1
|
Zaraei SO, Dohle W, Anbar HS, El-Gamal R, Leblond B, Foster PA, Al-Tel TH, Potter BVL, El-Gamal MI. Synthesis, biological evaluation, and stability studies of raloxifene mono- and bis-sulfamates as dual-targeting agents. Bioorg Med Chem 2024; 101:117645. [PMID: 38401456 DOI: 10.1016/j.bmc.2024.117645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
All three possible sulfamate derivatives of the selective estrogen receptor modulator Raloxifene (bis-sulfamate 7 and two mono-sulfamates 8-9) were synthesized and evaluated as inhibitors of the clinical drug target steroid sulfatase (STS), both in cell-free and in cell-based assays, and also as estrogen receptor (ER) modulators. Bis-sulfamate 7 was the most potent STS inhibitor with an IC50 of 12.2 nM in a whole JEG3 cell-based assay, with the two mono-sulfamates significantly weaker. The estrogen receptor-modulating activities of 7-9 showed generally lower affinities compared to Raloxifene HCl, diethylstilbestrol and other known ligands, with mono-sulfamate 8 being the best ligand (Ki of 1.5 nM) for ERα binding, although 7 had a Ki of 13 nM and both showed desirable antagonist activity. The antiproliferative activities of the sulfamate derivatives against the T-47D breast cancer cell line showed 7 as most potent (GI50 = 7.12 µM), comparable to that of Raloxifene. Compound 7 also showed good antiproliferative potency in the NCI-60 cell line panel with a GI50 of 1.34 µM against MDA-MB-231 breast cancer cells. Stability testing of 7-9 showed that bis-sulfamate 7 hydrolyzed by desulfamoylation at a surprisingly rapid rate, initially leading selectively to 8 and finally to Raloxifene 3 without formation of 9. The mechanisms of these hydrolysis reactions could be extensively rationalized. Conversion of Raloxifene (3) into its bis-sulfamate (7) thus produced a promising drug lead with nanomolar dual activity as an STS inhibitor and ERα antagonist, as a potential candidate for treatment of estrogen-dependent breast cancer.
Collapse
Affiliation(s)
- Seyed-Omar Zaraei
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wolfgang Dohle
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Hanan S Anbar
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai 19099, United Arab Emirates
| | - Randa El-Gamal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Bertrand Leblond
- Medicinal Chemistry, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Paul A Foster
- Institute of Metabolism and Systems Research, 2(nd) Floor IBR Tower, University of Birmingham, Birmingham B15 2TT, United Kingdom; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, United Kingdom
| | - Taleb H Al-Tel
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Barry V L Potter
- Medicinal Chemistry and Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom; Medicinal Chemistry, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.
| | - Mohammed I El-Gamal
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
2
|
Zheng P, Li N, Zhan X. Ovarian cancer subtypes based on the regulatory genes of RNA modifications: Novel prediction model of prognosis. Front Endocrinol (Lausanne) 2022; 13:972341. [PMID: 36545327 PMCID: PMC9760687 DOI: 10.3389/fendo.2022.972341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is a female reproductive system tumor. RNA modifications play key roles in gene expression regulation. The growing evidence demonstrates that RNA methylation is critical for various biological functions, and that its dysregulation is related to the progression of cancer in human. METHOD OC samples were classified into different subtypes (Clusters 1 and 2) based on various RNA-modification regulatory genes (RRGs) in the process of RNA modifications (m1A, m6A, m6Am, m5C, m7G, ac4C, m3C, and Ψ) by nonnegative matrix factorization method (NMF). Based on differently expressed RRGs (DERRGs) between clusters, a pathologically specific RNA-modification regulatory gene signature was constructed with Lasso regression. Kaplan-Meier analysis and receiver operating characteristic (ROC) curves were used to evaluate the prognostic ability of the identified model. The correlations of clinicopathological features, immune subtypes, immune scores, immune cells, and tumor mutation burden (TMB) were also estimated between different NMF clusters and riskscore groups. RESULTS In this study, 59 RRGs in the process of RNA modifications (m1A, m6A, m6Am, m5C, m7G, ac4C, m3C, and Ψ) were obtained from TCGA database. These RRGs were interactional, and sample clusters based on these regulators were significantly correlated with survival rate, clinical characteristics (involving survival status and pathologic stage), drug sensibility, and immune microenvironment. Furthermore, Lasso regression based on these 21 DERRGs between clusters 1 and 2 constructed a four-DERRG signature (ALYREF, ZC3H13, WTAP, and METTL1). Based on this signature, 307 OC patients were classified into high- and low-risk groups based on median value of riskscores from lasso regression. This identified signature was significantly associated with overall survival, radiation therapy, age, clinical stage, cancer status, and immune cells (involving CD4+ memory resting T cells, plasma cells, and Macrophages M1) of ovarian cancer patients. Further, GSEA revealed that multiple biological behaviors were significantly enriched in different groups. CONCLUSIONS OC patients were classified into two subtypes per these RRGs. This study identified four-DERRG signature (ALYREF, ZC3H13, WTAP, and METTL1) in OC, which was an independent prognostic model for patient stratification, prognostic evaluation, and prediction of response to immunotherapy in ovarian cancer by classifying OC patients into high- and low-risk groups.
Collapse
Affiliation(s)
- Peixian Zheng
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| | - Na Li
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
- *Correspondence: Xianquan Zhan, ; Na Li,
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
- *Correspondence: Xianquan Zhan, ; Na Li,
| |
Collapse
|
3
|
Cortés-Benítez F, Roy J, Perreault M, Maltais R, Poirier D. 16-Picolyl-androsterone derivative exhibits potent 17β-HSD3 inhibitory activity, improved metabolic stability and cytotoxic effect on various cancer cells: Synthesis, homology modeling and docking studies. J Steroid Biochem Mol Biol 2021; 210:105846. [PMID: 33609690 DOI: 10.1016/j.jsbmb.2021.105846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 11/18/2022]
Abstract
A new androsterone derivative bearing a 16β-picolyl group (compound 5; FCO-586-119) was synthetized in four steps from the lead compound 1 (RM-532-105). We measured its inhibitory activity on 17β-HSD3 using microsomal fraction of rat testes as well as transfected LNCaP[17β-HSD3] cells. We then assessed its metabolic stability as well as its cytotoxic effect against a panel of cancer cell lines. The addition of a picolyl moiety at C-16 of RM-532-105 steroid core improves the 17β-HSD3 inhibitory activity in the microsomal fraction of rat testes, but not in whole LNCaP[17β-HSD3] cells. Interestingly, this structural modification enhances 3-fold the metabolic stability in conjunction with a significant cytotoxic effect against pancreatic, ovarian, breast, lung, and prostate cancer cells. Because the inhibitory activity data against 17β-HSD3 suggested that both steroid derivatives are non-competitive inhibitors, we performed docking and molecular dynamics simulations using a homology model of this membrane-associated enzyme. The results of these simulations revealed that both RM-532-105 (1) and FCO-586-119 (5) can compete for the cofactor-binding site displaying better binding energy than NADP+.
Collapse
Affiliation(s)
- Francisco Cortés-Benítez
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU De Québec - Research Center, Québec City, Québec, G1V 4G2, Canada; Laboratory of Synthesis and Isolation of Bioactive Substances, Department of Biological Systems, Biological and Health Sciences Division, Metropolitan Autonomous University- Xochimilco (UAM-X), Mexico City 04960, Mexico
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU De Québec - Research Center, Québec City, Québec, G1V 4G2, Canada
| | - Martin Perreault
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU De Québec - Research Center, Québec City, Québec, G1V 4G2, Canada
| | - René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU De Québec - Research Center, Québec City, Québec, G1V 4G2, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU De Québec - Research Center, Québec City, Québec, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, G1V 0A6, Canada.
| |
Collapse
|
4
|
Armstrong CM, Liu C, Liu L, Yang JC, Lou W, Zhao R, Ning S, Lombard AP, Zhao J, D'Abronzo LS, Evans CP, Li PK, Gao AC. Steroid Sulfatase Stimulates Intracrine Androgen Synthesis and is a Therapeutic Target for Advanced Prostate Cancer. Clin Cancer Res 2020; 26:6064-6074. [PMID: 32928794 DOI: 10.1158/1078-0432.ccr-20-1682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Most patients with prostate cancer receiving enzalutamide or abiraterone develop resistance. Clinical evidence indicates that serum levels of dehydroepiandrosterone sulfate (DHEAS) and biologically active DHEA remain in the high range despite antiandrogen treatment. The conversion of DHEAS into DHEA by steroid sulfatase (STS) may contribute to sustained intracrine androgen synthesis. Here, we determine the contribution of STS to treatment resistance and explore the potential of targeting STS to overcome resistance in prostate cancer. EXPERIMENTAL DESIGN STS expression was examined in patients and cell lines. In vitro, STS activity and expression were modulated using STS-specific siRNA or novel STS inhibitors (STSi). Cell growth, colony formation, androgen production, and gene expression were examined. RNA-sequencing analysis was conducted on VCaP cells treated with STSi. Mice were treated with STSis with or without enzalutamide to determine their effects in vivo. RESULTS STS is overexpressed in patients with castration-resistant prostate cancer (CRPC) and resistant cells. STS overexpression increases intracrine androgen synthesis, cell proliferation, and confers resistance to enzalutamide and abiraterone. Inhibition of STS using siRNA suppresses prostate cancer cell growth. Targeting STS activity using STSi inhibits STS activity, suppresses androgen receptor transcriptional activity, and reduces the growth of resistant C4-2B and VCaP prostate cancer cells. STSis significantly suppress resistant VCaP tumor growth, decrease serum PSA levels, and enhance enzalutamide treatment in vitro and in vivo. CONCLUSIONS These studies suggest that STS drives intracrine androgen synthesis and prostate cancer proliferation. Targeting STS represents a therapeutic strategy to treat CRPC and improve second-generation antiandrogen therapy.
Collapse
Affiliation(s)
- Cameron M Armstrong
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Chengfei Liu
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Liangren Liu
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Joy C Yang
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Wei Lou
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Ruining Zhao
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Shu Ning
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Alan P Lombard
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Jinge Zhao
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Leandro S D'Abronzo
- Department of Urologic Surgery, University of California, Davis, Sacramento, California
| | - Christopher P Evans
- Department of Urologic Surgery, University of California, Davis, Sacramento, California.,UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California
| | - Pui-Kai Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Allen C Gao
- Department of Urologic Surgery, University of California, Davis, Sacramento, California. .,UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California.,VA Northern California Health Care System, Sacramento, California
| |
Collapse
|
5
|
Makar S, Saha T, Swetha R, Gutti G, Kumar A, Singh SK. Rational approaches of drug design for the development of selective estrogen receptor modulators (SERMs), implicated in breast cancer. Bioorg Chem 2019; 94:103380. [PMID: 31757413 DOI: 10.1016/j.bioorg.2019.103380] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022]
Abstract
Drug discovery and development have gained momentum due to the rational drug design by engaging computational tools and bioinformatics methodologies. Bioisosteric replacements and hybrid molecular approaches are the other inventive processes, used by medicinal chemists for the desired modifications of leads for clinical drug candidates. SERMs, ought to produce inhibitory activity in breast, uterus and agonist activity in other tissues, are beneficial for estrogen-like actions. ER subtypes α and β are hormone dependent modulators of intracellular signaling and gene expression, and development of ER selective ligands could be an effective approach for treatment of breast cancer. This report has critically investigated the possible designing considerations of SERMs, their in silico interactions, and potent pharmacophore generation approaches viz. indole, restricted benzothiophene [3, 2-b] indole, carborane, xanthendione, combretastatin A-4, organometallic heterocycles, OBHS-SAHA hybrids, benzopyranones, tetrahydroisoquinolines, Dig G derivatives and their specifications in drug design and development, to rationally improve the understanding in drug discovery. This also includes various strategies for the development of dual inhibitors for the management of antiestrogenic resistance.
Collapse
Affiliation(s)
- Subhajit Makar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India
| | - Tanmay Saha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India
| | - Rayala Swetha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India
| | - Gopichand Gutti
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India
| | - Sushil K Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P, India.
| |
Collapse
|
6
|
Poirier D, Roy J, Maltais R, Ayan D. Antisulfatase, Osteogenic, and Anticancer Activities of Steroid Sulfatase Inhibitor EO-33 in Mice. J Med Chem 2019; 62:5512-5521. [DOI: 10.1021/acs.jmedchem.9b00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec G1V 4G2, Canada
| | - René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec G1V 4G2, Canada
| | - Diana Ayan
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec—Research Center, Québec, Québec G1V 4G2, Canada
| |
Collapse
|
7
|
Dey P, Rathod M, De A. Targeting stem cells in the realm of drug-resistant breast cancer. BREAST CANCER-TARGETS AND THERAPY 2019; 11:115-135. [PMID: 30881110 PMCID: PMC6410754 DOI: 10.2147/bctt.s189224] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since its first documentation, breast cancer (BC) has been a conundrum that ails millions of women every year. This cancer has been well studied by researchers all over the world, which has improved the patient outcome significantly. There are many diagnostic markers to identify the disease, but early detection and then subclassification of this cancer remain dubious. Even after the correct diagnosis, more than half the patients come back with a more aggressive and metastatic tumor. The underpinning mechanism that governs the resistance includes over-amplification of receptors, mutations in key gene targets, and activation of different signaling. A plethora of drugs have been devised that have shown promising results in clinical settings. However, in recent times, the role played by cancer stem cells in disease progression and their interaction in mediating the resistance to cellular insults have come into the limelight. As breast cancer stem cells (BCSCs) are dormant in nature, it is highly likely that they fail to directly respond to the cytotoxic drugs which are meant for ablating rapidly proliferating cells. Furthermore, the absence of well-characterized, drug-able surface markers to date, has limited the application of targeted therapies in complete eradication of the disease. In this review, our intent is to discuss versatile therapeutics in practice followed by discussing the upcoming therapy strategies in the pipeline for BC. Furthermore, we focus on the roles played by BCSCs in mediating the resistance, and therefore, the aspects of new therapeutics against BCSCs under development that may ease the burden in future has also been discussed.
Collapse
Affiliation(s)
- Pranay Dey
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India, .,Molecular Functional Imaging Lab, Homi Bhabha National Institute, Mumbai, India,
| | - Maitreyi Rathod
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India, .,Molecular Functional Imaging Lab, Homi Bhabha National Institute, Mumbai, India,
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India, .,Molecular Functional Imaging Lab, Homi Bhabha National Institute, Mumbai, India,
| |
Collapse
|
8
|
Tong CWS, Wu M, Cho WCS, To KKW. Recent Advances in the Treatment of Breast Cancer. Front Oncol 2018; 8:227. [PMID: 29963498 PMCID: PMC6010518 DOI: 10.3389/fonc.2018.00227] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy in women. It is classified into a few major molecular subtypes according to hormone and growth factor receptor expression. Over the past few years, substantial advances have been made in the discovery of new drugs for treating BC. Improved understanding of the biologic heterogeneity of BC has allowed the development of more effective and individualized approach to treatment. In this review, we provide an update about the current treatment strategy and discuss the various emerging novel therapies for the major molecular subtypes of BC. A brief account of the clinical development of inhibitors of poly(ADP-ribose) polymerase, cyclin-dependent kinases 4 and 6, phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin pathway, histone deacetylation, multi-targeting tyrosine kinases, and immune checkpoints for personalized treatment of BC is included. However, no targeted drug has been approved for the most aggressive subtype-triple negative breast cancer (TNBC). Thus, we discuss the heterogeneity of TNBC and how molecular subtyping of TNBC may help drug discovery for this deadly disease. The emergence of drug resistance also poses threat to the successful development of targeted therapy in various molecular subtypes of BC. New clinical trials should incorporate advanced methods to identify changes induced by drug treatment, which may be associated with the upregulation of compensatory signaling pathways in drug resistant cancer cells.
Collapse
Affiliation(s)
- Christy W. S. Tong
- Faculty of Medicine, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Mingxia Wu
- Faculty of Medicine, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - William C. S. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong
| | - Kenneth K. W. To
- Faculty of Medicine, School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
9
|
Ye DJ, Kwon YJ, Shin S, Baek HS, Shin DW, Chun YJ. Induction of Integrin Signaling by Steroid Sulfatase in Human Cervical Cancer Cells. Biomol Ther (Seoul) 2017; 25:321-328. [PMID: 27956712 PMCID: PMC5424643 DOI: 10.4062/biomolther.2016.155] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/02/2016] [Accepted: 10/04/2016] [Indexed: 12/19/2022] Open
Abstract
Steroid sulfatase (STS) is an enzyme responsible for the hydrolysis of aryl and alkyl sulfates. STS plays a pivotal role in the regulation of estrogens and androgens that promote the growth of hormone-dependent tumors, such as those of breast or prostate cancer. However, the molecular function of STS in tumor growth is still not clear. To elucidate the role of STS in cancer cell proliferation, we investigated whether STS is able to regulate the integrin signaling pathway. We found that overexpression of STS in HeLa cells increases the protein and mRNA levels of integrin β1 and fibronectin, a ligand of integrin α5β1. Dehydroepiandrosterone (DHEA), one of the main metabolites of STS, also increases mRNA and protein expression of integrin β1 and fibronectin. Further, STS expression and DHEA treatment enhanced phosphorylation of focal adhesion kinase (FAK) at the Tyr 925 residue. Moreover, increased phosphorylation of ERK at Thr 202 and Tyr 204 residues by STS indicates that STS activates the MAPK/ERK pathway. In conclusion, these results suggest that STS expression and DHEA treatment may enhance MAPK/ERK signaling through up-regulation of integrin β1 and activation of FAK.
Collapse
Affiliation(s)
- Dong-Jin Ye
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeo-Jung Kwon
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sangyun Shin
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyoung-Seok Baek
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dong-Won Shin
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
10
|
Harrelson JP, Lee MW. Expanding the view of breast cancer metabolism: Promising molecular targets and therapeutic opportunities. Pharmacol Ther 2016; 167:60-73. [DOI: 10.1016/j.pharmthera.2016.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/21/2016] [Indexed: 12/23/2022]
|
11
|
Higuchi T, Endo M, Hanamura T, Gohno T, Niwa T, Yamaguchi Y, Horiguchi J, Hayashi SI. Contribution of Estrone Sulfate to Cell Proliferation in Aromatase Inhibitor (AI) -Resistant, Hormone Receptor-Positive Breast Cancer. PLoS One 2016; 11:e0155844. [PMID: 27228187 PMCID: PMC4882040 DOI: 10.1371/journal.pone.0155844] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 05/05/2016] [Indexed: 12/22/2022] Open
Abstract
Aromatase inhibitors (AIs) effectively treat hormone receptor-positive postmenopausal breast cancer, but some patients do not respond to treatment or experience recurrence. Mechanisms of AI resistance include ligand-independent activation of the estrogen receptor (ER) and signaling via other growth factor receptors; however, these do not account for all forms of resistance. Here we present an alternative mechanism of AI resistance. We ectopically expressed aromatase in MCF-7 cells expressing green fluorescent protein as an index of ER activity. Aromatase-overexpressing MCF-7 cells were cultured in estrogen-depleted medium supplemented with testosterone and the AI, letrozole, to establish letrozole-resistant (LR) cell lines. Compared with parental cells, LR cells had higher mRNA levels of steroid sulfatase (STS), which converts estrone sulfate (E1S) to estrone, and the organic anion transporter peptides (OATPs), which mediate the uptake of E1S into cells. LR cells proliferated more in E1S-supplemented medium than did parental cells, and LR proliferation was effectively inhibited by an STS inhibitor in combination with letrozole and by ER-targeting drugs. Analysis of ER-positive primary breast cancer tissues showed a significant correlation between the increases in the mRNA levels of STS and the OATPs in the LR cell lines, which supports the validity of this AI-resistant model. This is the first study to demonstrate the contribution of STS and OATPs in E1S metabolism to the proliferation of AI-resistant breast cancer cells. We suggest that E1S metabolism represents a new target in AI-resistant breast cancer treatment.
Collapse
Affiliation(s)
- Toru Higuchi
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Visceral and Thoracic Organ Surgery, Graduated School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Megumi Endo
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Toru Hanamura
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Division of Breast and Endocrine Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Tatsuyuki Gohno
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Toshifumi Niwa
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Yuri Yamaguchi
- Research Institute for Clinical Oncology, Saitama Cancer Center, Ina, Saitama, Japan
| | - Jun Horiguchi
- Department of Visceral and Thoracic Organ Surgery, Graduated School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Shin-ichi Hayashi
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Center for Regulatory Epi genome and Diseases, Graduate School of Medicine, Tohoku University, Sendai, Niyagi, Japan
| |
Collapse
|
12
|
Ouellet C, Maltais R, Ouellet É, Barbeau X, Lagüe P, Poirier D. Discovery of a sulfamate-based steroid sulfatase inhibitor with intrinsic selective estrogen receptor modulator properties. Eur J Med Chem 2016; 119:169-82. [PMID: 27155470 DOI: 10.1016/j.ejmech.2016.04.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 01/27/2023]
Abstract
Steroid sulfatase (STS), the enzyme which converts inactive sulfated steroid precursors into active hormones, is a promising therapeutic target for the treatment of estrogen-sensitive breast cancer. We report herein the synthesis and in vitro study of dual-action STS inhibitors with selective estrogen-receptor modulator (SERM) effects. A library of tetrahydroisoquinoline-N-substituted derivatives (phenolic compounds) was synthesized by solid-phase chemistry and tested on estrogen-sensitive breast cancer T-47D cells. Three phenolic compounds devoid of estrogenic activity and toxicity emerged from this screening. Their sulfamate analogs were then synthesized, tested in STS-transfected HEK-293 cells, and found to be potent inhibitors of the enzyme (IC50 of 3.9, 8.9, and 16.6 nM). When tested in T-47D cells they showed no estrogenic activity and produced a moderate antiestrogenic activity. The compounds were further tested on osteoblast-like Saos-2 cells and found to significantly stimulate their proliferation as well as their alkaline phosphatase activity, thus suggesting a SERM activity. These results are supported by molecular docking experiments.
Collapse
Affiliation(s)
- Charles Ouellet
- Laboratory of Medicinal Chemistry, CHU de Québec - Research Center (CHUL, T4), 2705 Laurier Boulevard, Québec, QC, G1V 4G2, Canada
| | - René Maltais
- Laboratory of Medicinal Chemistry, CHU de Québec - Research Center (CHUL, T4), 2705 Laurier Boulevard, Québec, QC, G1V 4G2, Canada
| | - Étienne Ouellet
- Laboratory of Medicinal Chemistry, CHU de Québec - Research Center (CHUL, T4), 2705 Laurier Boulevard, Québec, QC, G1V 4G2, Canada
| | - Xavier Barbeau
- Département de chimie, Institut de biologie intégrative et des systèmes (IBIS), Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec City, QC, Canada
| | - Patrick Lagüe
- Département de biochimie microbiologie et bio-informatique, Institut de biologie intégrative et des systèmes (IBIS), Centre de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval, Québec City, QC, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, CHU de Québec - Research Center (CHUL, T4), 2705 Laurier Boulevard, Québec, QC, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
13
|
Gupta A, Ahmad I, Kureel J, Hasanain M, Pandey P, Singh S, John AA, Sarkar J, Singh D. Induction of targeted osteogenesis with 3-aryl-2H-benzopyrans and 3-aryl-3H-benzopyrans: Novel osteogenic agents. J Steroid Biochem Mol Biol 2016; 158:63-75. [PMID: 26807865 DOI: 10.1016/j.jsbmb.2016.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/01/2015] [Accepted: 01/20/2016] [Indexed: 01/19/2023]
Abstract
Development of target oriented chemotherapeutics for treatment of chronic diseases have been considered as an important approach in drug development. Following this approach, in our efforts for exploration of new osteogenic leads, substituted 3-aryl-2H-benzopyran and 3-aryl-3H-benzopyran derivatives (19, 20a-e, 21, 22a-e, 26, 27, 28a-e, 29, 31a-b, 32 and 33) have been characterized as estrogen receptor-β selective osteogenic (bone forming) agents. The synthesized compounds were evaluated for osteogenic activity using mouse calvarial osteoblast cells. Four compounds viz20b, 22a, 27and 32 showed significant osteogenic activity at EC50 values 1.35, 34.5, 407 and 29.5pM respectively. Out of these, 20b and 32 were analyzed for their bone mineralization efficacy and osteogenic gene expression by qPCR. The results showed that 20b and 32 significantly increased mineral nodule formation and the transcript levels of BMP-2, RUNX-2 and osteocalcin at 100pM concentrations respectively. Further mechanistic studies of 20b and 32 using transiently knocked down expression of ER-α and β in mouse osteoblast (MOBs) showed that 20b and 32 exerts osteogenic efficacy via activation of estrogen receptor-β preferentially. Additionally, compounds showed significant anticancer activity in a panel of cancer cell lines within the range of (IC50) 6.54-27.79μM. The most active molecule, 22b inhibited proliferation of cells by inducing apoptosis and arresting cell cycle at sub-G0 phase with concomitant decrease in cells at S phase.
Collapse
Affiliation(s)
- Atul Gupta
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal and aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India.
| | - Imran Ahmad
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal and aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India
| | - Jyoti Kureel
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow 226031, India
| | - Mohammad Hasanain
- Division of Biochemistry, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow 226031, India
| | - Praveen Pandey
- Division of Biochemistry, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow 226031, India
| | - Sarita Singh
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal and aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015, India
| | - Aijaz A John
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow 226031, India
| | - Jayanta Sarkar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow 226031, India
| | - Divya Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow 226031, India
| |
Collapse
|
14
|
Shah R, Singh J, Singh D, Jaggi AS, Singh N. Sulfatase inhibitors for recidivist breast cancer treatment: A chemical review. Eur J Med Chem 2016; 114:170-90. [PMID: 26974384 DOI: 10.1016/j.ejmech.2016.02.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 12/14/2022]
Abstract
Steroid sulfatase (STS) plays a momentous role in the conversion of sulfated steroids, which are biologically inactive, into biologically active un-sulfated steroid hormones, which support the development and growth of a number of hormone-dependent cancers, including breast cancer. Therefore, inhibitors of STS are supposed to be potential drugs for the treatment of breast and other steroid-dependent cancers. The present review concentrates on broad chemical classification of steroid sulfatase inhibitors. The inhibitors reviewed are classified into four main categories: Steroid sulfamate based inhibitors; Steroid non-sulfamate based inhibitors; Non-steroidal sulfamate based inhibitors; Non-steroidal non-sulfamate based inhibitors. A succinct overview of current treatment of cancer, estradiol precursors, STS enzyme and its role in breast cancer is herein described.
Collapse
Affiliation(s)
- Ramanpreet Shah
- Department of Pharmaceutical Sciences and Drug Research, Pharmaceutical Chemistry Research Lab, Punjabi University, Patiala, 147002, India
| | - Jatinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Pharmaceutical Chemistry Research Lab, Punjabi University, Patiala, 147002, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Pharmaceutical Chemistry Research Lab, Punjabi University, Patiala, 147002, India.
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Pharmaceutical Chemistry Research Lab, Punjabi University, Patiala, 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Pharmaceutical Chemistry Research Lab, Punjabi University, Patiala, 147002, India
| |
Collapse
|
15
|
Rižner TL. The Important Roles of Steroid Sulfatase and Sulfotransferases in Gynecological Diseases. Front Pharmacol 2016; 7:30. [PMID: 26924986 PMCID: PMC4757672 DOI: 10.3389/fphar.2016.00030] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/03/2016] [Indexed: 01/08/2023] Open
Abstract
Gynecological diseases such as endometriosis, adenomyosis and uterine fibroids, and gynecological cancers including endometrial cancer and ovarian cancer, affect a large proportion of women. These diseases are estrogen dependent, and their progression often depends on local estrogen formation. In peripheral tissues, estrogens can be formed from the inactive precursors dehydroepiandrosterone sulfate and estrone sulfate. Sulfatase and sulfotransferases have pivotal roles in these processes, where sulfatase hydrolyzes estrone sulfate to estrone, and dehydroepiandrosterone sulfate to dehydroepiandrosterone, and sulfotransferases catalyze the reverse reactions. Further activation of estrone to the most potent estrogen, estradiol, is catalyzed by 17-ketosteroid reductases, while estradiol can also be formed from dehydroepiandrosterone by the sequential actions of 3β-hydroxysteroid dehydrogenase-Δ4-isomerase, aromatase, and 17-ketosteroid reductase. This review introduces the sulfatase and sulfotransferase enzymes, in terms of their structures and reaction mechanisms, and the regulation and different transcripts of their genes, together with the importance of their currently known single nucleotide polymorphisms. Data on expression of sulfatase and sulfotransferases in gynecological diseases are also reviewed. There are often unchanged mRNA and protein levels in diseased tissue, with higher sulfatase activities in cancerous endometrium, ovarian cancer cell lines, and adenomyosis. This can be indicative of a disturbed balance between the sulfatase and sulfotransferases enzymes, defining the potential for sulfatase as a drug target for treatment of gynecological diseases. Finally, clinical trials with sulfatase inhibitors are discussed, where two inhibitors have already concluded phase II trials, although so far with no convincing clinical outcomes for patients with endometrial cancer and endometriosis.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana Ljubljana, Slovenia
| |
Collapse
|
16
|
Thomas MP, Potter BVL. Discovery and Development of the Aryl O-Sulfamate Pharmacophore for Oncology and Women's Health. J Med Chem 2015; 58:7634-58. [PMID: 25992880 PMCID: PMC5159624 DOI: 10.1021/acs.jmedchem.5b00386] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In 1994, following work from this laboratory, it was reported that estrone-3-O-sulfamate irreversibly inhibits a new potential hormone-dependent cancer target steroid sulfatase (STS). Subsequent drug discovery projects were initiated to develop the core aryl O-sulfamate pharmacophore that, over some 20 years, have led to steroidal and nonsteroidal drugs in numerous preclinical and clinical trials, with promising results in oncology and women's health, including endometriosis. Drugs have been designed to inhibit STS, e.g., Irosustat, as innovative dual-targeting aromatase-steroid sulfatase inhibitors (DASIs) and as multitargeting agents for hormone-independent tumors, such as the steroidal STX140 and nonsteroidal counterparts, acting inter alia through microtubule disruption. The aryl sulfamate pharmacophore is highly versatile, operating via three distinct mechanisms of action, and imbues attractive pharmaceutical properties. This Perspective gives a personal view of the work leading both to the therapeutic concepts and these drugs, their current status, and how they might develop in the future.
Collapse
Affiliation(s)
- Mark P. Thomas
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Barry V. L. Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| |
Collapse
|
17
|
Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA. The Regulation of Steroid Action by Sulfation and Desulfation. Endocr Rev 2015; 36:526-63. [PMID: 26213785 PMCID: PMC4591525 DOI: 10.1210/er.2015-1036] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined.
Collapse
Affiliation(s)
- Jonathan W Mueller
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lorna C Gilligan
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jan Idkowiak
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Wiebke Arlt
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul A Foster
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
18
|
Thomas MP, Potter BVL. Estrogen O-sulfamates and their analogues: Clinical steroid sulfatase inhibitors with broad potential. J Steroid Biochem Mol Biol 2015; 153:160-9. [PMID: 25843211 DOI: 10.1016/j.jsbmb.2015.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/31/2015] [Indexed: 01/20/2023]
Abstract
Estrogen sulfamate derivatives were the first irreversible active-site-directed inhibitors of steroid sulfatase (STS), an emerging drug target for endocrine therapy of hormone dependent diseases that catalyzes inter alia the hydrolysis of estrone sulfate to estrone. In recent years this has stimulated clinical investigation of the estradiol derivative both as an oral prodrug and its currently ongoing exploration in endometriosis. 2-Substituted steroid sulfamate derivatives show considerable potential as multi-targeting agents for hormone-independent disease, but are also potent STS inhibitors. The steroidal template has spawned nonsteroidal STS inhibitors one of which, Irosustat, has been evaluated clinically in breast cancer, endometrial cancer and prostate cancer and there is potential for innovative dual-targeting approaches. This review surveys the role of estrogen sulfamates, their analogues and current status.
Collapse
Affiliation(s)
- Mark P Thomas
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Barry V L Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom.
| |
Collapse
|
19
|
Kajita D, Nakamura M, Matsumoto Y, Makishima M, Hashimoto Y. Design and synthesis of silicon-containing steroid sulfatase inhibitors possessing pro-estrogen antagonistic character. Bioorg Med Chem 2014; 22:2244-52. [PMID: 24630694 DOI: 10.1016/j.bmc.2014.02.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 11/26/2022]
Abstract
Steroid sulfatase (STS) is a potential target for treatment of postmenopausal hormone-dependent breast cancer. Several steroidal STS inhibitors have been reported, but steroidal compounds are difficult to optimize and may interact with other targets. On the other hand, we have shown that diphenylmethane (DPM) derivatives act as estrogen receptor (ER) agonists and antagonists. Here, we aimed to design and synthesize non-steroidal DPM-type STS inhibitors that would also serve as pro-estrogen antagonists, releasing a metabolite with ERα-antagonistic activity upon hydrolysis by STS. We synthesized a series of compounds and evaluated their biological activities by means of STS-inhibitory activity assay and ER reporter gene assay. Among them, silicon-containing compound 16a showed strong STS-inhibitory activity (IC50=0.17μM). Further, its putative metabolite (12a) exhibited potent ERα-antagonistic activity (IC50=29.7nM).
Collapse
Affiliation(s)
- Daisuke Kajita
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masaharu Nakamura
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Yotaro Matsumoto
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Makoto Makishima
- Department of Biochemistry, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Yuichi Hashimoto
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
20
|
Ahmad I, Pathak V, Vasudev PG, Maurya HK, Gupta A. Borontribromide-mediated C–C bond formation in cyclic ketones: a transition metal free approach. RSC Adv 2014. [DOI: 10.1039/c4ra01745e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Spillane W, Malaubier JB. Sulfamic Acid and Its N- and O-Substituted Derivatives. Chem Rev 2013; 114:2507-86. [DOI: 10.1021/cr400230c] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- William Spillane
- School
of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Jean-Baptiste Malaubier
- Manufacturing Science
and
Technology, Roche Ireland Limited, Clarecastle, Co. Clare, Ireland
| |
Collapse
|
22
|
Mostafa YA, Taylor SD. Steroid derivatives as inhibitors of steroid sulfatase. J Steroid Biochem Mol Biol 2013; 137:183-98. [PMID: 23391659 DOI: 10.1016/j.jsbmb.2013.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/10/2013] [Accepted: 01/25/2013] [Indexed: 10/27/2022]
Abstract
Sulfated steroids function as a storage reservoir of biologically active steroid hormones. The sulfated steroids themselves are biologically inactive and only become active in vivo when they are converted into their desulfated (unconjugated) form by the enzyme steroid sulfatase (STS). Inhibitors of STS are considered to be potential therapeutics for the treatment of steroid-dependent cancers such as breast, prostate and endometrial cancer. The present review summarizes steroid derivatives as inhibitors of STS covering the literature from the early years of STS inhibitor development to October of 2012. A brief discussion of the function, structure and mechanism of STS and its role in estrogen receptor-positive (ER+) hormone-dependent breast cancer is also presented. This article is part of a Special Issue entitled "Synthesis and biological testing of steroid derivatives as inhibitors".
Collapse
Affiliation(s)
- Yaser A Mostafa
- Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON, Canada
| | | |
Collapse
|
23
|
Gupta A, Kumar BS, Negi AS. Current status on development of steroids as anticancer agents. J Steroid Biochem Mol Biol 2013; 137:242-70. [PMID: 23727548 DOI: 10.1016/j.jsbmb.2013.05.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/25/2013] [Accepted: 05/19/2013] [Indexed: 01/13/2023]
Abstract
Steroids are important biodynamic agents. Their affinities for various nuclear receptors have been an interesting feature to utilize them for drug development particularly for receptor mediated diseases. Steroid biochemistry and its crucial role in human physiology, has attained importance among the researchers. Recent years have seen an extensive focus on modification of steroids. The rational modifications of perhydrocyclopentanophenanthrene nucleus of steroids have yielded several important anticancer lead molecules. Exemestane, SR16157, fulvestrant and 2-methoxyestradiol are some of the successful leads emerged on steroidal pharmacophores. The present review is an update on some of the steroidal leads obtained during past 25 years. Various steroid based enzyme inhibitors, antiestrogens, cytotoxic conjugates and steroidal cytotoxic molecules of natural as well as synthetic origin have been highlighted. This article is part of a Special Issue entitled "Synthesis and biological testing of steroid derivatives as inhibitors".
Collapse
Affiliation(s)
- Atul Gupta
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, Lucknow 226015, U.P., India
| | | | | |
Collapse
|
24
|
Ouellet É, Maltais R, Ouellet C, Poirier D. Investigation of a tetrahydroisoquinoline scaffold as dual-action steroid sulfatase inhibitors generated by parallel solid-phase synthesis. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md20354a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Abstract
INTRODUCTION Steroid sulfatase (STS) converts sulfated hormones to free hormones of importance in hormone-dependent diseases such as breast cancer and endometriosis. Carbohydrate sulfatases degrade complex carbohydrates as part of normal cellular turnover; certain lysosomal storage disorders (LSDs) involve defective processing of sulfated glycosaminoglycans by mutant sulfatases. AREAS COVERED Aryl sulfamates have been developed as STS inhibitors, and STX64 and PGL2001 are under evaluation in Phase I and II clinical trials for treatment of endometrial and metastatic breast and prostate cancers and endometriosis. Dual-acting compounds have emerged that are aromatase inhibitors (AIs), selective estrogen receptor antagonists, or inhibitors of microtubule polymerization. Sulfamidase inhibitors as pharmacological chaperones to assist maturation of folding-defective mutants for the treatment of Sanfilippo type A disease are under investigation. Coverage: The patent literature after the mid-1990s. EXPERT OPINION The failure of STX64 in a Phase II monotherapy clinical trial should not dissuade further investigations in multidrug regimens, particularly in combination with AIs. The recent development of dual-acting compounds may enhance the potential for success in the clinic. Further investigations into aryl sulfamates are required to clarify the molecular mechanism of action; additionally, new reversible sulfatase inhibition concepts are needed for the development of pharmacological chaperones for sulfatase LSDs.
Collapse
Affiliation(s)
- Spencer J Williams
- University of Melbourne, School of Chemistry and Bio21 Molecular Science, Parkville, Victoria, Australia.
| |
Collapse
|
26
|
Abstract
Estrogens and androgens are instrumental in the maturation of many hormone-dependent cancers. Consequently, the enzymes involved in their synthesis are cancer therapy targets. One such enzyme, steroid sulfatase (STS), hydrolyses estrone sulfate, and dehydroepiandrosterone sulfate to estrone and dehydroepiandrosterone respectively. These are the precursors to the formation of biologically active estradiol and androstenediol. This review focuses on three aspects of STS inhibitors: 1) chemical development, 2) biological activity, and 3) clinical trials. The aim is to discuss the importance of estrogens and androgens in many cancers, the developmental history of STS inhibitor synthesis, the potency of these compounds in vitro and in vivo and where we currently stand in regards to clinical trials for these drugs. STS inhibitors are likely to play an important future role in the treatment of hormone-dependent cancers. Novel in vivo models have been developed that allow pre-clinical testing of inhibitors and the identification of lead clinical candidates. Phase I/II clinical trials in postmenopausal women with breast cancer have been completed and other trials in patients with hormone-dependent prostate and endometrial cancer are currently active. Potent STS inhibitors should become therapeutically valuable in hormone-dependent cancers and other non-oncological conditions.
Collapse
Affiliation(s)
- Atul Purohit
- Oncology Drug Discovery Group, Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | | |
Collapse
|
27
|
Maltais R, Poirier D. Steroid sulfatase inhibitors: a review covering the promising 2000-2010 decade. Steroids 2011; 76:929-48. [PMID: 21458474 DOI: 10.1016/j.steroids.2011.03.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 03/21/2011] [Accepted: 03/24/2011] [Indexed: 11/20/2022]
Abstract
The steroid sulfatase (STS) plays a major role in the regulation of steroid hormone concentrations in several human tissues and target organs and therefore, represents an interesting target to regulate estrogen and androgen levels implicated in different diseases. In this review article, the emphasis is put on STS inhibitors reported in the fruitful 2000-2010 decade, which consolidated the first ones that were previously developed (1990-1999). The inhibitors reviewed are divided into four categories according to the fact that they are sulfamoylated or not or that they have a steroid nucleus or not. Other topics such as function, localization, structure and mechanism as well as applications of STS inhibitors are also briefly discussed to complement the information on this crucial steroidogenic enzyme and its inhibitors.
Collapse
Affiliation(s)
- René Maltais
- Laboratory of Medicinal Chemistry, CHUQ (CHUL)-Research Center (Endocrinology and Genomic Unit) and Laval University (Faculty of Medicine), Québec, Canada
| | | |
Collapse
|
28
|
Kusk KO, Krüger T, Long M, Taxvig C, Lykkesfeldt AE, Frederiksen H, Andersson AM, Andersen HR, Hansen KMS, Nellemann C, Bonefeld-Jørgensen EC. Endocrine potency of wastewater: contents of endocrine disrupting chemicals and effects measured by in vivo and in vitro assays. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:413-26. [PMID: 21038429 DOI: 10.1002/etc.385] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Industrial and municipal effluents are important sources of endocrine disrupting compounds (EDCs) discharged into the aquatic environment. This study investigated the endocrine potency of wastewater and the cleaning efficiency of two typical urban Danish sewage treatment plants (STPs), using chemical analysis and a battery of bioassays. Influent samples, collected at the first STP grate, and effluent samples, collected after the sewage treatment, were extracted using solid phase extraction. Extracts were analyzed for the content of a range of industrial chemicals with endocrine disrupting properties: phthalate metabolites, parabens, industrial phenols, ultraviolet screens, and natural and synthetic steroid estrogens. The endocrine disrupting bioactivity and toxicity of the extracts were analyzed in cell culture assay for the potency to affect the function of the estrogen, androgen, aryl hydrocarbon, and thyroid receptors as well as the steroid hormone synthesis. The early-life stage (ELS) development was tested in a marine copepod. The concentrations of all analyzed chemicals were reduced in effluents compared with influents, and for some to below the detection limit. Influent as well as effluent samples from both STPs were found to interact with all four receptors and to interfere with the steroid hormone synthesis showing the presence of measured EDCs. Both influent samples and one of the effluent samples inhibited the development of the copepod Acartia tonsa. In conclusion, the presence of EDCs was reduced in the STPs but not eliminated, as verified by the applied bioassays that all responded to the extracts of effluent samples. Our data suggest that the wastewater treatment processes are not efficient enough to prevent contamination of environmental surface waters.
Collapse
|
29
|
Rausch L, Green C, Steinmetz K, LeValley S, Catz P, Zaveri N, Schweikart K, Tomaszewski J, Mirsalis J. Preclinical pharmacokinetic, toxicological and biomarker evaluation of SR16157, a novel dual-acting steroid sulfatase inhibitor and selective estrogen receptor modulator. Cancer Chemother Pharmacol 2010; 67:1341-52. [PMID: 20737149 DOI: 10.1007/s00280-010-1430-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE SR16157 is a novel dual-acting inhibitor of estrogen action that irreversibly inhibits the estrogen biosynthetic enzyme steroid sulfatase (STS) and releases the selective estrogen receptor modulator SR16137, which blocks the estrogen receptor. SR16157 is a promising agent for the endocrine therapy of breast cancer. We conducted preclinical in vivo toxicity evaluations to determine the maximum-tolerated dose (MTD), target organ(s) of toxicity, reversibility, dose-limiting toxicity, no observable adverse effect level (NOAEL), and toxicokinetics (TK) and to investigate a potential biomarker for use in SR16157 clinical trials. METHODS SR16157 was administered to female Fischer 344 rats or beagle dogs by oral gavage (po) or capsule. Intravenous (iv) groups were included for the determination of bioavailability. Endpoints evaluated included clinical observations, body weights, hematology, serum chemistry, pharmacokinetics, TK, pathology of tissues, and STS activity in liver, or peripheral blood mononuclear cells (PBMCs). RESULTS For rats, the MTD (i.e., the highest dose that did not cause lethality but produced toxicity) was 33 mg/kg/day (198 mg/m(2)/day), and the NOAEL was <10 mg/kg/day (60 mg/m(2)/day). For dogs, the MTD was estimated to exceed 10 mg/kg/day (200 mg/m(2)/day), and the NOAEL was estimated to be at or above 2.5 mg/kg/day (50 mg/m(2)/day). CONCLUSIONS Our studies demonstrate that SR16157 has excellent pharmacokinetic properties and an acceptable toxicological profile. Modulation of STS activity in PBMCs appeared to be a possible biomarker for use in future clinical trials of SR16157.
Collapse
Affiliation(s)
- Linda Rausch
- SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025-3493, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Taxvig C, Elleby A, Sonne-Hansen K, Bonefeld-Jørgensen EC, Vinggaard AM, Lykkesfeldt AE, Nellemann C. Effects of Nutrition Relevant Mixtures of Phytoestrogens on Steroidogenesis, Aromatase, Estrogen, and Androgen Activity. Nutr Cancer 2009; 62:122-31. [DOI: 10.1080/01635580903191577] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Quantitative Structure-Activity Relationship (QSAR) Study with a Series of 17α-Derivatives of Estradiol: Model for the Development of Reversible Steroid Sulfatase Inhibitors. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/qsar.200960028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Dewing P, Christensen A, Bondar G, Micevych P. Protein kinase C signaling in the hypothalamic arcuate nucleus regulates sexual receptivity in female rats. Endocrinology 2008; 149:5934-42. [PMID: 18653714 PMCID: PMC2613064 DOI: 10.1210/en.2008-0847] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Rapid membrane-mediated estradiol signaling regulating sexual receptivity requires the interaction of the estrogen receptor (ER)-alpha and the metabotropic glutamate receptor 1a (mGluR1a). A cell signaling antibody microarray revealed that estradiol activated 42 proteins in the arcuate nucleus of the hypothalamus (ARH). To begin an analysis of various signaling pathways, protein kinase A and protein kinase C (PKC)-theta, whose signaling pathways have been implicated in the estradiol regulation of sexual receptivity, were examined. In the ARH sample, the increase in phospho-protein kinase A could not be confirmed by Western blotting, in either cytosolic or membrane fractions. However, the increase in phosphorylated PKCtheta seen with the pathway array was verified by Western blotting. To study whether rapid estradiol activation of PKC regulates the ARH-medial preoptic nucleus pathway regulating lordosis, mu-opioid receptor (MOR) internalization and lordosis reflex were tested. Blocking PKC in ARH with 2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]3-(1H-indol-3-yl) maleimide significantly attenuated estradiol-induced MOR internalization. Furthermore, disruption of PKC signaling within the ARH at the time of estradiol treatment significantly diminished the lordosis reflex. Moreover, blocking PKC prevented MOR internalization when the circuit was activated by the mGluR1a agonist, (RS)-3,5-dihydroxyphenylglycine. Activation of PKC with phorbol 12, 13-dibutyrate induced MOR internalization, indicating that PKC was a critical step for membrane ERalpha-initiated mGluR1a-mediated cell signaling and phorbol 12, 13-dibutyrate significantly facilitated the lordosis reflex. Together these findings indicate that rapid membrane ERalpha-mGluR1a interactions activate PKCtheta cell signaling, which regulates female sexual receptivity.
Collapse
Affiliation(s)
- Phoebe Dewing
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095-1763, USA
| | | | | | | |
Collapse
|
33
|
|
34
|
CHETRITE GÉRARD. The Enzymatic Systems in the Formation and Transformation of Estrogens in Normal and Cancerous Human Breast. Breast Cancer 2008. [DOI: 10.3109/9781420058734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|