius A, Romagne F, Dreno B, Tiollier J. Large scale expansion of gamma 9 delta 2 T lymphocytes: Innacell gamma delta cell therapy product. J Immunol Methods 2007; 326:63-75. [PMID: 17716681 DOI: 10.1016/j.jim.2007.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 06/06/2007] [Accepted: 07/09/2007] [Indexed: 10/23/2022]
Abstract
gamma9delta2 T lymphocytes are non-conventional lymphocytes presenting a direct cytotoxic effect against a broad range of tumour targets. These cells also secrete inflammatory cytokines that can boost the other components of the immune system. In contrast to conventional CD8(+) T cells, the cytotoxic effect of gamma9delta2 T lymphocytes does not depend on the expression of major histocompatibility complex molecules by target tumour cells. INNACELL gammadeltatrade mark is a cell therapy product obtained by ex vivo amplification of mononuclear cells. The stimulation is achieved by a specific synthetic agonist of gamma9delta2 T lymphocytes, bromohydrin pyrophosphate (BrHPP). After a single stimulation with BrHPP, gamma9delta2 T lymphocytes are expanded for 2 weeks in a closed system in culture medium with interleukin-2 (IL-2). On day 15, cells are washed and harvested in 4% human serum albumin. In this manufacturing process, the total cell population is expanded by approximately 10-fold and gamma9delta2 T lymphocytes undergo a specific 1000-fold expansion, corresponding to a gamma9delta2 T lymphocyte enrichment of more than 70% at the end of the culture. This manufacturing process is much simpler than most current cellular therapy approaches using conventional CD8(+) T-cell lines or clones: there is no final or initial separation, no purification step and no use of feeder cells; the specific T-cell receptor-mediated signal provided by BrHPP is sufficient to trigger the IL-2-dependent expansion of the gamma9delta2 subset, which then becomes predominant in the cell culture in large amounts.
Collapse
Affiliation(s)
- Samuel Salot
- Innate Pharma, 119-121 Ancien chemin de Cassis, 13009 Marseille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Studies in tumor immunology have relied upon the classic paradigm of distinct innate and adaptive parts of the immune system. However, recent advances in immunology suggest that this division may be overly simplistic, with emerging evidence of a breakdown in conventional hallmarks of each system. Here, we provide an overview of this area and discuss how the concept of a continuum of immune cell populations suggests novel areas of investigation in cancer research.
Collapse
Affiliation(s)
- Lisa Borghesi
- Department of Immunology, University of Pittsburgh Department School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| | | |
Collapse
|
31
|
Morita CT, Jin C, Sarikonda G, Wang H. Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vgamma2Vdelta2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol Rev 2007; 215:59-76. [PMID: 17291279 DOI: 10.1111/j.1600-065x.2006.00479.x] [Citation(s) in RCA: 355] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Human Vgamma2Vdelta2 T cells play important roles in mediating immunity against microbial pathogens and have potent anti-tumor activity. Vgamma2Vdelta2 T cells recognize the pyrophosphorylated isoprenoid intermediates (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), an intermediate in the foreign 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, and isopentenyl pyrophosphate (IPP), an intermediate in the self-mevalonate pathway. Infection with bacteria and protozoa using the MEP pathway leads to the rapid expansion of Vgamma2Vdelta2 T cells to very high numbers through preferential recognition of HMBPP. Activated Vgamma2Vdelta2 T cells produce proinflammatory cytokines and chemokines, kill infected cells, secrete growth factors for epithelial cells, and present antigens to alphabeta T cells. Vgamma2Vdelta2 T cells can also recognize high levels of IPP in certain tumors and in cells treated with pharmacological agents, such as bisphosphonates and alkylamines, that block farnesyl pyrophosphate synthase. Activated Vgamma2Vdelta2 T cells are able to kill most tumor cells because of recognition by T-cell receptor and natural killer receptors. The ubiquitous nature of the antigens converts essentially all Vgamma2Vdelta2 T cells to memory cells at an early age. Thus, primary infections with HMBPP-producing bacteria are perceived by Vgamma2Vdelta2 T cells as a repeat infection. Extensive efforts are underway to harness these cells to treat a variety of cancers and to provide microbial immunity.
Collapse
Affiliation(s)
- Craig T Morita
- Division of Rheumatology, Department of Internal Medicine, Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|