1
|
Khan SA, Ilies MA. The Phospholipase A2 Superfamily: Structure, Isozymes, Catalysis, Physiologic and Pathologic Roles. Int J Mol Sci 2023; 24:ijms24021353. [PMID: 36674864 PMCID: PMC9862071 DOI: 10.3390/ijms24021353] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The phospholipase A2 (PLA2) superfamily of phospholipase enzymes hydrolyzes the ester bond at the sn-2 position of the phospholipids, generating a free fatty acid and a lysophospholipid. The PLA2s are amphiphilic in nature and work only at the water/lipid interface, acting on phospholipid assemblies rather than on isolated single phospholipids. The superfamily of PLA2 comprises at least six big families of isoenzymes, based on their structure, location, substrate specificity and physiologic roles. We are reviewing the secreted PLA2 (sPLA2), cytosolic PLA2 (cPLA2), Ca2+-independent PLA2 (iPLA2), lipoprotein-associated PLA2 (LpPLA2), lysosomal PLA2 (LPLA2) and adipose-tissue-specific PLA2 (AdPLA2), focusing on the differences in their structure, mechanism of action, substrate specificity, interfacial kinetics and tissue distribution. The PLA2s play important roles both physiologically and pathologically, with their expression increasing significantly in diseases such as sepsis, inflammation, different cancers, glaucoma, obesity and Alzheimer's disease, which are also detailed in this review.
Collapse
|
2
|
Thangam C, Cyril R, Sekar R, Jayasree R, Ramachandran V, Langeswaran K, Asir AB, Subbaraj GK. Role of phospholipase A2 in squamous cell carcinoma and breast cancer. PHOSPHOLIPASES IN PHYSIOLOGY AND PATHOLOGY 2023:315-335. [DOI: 10.1016/b978-0-323-95697-0.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
3
|
Patuleia SIS, Suijkerbuijk KPM, van der Wall E, van Diest PJ, Moelans CB. Nipple Aspirate Fluid at a Glance. Cancers (Basel) 2021; 14:cancers14010159. [PMID: 35008326 PMCID: PMC8750428 DOI: 10.3390/cancers14010159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Nipple aspirate fluid (NAF) is a promising source of markers for detection of breast cancer. NAF can be acquired via the nipple by aspiration using a suction device, which is well tolerated by women. Future possible applications of biomarkers for breast cancer derived from NAF could be (1) as a detection tool to identify the initiation of the cancer development process, (2) as an additional tool next to imaging (mammography and breast magnetic resonance imaging) or (3) as a replacement tool for when imaging is not advisable for women, such as during pregnancy and breastfeeding. With this paper, we present a narrative review and perspectives of NAF research at a glance. Abstract Nipple aspirate fluid (NAF) is an intraductal mammary fluid that, because of its close proximity to and origin from the tissue from which breast cancer originates, is a promising source of biomarkers for early breast cancer detection. NAF can be non-invasively acquired via the nipple by aspiration using a suction device; using oxytocin nasal spray helps increase yield and tolerability. The aspiration procedure is generally experienced as more tolerable than the currently used breast imaging techniques mammography and breast magnetic resonance imaging. Future applications of NAF-derived biomarkers include their use as a tool in the detection of breast carcinogenesis at its earliest stage (before a tumor mass can be seen by imaging), or as a supporting diagnostic tool for imaging, such as when imaging is less reliable (to rule out false positives from imaging) or when imaging is not advisable (such as during pregnancy and breastfeeding). Ongoing clinical studies using NAF samples will likely shed light on NAF’s content and clinical potential. Here, we present a narrative review and perspectives of NAF research at a glance.
Collapse
Affiliation(s)
- Susana I. S. Patuleia
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands; (S.I.S.P.); (P.J.v.D.)
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands; (K.P.M.S.); (E.v.d.W.)
| | - Karijn P. M. Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands; (K.P.M.S.); (E.v.d.W.)
| | - Elsken van der Wall
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands; (K.P.M.S.); (E.v.d.W.)
| | - Paul J. van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands; (S.I.S.P.); (P.J.v.D.)
| | - Cathy B. Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, The Netherlands; (S.I.S.P.); (P.J.v.D.)
- Correspondence:
| |
Collapse
|
4
|
Jespersen SS, Stovgaard ES, Nielsen D, Christensen TD, Buhl ASK, Christensen IJ, Balslev E. Expression of Secretory Phospholipase A2 Group IIa in Breast Cancer and Correlation to Prognosis in a Cohort of Advanced Breast Cancer Patients. Appl Immunohistochem Mol Morphol 2021; 29:e5-e9. [PMID: 32217848 DOI: 10.1097/pai.0000000000000854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Secreted phospholipase A2 group IIa (sPLA2-IIa) has been shown to promote tumor genesis and cell proliferation. The properties of this group of enzymes are utilized in liposomal drug delivery of chemotherapy. sPLA2-IIa is also under investigation as a possible treatment target in itself, and as a prognostic marker. The expression of sPLA2-IIa in breast cancer has not been examined extensively, and never using immunohistochemistry. We sought to investigate the expression of sPLA2-IIa in a cohort of advanced breast cancer patients with correlation to known clinicopathologic risk factors and survival. Material from 525 breast cancer patients (426 primary tumors and 99 metastases or local recurrences) was examined for sPLA2-IIa expression using immunohistochemistry. Out of these, 262 showed expression of sPLA2-IIa. We found that there was no correlation to clinicopathologic characteristics, and no impact of sPLA2-IIa expression on prognosis. However, we found that a large proportion of patients in our study had high levels of sPLA2-IIa expression, and that sPLA2-IIa was equally expressed in primary tumors and metastases. These findings may be significant in the future development of liposomal drug delivery or targeted sPLA2-IIa treatment.
Collapse
Affiliation(s)
| | | | - Dorte Nielsen
- Oncology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Troels D Christensen
- Oncology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anna S K Buhl
- Oncology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
5
|
Liposomes Targeting P21 Activated Kinase-1 (PAK-1) and Selective for Secretory Phospholipase A 2 (sPLA 2) Decrease Cell Viability and Induce Apoptosis in Metastatic Triple-Negative Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21249396. [PMID: 33321758 PMCID: PMC7764208 DOI: 10.3390/ijms21249396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
P21 activated kinases (or group I PAKs) are serine/threonine kinases whose expression is altered in prostate and breast cancers. PAK-1 activity is inhibited by the small molecule "Inhibitor targeting PAK-1 activation-3" (IPA-3), which has selectivity for PAK-1 but is metabolically unstable. Secretory Group IIA phospholipase A2 (sPLA2) expression correlates to increased metastasis and decreased survival in many cancers. We previously designed novel liposomal formulations targeting both PAK-1 and sPLA2, called Secretory Phospholipase Responsive liposomes or SPRL-IPA-3, and demonstrated their ability to alter prostate cancer growth. The efficacy of SPRL against other types of cancers is not well understood. We addressed this limitation by determining the ability of SPRL to induce cell death in a diverse panel of cells representing different stages of breast cancer, including the invasive but non-metastatic MCF-7 cells, and metastatic triple-negative breast cancer (TNBC) cells such as MDA-MB-231, MDA-MB-468, and MDA-MB-435. We investigated the role of sPLA2 in the disposition of these liposomes by comparing the efficacy of SPRL-IPA-3 to IPA-3 encapsulated in sterically stabilized liposomes (SSL-IPA-3), a formulation shown to be less sensitive to sPLA2. Both SSL-IPA-3 and SPRL-IPA-3 induced time- and dose-dependent decreases in MTT staining in all cell lines tested, but SPRL-IPA-3-induced effects in metastatic TNBC cell lines were superior over SSL-IPA-3. The reduction in MTT staining induced by SPRL-IPA-3 correlated to the expression of Group IIA sPLA2. sPLA2 expression also correlated to increased induction of apoptosis in TNBC cell lines by SPRL-IPA-3. These data suggest that SPRL-IPA-3 is selective for metastatic TNBC cells and that the efficacy of SPRL-IPA-3 is mediated, in part, by the expression of Group IIA sPLA2.
Collapse
|
6
|
Peng Z, Chang Y, Fan J, Ji W, Su C. Phospholipase A2 superfamily in cancer. Cancer Lett 2020; 497:165-177. [PMID: 33080311 DOI: 10.1016/j.canlet.2020.10.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
Phospholipase A2 enzymes (PLA2s) comprise a superfamily that is generally divided into six subfamilies known as cytosolic PLA2s (cPLA2s), calcium-independent PLA2s (iPLA2s), secreted PLA2s (sPLA2s), lysosomal PLA2s, platelet-activating factor (PAF) acetylhydrolases, and adipose specific PLA2s. Each subfamily consists of several isozymes that possess PLA2 activity. The first three PLA2 subfamilies play important roles in inflammation-related diseases and cancer. In this review, the roles of well-studied enzymes sPLA2-IIA, cPLA2α and iPLA2β in carcinogenesis and cancer development were discussed. sPLA2-IIA seems to play conflicting roles and can act as a tumor suppressor or a tumor promoter according to the cancer type, but cPLA2α and iPLA2β play protumorigenic role in most cancers. The mechanisms of PLA2-mediated signal transduction and crosstalk between cancer cells and endothelial cells in the tumor microenvironment are described. Moreover, the mechanisms by which PLA2s mediate lipid reprogramming and glycerophospholipid remodeling in cancer cells are illustrated. PLA2s as the upstream regulators of the arachidonic acid cascade are generally high expressed and activated in various cancers. Therefore, they can be considered as potential pharmacological targets and biomarkers in cancer. The detailed information summarized in this review may aid in understanding the roles of PLA2s in cancer, and provide new clues for the development of novel agents and strategies for tumor prevention and treatment.
Collapse
Affiliation(s)
- Zhangxiao Peng
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| | - Yanxin Chang
- Department of Biliary Tract Surgery IV, Eastern Hepatobiliary Surgical Hospital, Navy Military Medical University, Shanghai, 200438, China.
| | - Jianhui Fan
- Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, 350025, Fujian Province, China.
| | - Weidan Ji
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| | - Changqing Su
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| |
Collapse
|
7
|
Qu J, Zhao X, Wang J, Liu C, Sun Y, Cai H, Liu J. Plasma phospholipase A2 activity may serve as a novel diagnostic biomarker for the diagnosis of breast cancer. Oncol Lett 2018. [PMID: 29541252 DOI: 10.3892/ol.2018.7915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Previous studies have indicated that phospholipase A2 (PLA2) may be associated with tumorigenesis in human tissues. The present study aimed to investigate the association between plasma PLA2 activity and the breast cancer (BC) status of patients. Increased plasma PLA2 activity was detected in patients with breast cancer when compared with healthy controls. Plasma samples were obtained from patients with BC (n=169), patients with benign disease (BD; n=80) and healthy controls (n=81). PLA2 activity was assessed using a quantitative fluorescent assay with selective inhibitors. It was demonstrated that increased PLA2 and secretory PLA2 (sPLA2) activity was associated with tumor stage, particularly in patients with late-stage disease. Additionally, smoking, alcohol consumption, body mass index (BMI) and age of patients did not have a significant effect on PLA2 activity. Analysis of receiver operating characteristic curves revealed that plasma PLA2 and sPLA2 activities were increased in BC patients compared with healthy controls. It was concluded that plasma PLA2 activity may serve as a biomarker for patients with BC.
Collapse
Affiliation(s)
- Jingkun Qu
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xixi Zhao
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jizhao Wang
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chao Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hui Cai
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jianlin Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
8
|
de Groot JS, Moelans CB, Elias SG, Jo Fackler M, van Domselaar R, Suijkerbuijk KPM, Witkamp AJ, Sukumar S, van Diest PJ, van der Wall E. DNA promoter hypermethylation in nipple fluid: a potential tool for early breast cancer detection. Oncotarget 2017; 7:24778-91. [PMID: 27028854 PMCID: PMC5029741 DOI: 10.18632/oncotarget.8352] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/29/2016] [Indexed: 01/18/2023] Open
Abstract
Introduction Nipple fluid aspiration provides direct non-invasive sampling of fluid from the mammary ductal system, where the majority of breast cancers originate. DNA promoter hypermethylation (“methylation”) occurs early and at high frequency in breast carcinogenesis, bearing the potential as a biomarker for cancer detection at its earliest stages. We assessed methylation in nipple fluid from breasts of healthy women, of women with sporadic breast cancer and of their contralateral breasts. Our goal was to investigate whether nipple fluid can be used as a reliable methylation biomarker source. Methods Methylation levels of 13 genes were analysed by quantitative multiplex-methylation specific PCR (QM-MSP) in nipple fluid samples from breasts of healthy women, and from the affected and contralateral breasts of breast cancer patients. Results Methylation analysis of the low-volume nipple fluid samples was feasible. Despite the generally low methylation levels, cancerous and healthy breasts nipple fluid could be discriminated with an area under the receiver operating characteristic curve (AUC) of 0.64 (p<0.01) based on a multivariate model including AKR1B1, ALX1, RASSF1A and TM6SF1. Within-patient differences between cancerous and contralateral nipple fluid samples were less prominent. Conclusions Cancerous nipple fluid contains increased levels of methylation of tumor suppressor genes that potentially could serve as a biomarker for early breast cancer detection.
Collapse
Affiliation(s)
- Jolien S de Groot
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cathy B Moelans
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sjoerd G Elias
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mary Jo Fackler
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Robert van Domselaar
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Arjen J Witkamp
- Department of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elsken van der Wall
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
9
|
Antitumoral effects of γCdcPLI, a PLA 2 inhibitor from Crotalus durissus collilineatus via PI3K/Akt pathway on MDA-MB-231 breast cancer cell. Sci Rep 2017; 7:7077. [PMID: 28765552 PMCID: PMC5539153 DOI: 10.1038/s41598-017-07082-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/22/2017] [Indexed: 12/23/2022] Open
Abstract
Phospholipases A2(PLA2s) overexpression is closely associated with the malignant potential of breast cancers. Here, we showed for the first the antitumoral effects of γCdcPLI, a PLA2 inhibitor from Crotalus durissus collilineatus via PI3K/Akt pathway on MDA-MB-231 cell. Firstly, γCdcPLI was more cytotoxic to MDA-MB-231 breast cancer cells than other cell lines (MCF-7, HeLa, PC3 and A549) and did not affect the viability of non-tumorigenic breast cell (MCF 10A). In addition, γCdcPLI induced modulation of important mediators of apoptosis pathways such as p53, MAPK-ERK, BIRC5 and MDM2. γCdcPLI decreased MDA-MB-231 adhesion, migration and invasion. Interestingly, the γCdcPLI also inhibited the adhesion and migration of endothelial cells and blocked angiogenesis by inhibiting tube formation by HUVECs in vitro and sprouting elongation on aortic ring assay ex vivo. Furthermore, γCdcPLI reduced the production of vascular endothelial growth factor (VEGF). γCdcPLI was also able to decrease PGE2 levels in MDA-MB-231 and inhibited gene and protein expression of the PI3K/Akt pathway. In conclusion, γCdcPLI showed in vitro antitumoral, antimestatatic and anti-angiogenic potential effects and could be an attractive approach for futures studies in cancer therapy.
Collapse
|
10
|
ZHANG CHENGWEI, YU HAIPENG, XU HAIYAN, YANG LANLAN. Expression of secreted phospholipase A2-Group IIA correlates with prognosis of gastric adenocarcinoma. Oncol Lett 2015; 10:3050-3058. [PMID: 26722288 PMCID: PMC4665698 DOI: 10.3892/ol.2015.3736] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 08/17/2015] [Indexed: 12/14/2022] Open
Abstract
The present study investigated the expression of secretory phospholipase A2-Group IIA (sPLA2-II) in gastric adenocarcinoma, in order to evaluate the correlation between sPLA2-II expression, and the clinicopathological features and prognosis of patients with gastric adenocarcinoma. Between January 2007 and April 2010, data were collected from 65 patients (44 males, 21 females; age range, 30-79 years; mean 66.7 ± 10.7 years). All patients exhibited a pathologically confirmed diagnosis of gastric adenocarcinoma. Endoscopic biopsy specimens of normal gastric mucosa from 11 of these patients were used as controls. Patients were subsequently followed-up at 3-month intervals, and survival data were recorded until April 2010. Expression of sPLA2-II in 65 gastric adenocarcinoma and 11 normal gastric mucosa specimens was evaluated via immunohistochemistry. A semi-quantitative method, consisting of evaluation of staining percentage and intensity, was utilized for immunohistochemical scoring, and the receiver operating characteristic curve method was applied to select a cut-off score for high and low sPLA2-II expression. The value of 8 was selected as the cut-off score, with maximum sensitivity and specificity. High sPLA2-II expression was observed in stage III/IV cases (83.3%; 40/48) and poorly differentiated cells (94.1%; 32/34), while sPLA2-II expression levels were observed to be significantly lower in stage I/II cases (52.9%; 9/17) and well and moderately differentiated cells (54.8%; 17/31; P=0.021 and P<0.001, respectively). There were no significant correlations observed between sPLA2-II expression and any other clinicopathological parameters, including gender, age, tumor diameter and Helicobacter pylori infection. Patients exhibiting low sPLA2-II expression experienced significantly improved overall survival (OS) and disease-free survival (DFS), compared with those exhibiting high sPLA2-II expression (P=0.043 and P=0.035, respectively). Multivariate analysis confirmed that high sPLA2-II expression may be an independent prognostic factor for OS [relative risk, 2.849; 95% confidence interval (CI), 1.088-7.459; P=0.033] and DFS (relative risk, 2.735; 95% CI, 1.104-6.776; P=0.030) in gastric adenocarcinoma. Therefore, sPLA2-II may be correlated with the histogenesis of gastric adenocarcinoma, and increased sPLA2-II expression may be an indicator of poor prognosis.
Collapse
Affiliation(s)
- CHENGWEI ZHANG
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - HAIPENG YU
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - HAIYAN XU
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - LANLAN YANG
- Department of Biliary and Pancreatic Internal Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
11
|
Brglez V, Lambeau G, Petan T. Secreted phospholipases A2 in cancer: Diverse mechanisms of action. Biochimie 2014; 107 Pt A:114-23. [DOI: 10.1016/j.biochi.2014.09.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 09/25/2014] [Indexed: 12/24/2022]
|
12
|
Brglez V, Pucer A, Pungerčar J, Lambeau G, Petan T. Secreted phospholipases A₂are differentially expressed and epigenetically silenced in human breast cancer cells. Biochem Biophys Res Commun 2014; 445:230-5. [PMID: 24508801 DOI: 10.1016/j.bbrc.2014.01.182] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 02/06/2023]
Abstract
Secreted phospholipases A2 (sPLA2s) have recently been associated with several cancers, but their role in breast cancer is unknown. Here we demonstrate that mRNA expression of group IIA, III and X sPLA2s differs both in vivo in tumour biopsies and in breast cancer cells in vitro. Their expression is differentially regulated by DNA methylation and histone acetylation and, significantly, all three genes are silenced in aggressive triple negative cells due to both mechanisms. The transcription start site promoter region and the upstream CpG islands, exclusive to the group X sPLA2 gene, have variable roles in the regulation of sPLA2 expression. Our results suggest that the differential expression of hGIIA, hGIII and hGX sPLA2s in breast cancer cells is a consequence of various degrees of epigenetic silencing due to DNA hypermethylation and histone deacetylation.
Collapse
Affiliation(s)
- Vesna Brglez
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Anja Pucer
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Jože Pungerčar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Gérard Lambeau
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS et Université de Nice Sophia Antipolis, UMR 6097, Sophia Antipolis, Valbonne, France
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
13
|
Pucer A, Brglez V, Payré C, Pungerčar J, Lambeau G, Petan T. Group X secreted phospholipase A(2) induces lipid droplet formation and prolongs breast cancer cell survival. Mol Cancer 2013; 12:111. [PMID: 24070020 PMCID: PMC3852912 DOI: 10.1186/1476-4598-12-111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/24/2013] [Indexed: 01/08/2023] Open
Abstract
Background Alterations in lipid metabolism are inherent to the metabolic transformations that support tumorigenesis. The relationship between the synthesis, storage and use of lipids and their importance in cancer is poorly understood. The human group X secreted phospholipase A2 (hGX sPLA2) releases fatty acids (FAs) from cell membranes and lipoproteins, but its involvement in the regulation of cellular FA metabolism and cancer is not known. Results Here we demonstrate that hGX sPLA2 induces lipid droplet (LD) formation in invasive breast cancer cells, stimulates their proliferation and prevents their death on serum deprivation. The effects of hGX sPLA2 are shown to be dependent on its enzymatic activity, are mimicked by oleic acid and include activation of protein kinase B/Akt, a cell survival signaling kinase. The hGX sPLA2-stimulated LD biogenesis is accompanied by AMP-activated protein kinase (AMPK) activation, up-regulation of FA oxidation enzymes and the LD-coating protein perilipin 2, and suppression of lipogenic gene expression. Prolonged activation of AMPK inhibited hGX sPLA2-induced LD formation, while etomoxir, an inhibitor of FA oxidation, abrogated both LD formation and cell survival. The hGX sPLA2-induced changes in lipid metabolism provide a minimal immediate proliferative advantage during growth under optimal conditions, but they confer to the breast cancer cells a sustained ability to resist apoptosis during nutrient and growth factor limitation. Conclusion Our results identify hGX sPLA2 as a novel modulator of lipid metabolism that promotes breast cancer cell growth and survival by stimulating LD formation and FA oxidation.
Collapse
Affiliation(s)
- Anja Pucer
- Department of Molecular and Biomedical Sciences, JoŽef Stefan Institute, Ljubljana, Slovenia.
| | | | | | | | | | | |
Collapse
|
14
|
Policastro LL, Ibañez IL, Notcovich C, Duran HA, Podhajcer OL. The tumor microenvironment: characterization, redox considerations, and novel approaches for reactive oxygen species-targeted gene therapy. Antioxid Redox Signal 2013; 19:854-95. [PMID: 22794113 DOI: 10.1089/ars.2011.4367] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The tumor microenvironment is a complex system that involves the interaction between malignant and neighbor stromal cells embedded in a mesh of extracellular matrix (ECM) components. Stromal cells (fibroblasts, endothelial, and inflammatory cells) are co-opted at different stages to help malignant cells invade the surrounding ECM and disseminate. Malignant cells have developed adaptive mechanisms to survive under the extreme conditions of the tumor microenvironment such as restricted oxygen supply (hypoxia), nutrient deprivation, and a prooxidant state among others. These conditions could be eventually used to target drugs that will be activated specifically in this microenvironment. Preclinical studies have shown that modulating cellular/tissue redox state by different gene therapy (GT) approaches was able to control tumor growth. In this review, we describe the most relevant features of the tumor microenvironment, addressing reactive oxygen species-generating sources that promote a prooxidative microenvironment inside the tumor mass. We describe different GT approaches that promote either a decreased or exacerbated prooxidative microenvironment, and those that make use of the differential levels of ROS between cancer and normal cells to achieve tumor growth inhibition.
Collapse
Affiliation(s)
- Lucia Laura Policastro
- Department of Micro and Nanotechnology, National Atomic Energy Commission, Buenos Aires 1650, Argentina.
| | | | | | | | | |
Collapse
|
15
|
Bandekar A, Zhu C, Gomez A, Menzenski MZ, Sempkowski M, Sofou S. Masking and Triggered Unmasking of Targeting Ligands on Liposomal Chemotherapy Selectively Suppress Tumor Growth in Vivo. Mol Pharm 2012; 10:152-60. [DOI: 10.1021/mp3002717] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Amey Bandekar
- Department
of Biomedical Engineering
and Department of Chemical and Biochemical Engineering, Rutgers, The
State University of New Jersey, Piscataway, New Jersey 08854, United
States
| | - Charles Zhu
- Department
of Biomedical Engineering
and Department of Chemical and Biochemical Engineering, Rutgers, The
State University of New Jersey, Piscataway, New Jersey 08854, United
States
| | - Ana Gomez
- Department
of Biomedical Engineering
and Department of Chemical and Biochemical Engineering, Rutgers, The
State University of New Jersey, Piscataway, New Jersey 08854, United
States
| | | | - Michelle Sempkowski
- Department of Biomedical Engineering,
The College of New Jersey, Ewing, New Jersey 08628, United States
| | - Stavroula Sofou
- Department
of Biomedical Engineering
and Department of Chemical and Biochemical Engineering, Rutgers, The
State University of New Jersey, Piscataway, New Jersey 08854, United
States
| |
Collapse
|
16
|
Wei Y, Epstein SP, Fukuoka S, Birmingham NP, Li XM, Asbell PA. sPLA2-IIa amplifies ocular surface inflammation in the experimental dry eye (DE) BALB/c mouse model. Invest Ophthalmol Vis Sci 2011; 52:4780-8. [PMID: 21519031 DOI: 10.1167/iovs.10-6350] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE sPLA2-IIa is a biomarker for many inflammatory diseases in humans and is found at high levels in human tears. However, its role in ocular surface inflammation remains unclear. An experimentally induced BALB/c mouse dry eye (DE) model was used to elucidate the role of sPLA2-IIa in ocular surface inflammation. METHODS BALB/c mice were subcutaneously injected with scopolamine and placed in a daytime air-drying device for 5 to 10 days. Control mice received no treatment. DE status was evaluated with tear production with a phenol-red thread method. Tear inflammatory cytokines were quantified by multiplex immunoassays. Ocular surface inflammation and sPLA2-IIa expression were examined by immune-staining and quantitative (q)RT(2)-PCR. Conjunctiva (CNJ) of the mice was cultured for prostaglandin E2 production induced by sPLA2-IIa with various amount of sPLA2-IIa inhibitor, S-3319. RESULTS Treated mice produced fewer tears and heavier corneal (CN) fluorescein staining than the untreated controls (P < 0.001). They also revealed lower goblet cell density (P < 0.001) with greater inflammatory cell infiltration within the conjunctiva, and higher concentration of tear inflammatory cytokines than the controls. Moreover, treated mice showed heavier sPLA2-IIa immune staining than the controls in the CNJ epithelium, but not in the CN epithelium or the lacrimal gland. Treated mice exhibited upregulated sPLA2-IIa and cytokine gene transcription. Furthermore, CNJ cultures treated with sPLA2-IIa inhibitor showed significantly reduced sPLA2-IIa-induced inflammation. CONCLUSIONS This is the first report regarding sPLA2-IIa in the regulation of ocular surface inflammation. The findings may therefore lead to new therapeutic strategies for ocular surface inflammation, such as DE disease.
Collapse
Affiliation(s)
- Yi Wei
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Tian G, Wang X, Zhang F, Geng H, Hou W, Chen L, Guo H, Zhang N. Downregulation of cPLA2γ expression inhibits EGF-induced chemotaxis of human breast cancer cells through Akt pathway. Biochem Biophys Res Commun 2011; 409:506-12. [PMID: 21600875 DOI: 10.1016/j.bbrc.2011.05.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/05/2011] [Indexed: 01/06/2023]
Abstract
Phospholipids play an important role in mediating cell migration. In the present study, we investigated the role of cPLA(2)γ in chemotaxis of human breast cancer cells. Inhibition of cPLA(2)γ expression by small interference RNA severely inhibits EGF-induced chemotaxis in a dose-dependent manner in MDA-MB-231, MCF-7, T47D and ZR-75-30 cells. Furthermore, silencing cPLA(2)γ expression also impaired directional migration, adhesion and invasion in MDA-MB-231 cells. In addition, we investigated the molecular mechanism by which cPLA(2)γ regulated migration. Knockdown of cPLA(2)γ suppressed the phosphorylation of Akt at both Thr308 and Ser473. Phosphorylation of PKCζ, downstream of Akt, was also dampened. Knockdown of cPLA(2)γ also impaired the phosphorylation of integrin β1 and cofilin, key regulators of cell adhesion and actin polymerization, respectively. Taken together, our results suggest that cPLA(2)γ plays an important role in cancer cell chemotaxis.
Collapse
Affiliation(s)
- Gang Tian
- Tianjin Medical University, Cancer Institute and Hospital, Tianjin 300060, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hernández M, Martín R, García-Cubillas MD, Maeso-Hernández P, Nieto ML. Secreted PLA2 induces proliferation in astrocytoma through the EGF receptor: another inflammation-cancer link. Neuro Oncol 2010; 12:1014-23. [PMID: 20639215 DOI: 10.1093/neuonc/noq078] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have investigated mechanisms that contribute to reinforce the relationship between inflammation and cancer. Secreted phospholipase A(2) group IIA (sPLA(2)-IIA) is a molecule relevant in inflammatory events and has been proposed as a marker for some of these. Previously, we reported the mitogenic properties of this sPLA(2) in the human astrocytoma cell line 1321N1. Here, we go deeper into the mechanisms that link this inflammatory protein with proliferation in one of the most aggressive types of tumors. We found that phosphorylation of the extracellular regulated kinase (ERK) was preceded by the activation of the small GTPase Ras, and both failed to be activated by inhibiting protein kinase C (PKC). Fractionation and immunofluorescence studies revealed translocation of PKC alpha, delta, and epsilon to the membrane fraction upon stimulation with sPLA(2)-IIA. Immunoprecipitation analysis showed that sPLA(2)-IIA induces phosphorylation of the epidermal growth factor receptor (EGFR) through a PKC-dependent pathway. We found that phosphorylation of this receptor contributed to Ras and ERK activation and that inhibition of ERK, PKC, and EGFR blocked the mitogenic response induced by sPLA(2)-IIA. This study showed that sPLA(2)-IIA is able to bring into play EGFR to trigger its signaling and that PKC leads the distribution of resources. Interestingly, we found that this is not a cell-specific response, because sPLA(2)-IIA was also able to transactivate EGFR in MCF7 human breast cancer cells. Therefore, this mechanism could contribute to worsen the prognosis of a tumor in an inflammatory microenvironment. We also present more links of the tumor chain possibly susceptible to targeting.
Collapse
Affiliation(s)
- Marita Hernández
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas-Universidad de Valladolid, C/Sanz y Forés s/n, 47003 Valladolid, Spain.
| | | | | | | | | |
Collapse
|
19
|
Mannello F, Tonti GA, Pederzoli A, Simone P, Smaniotto A, Medda V. Detection of Superoxide Dismutase-1 in Nipple Aspirate Fluids: A Reactive Oxygen Species—Regulating Enzyme in the Breast Cancer Microenvironment. Clin Breast Cancer 2010; 10:238-245. [DOI: 10.3816/cbc.2010.n.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
20
|
Emerging roles for phospholipase A2 enzymes in cancer. Biochimie 2010; 92:601-10. [DOI: 10.1016/j.biochi.2010.03.019] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 03/24/2010] [Indexed: 12/24/2022]
|
21
|
Granata F, Frattini A, Loffredo S, Staiano RI, Petraroli A, Ribatti D, Oslund R, Gelb MH, Lambeau G, Marone G, Triggiani M. Production of vascular endothelial growth factors from human lung macrophages induced by group IIA and group X secreted phospholipases A2. THE JOURNAL OF IMMUNOLOGY 2010; 184:5232-41. [PMID: 20357262 DOI: 10.4049/jimmunol.0902501] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Angiogenesis and lymphangiogenesis mediated by vascular endothelial growth factors (VEGFs) are main features of chronic inflammation and tumors. Secreted phospholipases A(2) (sPLA(2)s) are overexpressed in inflammatory lung diseases and cancer and they activate inflammatory cells by enzymatic and receptor-mediated mechanisms. We investigated the effect of sPLA(2)s on the production of VEGFs from human macrophages purified from the lung tissue of patients undergoing thoracic surgery. Primary macrophages express VEGF-A, VEGF-B, VEGF-C, and VEGF-D at both mRNA and protein level. Two human sPLA(2)s (group IIA and group X) induced the expression and release of VEGF-A and VEGF-C from macrophages. Enzymatically-inactive sPLA(2)s were as effective as the active enzymes in inducing VEGF production. Me-Indoxam and RO092906A, two compounds that block receptor-mediated effects of sPLA(2)s, inhibited group X-induced release of VEGF-A. Inhibition of the MAPK p38 by SB203580 also reduced sPLA(2)-induced release of VEGF-A. Supernatants of group X-activated macrophages induced an angiogenic response in chorioallantoic membranes that was inhibited by Me-Indoxam. Stimulation of macrophages with group X sPLA(2) in the presence of adenosine analogs induced a synergistic increase of VEGF-A release and inhibited TNF-alpha production through a cooperation between A(2A) and A(3) receptors. These results demonstrate that sPLA(2)s induce production of VEGF-A and VEGF-C in human macrophages by a receptor-mediated mechanism independent from sPLA(2) catalytic activity. Thus, sPLA(2)s may play an important role in inflammatory and/or neoplastic angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Francescopaolo Granata
- Division of Clinical Immunology and Allergy and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chattopadhyay I, Singh A, Phukan R, Purkayastha J, Kataki A, Mahanta J, Saxena S, Kapur S. Genome-wide analysis of chromosomal alterations in patients with esophageal squamous cell carcinoma exposed to tobacco and betel quid from high-risk area in India. Mutat Res 2010; 696:130-8. [PMID: 20083228 DOI: 10.1016/j.mrgentox.2010.01.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 01/04/2010] [Accepted: 01/10/2010] [Indexed: 01/19/2023]
Abstract
Genomic alterations such as chromosomal amplifications, deletions and loss of heterozygosity play an important role in the pathogenesis and progression of cancer. Environmental risk factors contribute to the development and progression of tumors by facilitating the loss of tumor suppressor genes and amplification of oncogenes. In this current study, Affymetrix 10K single nucleotide polymorphism (SNP) arrays were used to evaluate genomic alterations in 20 pairs of matched germ-line and tumor DNA obtained from patients with esophageal squamous cell carcinoma (ESCC) from high-risk area of India where tobacco, betel quid and alcohol use are widespread. Twenty-two amplified regions and 16 deleted regions identified across chromosomal arms were biologically relevant. The candidate genes located at amplified regions of chromosomes or low-level gain regions such as PLA2G5 (1p36-p34), COL11A1 (1p21), KCNK2 (1q41), S100A3 (1q21), ENAH (1q42.12), RGS1 (1q31), KCNH1 (1q32-q41), INSIG2 (2q14.1), FGF12 (3q28), TRIO (5p15.2), RNASEN (5p15.2), FGF10 (5p13-p12), EDN1(6p24.1-p22.3), SULF1 (8q13.2-13.3), TLR4 (9q32-q33), TNC (9q33), NTRK2 (9q22.1), CD44 (11p13), NCAM1 (11q23.1), TRIM29 (11q22-q23), PAK1 (11q13-q14) and RAB27A (15q15-q21.1), are found to be associated with cellular migration and proliferation, tumor cell metastasis and invasion, anchorage independent growth and inhibition of apoptosis. The candidate genes located at deleted regions of chromosomes, such as FBLN2 (3p25.1), WNT7A (3p25), DLC1 (8p22), LZTS1 (8p22), CDKN2A (9p21), COL4A1 (13q34), CDK8 (13q12) and DCC (18q21.3), are found to be associated with the suppression of tumor. The suggested candidate genes were mostly involved in potential signaling pathways such as focal adhesion (COL4A1), tight junction (CLDN10), MAPK signaling pathway (FGF12) and neuroactive ligand receptor interaction pathway (CCKAR). Expression of FGF12 and COL4A1 was validated by tissue microarray. These unique copy number alteration profiles should be taken into consideration when developing biomarkers for the early detection of ESCC in high-risk areas of India in association with tobacco and betel quid use.
Collapse
|
23
|
Mannello F, Tonti GA. Statins and breast cancer: may matrix metalloproteinase be the missing link. Cancer Invest 2009; 27:466-70. [PMID: 19219650 DOI: 10.1080/07357900802491444] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Statins (3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors), cholesterol-lowering agents widely prescribed for cardiovascular health, have been shown to exert several pleiotropic effects. Although some studies reported that statins have no effects on malignancies of any kind, results of several epidemiologic and in vitro studies highlighted that statins exert anticancer activity in various cell types, showing that long-term therapy inhibits the incidence and/or progression of some human tumours. In particular, in the present overview we focused the attention on a neglected aspect of the pleiotropic functions of some lipophilic statins, suggesting that the possible mechanism of matrix metalloproteinase downregulation arises from prolonged lowering of circulating cholesterol. Our hypothesis may explain the literary findings about the phenomenon of switching of breast cancer phenotypes by statins, shedding the basis of future epidemiologic and basic science studies about the role of circulating and/or tumor-resident cholesterol in the initiation and progression of breast cancer.
Collapse
Affiliation(s)
- Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Clinical Biochemistry, University Carlo Bo, Urbino, Italy.
| | | |
Collapse
|
24
|
Mannello F, Medda V, Tonti GA. Protein profile ana lysis of the breast microenvironment to differentiate healthy women from breast cancer patients. Expert Rev Proteomics 2009; 6:43-60. [DOI: 10.1586/14789450.6.1.43] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
25
|
Mannello F. Analysis of the intraductal microenvironment for the early diagnosis of breast cancer: identification of biomarkers in nipple-aspirate fluids. ACTA ACUST UNITED AC 2008; 2:1221-31. [DOI: 10.1517/17530059.2.11.1221] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|