1
|
Buoso E, Masi M, Long A, Chiappini C, Travelli C, Govoni S, Racchi M. Ribosomes as a nexus between translation and cancer progression: Focus on ribosomal Receptor for Activated C Kinase 1 (RACK1) in breast cancer. Br J Pharmacol 2020; 179:2813-2828. [PMID: 32726469 DOI: 10.1111/bph.15218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
Ribosomes coordinate spatiotemporal control of gene expression, contributing to the acquisition and maintenance of cancer phenotype. The link between ribosomes and cancer is found in the roles of individual ribosomal proteins in tumorigenesis and cancer progression, including the ribosomal protein, receptor for activated C kinase 1 (RACK1). RACK1 regulates cancer cell invasion and is localized in spreading initiation centres, structural adhesion complexes containing RNA binding proteins and poly-adenylated mRNAs that suggest a local translation process. As RACK1 is a ribosomal protein directly involved in translation and in breast cancer progression, we propose a new molecular mechanism for breast cancer cell migration and invasion, which considers the molecular differences between epithelial and mesenchymal cell profiles in order to characterize and provide novel targets for therapeutic strategies. Hence, we provide an analysis on how ribosomes translate cancer progression with a final focus on the ribosomal protein RACK1 in breast cancer.
Collapse
Affiliation(s)
- Erica Buoso
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Mirco Masi
- Department of Drug Sciences, University of Pavia, Pavia, Italy.,Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy
| | - Aideen Long
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College, Dublin, Ireland
| | | | | | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
2
|
Shen C, Hua H, Gu L, Cao S, Cai H, Yao X, Chen X. Overexpression of RACK1 Predicts Poor Prognosis in Melanoma. J Cancer 2020; 11:795-803. [PMID: 31949482 PMCID: PMC6959021 DOI: 10.7150/jca.36905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/22/2019] [Indexed: 12/13/2022] Open
Abstract
Melanoma is a highly malignant skin cancer with limited treatment options, the mechanism of the occurrence and development of melanoma is still unclear till now. Receptor for activated C kinase 1 (RACK1) is a scaffolding protein that mediates multiple signaling pathways; it interconnects distinct signaling pathways to control essential cellular processes. RACK1 was reported as an oncogene in human tumorigenesis, but little is known about its role in melanoma. This study aimed to investigate the expression of RACK1 in patients with melanoma and to reveal its possible functions in melanoma cells. The expression profiles of RACK1 detected in tumor tissues from melanoma patients showed that RACK1 was higher in tumor tissues, and its expression level was well associated with the clinical progression of melanoma (TNM stage, P=0.009). Furthermore, RNA interfering (RNAi) knockdown of RACK1 could efficiently suppress the proliferation, migration and invasion of A375 and A875 cells and promote their apoptosis. Taken together, these results suggest that RACK1 may be a poor prognostic factor in human melanoma, and it may be a new therapeutic target for melanoma treatment.
Collapse
Affiliation(s)
- Congcong Shen
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, P.R. China
| | - Hui Hua
- Department of Dermatology, The Third People's Hospital of Nantong, Nantong, 226001, P.R. China
| | - Lixiong Gu
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, P.R. China
| | - Shuanglin Cao
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, P.R. China
| | - Hengji Cai
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, P.R. China
| | - Xiaodong Yao
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, P.R. China
| | - Xiaodong Chen
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, P.R. China
| |
Collapse
|
3
|
Li XY, Hu Y, Li NS, Wan JH, Zhu Y, Lu NH. RACK1 Acts as a Potential Tumor Promoter in Colorectal Cancer. Gastroenterol Res Pract 2019; 2019:5625026. [PMID: 30962803 PMCID: PMC6431438 DOI: 10.1155/2019/5625026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/07/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The receptor of activated protein kinase C 1 (RACK1) promotes the progression and invasion of several cancers. However, the role of RACK1 in the pathogenesis of colorectal cancer (CRC) has not been clearly defined. Herein, we aimed to investigate the biological role of RACK1 in CRC. MATERIALS AND METHODS The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) dataset were searched, and the expression of RACK1 in CRC tissues and adjacent normal tissues was evaluated. Immunohistochemical staining was performed to detect the expression of RACK1 in human CRC, adenoma, and normal tissues. Western blotting was used to detect the expression of RACK1 in human CRC cell lines. Functional assays, such as BrdU, colony formation, and wound healing and transwell invasion assays, were used to explore the biological role of RACK1 in CRC. RESULTS RACK1 was upregulated in CRC tissues compared with its expression in adjacent normal tissues in TCGA and the GEO dataset (P < 0.05). Moreover, RACK1 was significantly overexpressed in CRC and adenoma tissues compared with its expression in normal tissues (P < 0.05). Loss-of-function experiments showed that RACK1 promoted cell proliferation, migration, and invasion in vitro. CONCLUSIONS Our data indicated that RACK1, as an oncogene, markedly promoted the progression of CRC, which suggested that RACK1 is a potential therapeutic target for CRC management.
Collapse
Affiliation(s)
- Xue-Yang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province, China
| | - Yi Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province, China
| | - Nian-Shuang Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province, China
| | - Jian-Hua Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province, China
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province, China
| | - Nong-Hua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006 Jiangxi Province, China
| |
Collapse
|
4
|
RACK1 regulates centriole duplication by controlling localization of BRCA1 to the centrosome in mammary tissue-derived cells. Oncogene 2019; 38:3077-3092. [PMID: 30617304 DOI: 10.1038/s41388-018-0647-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 11/08/2022]
Abstract
Breast cancer gene 1 (BRCA1) is a tumor suppressor that is associated with hereditary breast and ovarian cancer. BRCA1 functions in DNA repair and centrosome regulation together with BRCA1-associated RING domain protein (BARD1), a heterodimer partner of BRCA1. Obg-like ATPase 1 (OLA1) was identified as a protein that interacts with BARD1. OLA1 regulates the centrosome by binding to and collaborating with BRCA1 and BARD1. We identified receptor for activated C kinase (RACK1) as a protein that interacts with OLA1. RACK1 directly bound to OLA1, the N-terminal region of BRCA1, and γ-tubulin, associated with BARD1, and localized the centrosomes throughout the cell cycle. Knockdown of RACK1 caused abnormal centrosomal localization of BRCA1 and abrogated centriole duplication. Overexpression of RACK1 increased the centrosomal localization of BRCA1 and caused centrosome amplification due to centriole overduplication. The number of centrioles in cells with two γ-tubulin spots was higher in cell lines derived from mammary tissue compared to those derived from other tissues. The effects of aberrant RACK1 expression level on centriole duplication were observed in cell lines derived from mammary tissue, but not in those derived from other tissues. Two BRCA1 variants, R133H and E143K, and a RACK1 variant, K280E, associated with cancer, which weakened the BRCA1-RACK1 interaction, interfered with the centrosomal localization of BRCA1 and reduced centrosome amplification induced by overexpression of RACK1. These results suggest that RACK1 regulates centriole duplication by controlling the centrosomal localization of BRCA1 in mammary tissue-derived cells and that this is dependent on the BRCA1-RACK1 interaction.
Collapse
|
5
|
Day JP, Whiteley E, Freeley M, Long A, Malacrida B, Kiely P, Baillie GS. RAB40C regulates RACK1 stability via the ubiquitin-proteasome system. Future Sci OA 2018; 4:FSO317. [PMID: 30112187 PMCID: PMC6088270 DOI: 10.4155/fsoa-2018-0022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/15/2018] [Indexed: 11/17/2022] Open
Abstract
AIM RACK1 is a multifunctional scaffolding protein that is expressed in many cellular compartments, orchestrating a number of signaling processes. RACK1 acts as a signaling hub to localize active enzymes to discrete locations; therefore tight control of RACK1 is vital to cellular homeostasis. Our aim was to identify the mechanisms responsible for RACK1 turnover and show that degradation is directed by the ubiquitin proteasome system. RESULTS Using siRNA screening, we identified RAB40C as the ubiquitin E3 ligase responsible for ubiquitination of RACK1, and that the action of RAB40C in controlling RACK1 levels is crucial to both cancer cell growth and migration of T cells. CONCLUSION Our data suggest that manipulation of RACK1 levels in this way may provide a novel strategy to explore RACK1 function.
Collapse
Affiliation(s)
- Jon P Day
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ellanor Whiteley
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Michael Freeley
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College, Dublin, D08 W9RT, Ireland
| | - Aideen Long
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College, Dublin, D08 W9RT, Ireland
| | - Beatrice Malacrida
- Materials & Surface Science Institute & Health Research Institute, University of Limerick, Limerick, Ireland
| | - Patrick Kiely
- Materials & Surface Science Institute & Health Research Institute, University of Limerick, Limerick, Ireland
| | - George S Baillie
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
6
|
Kiely M, Adams DR, Hayes SL, O'Connor R, Baillie GS, Kiely PA. RACK1 stabilises the activity of PP2A to regulate the transformed phenotype in mammary epithelial cells. Cell Signal 2016; 35:290-300. [PMID: 27600565 DOI: 10.1016/j.cellsig.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 02/04/2023]
Abstract
Conflicting reports implicate the scaffolding protein RACK1 in the progression of breast cancer. RACK1 has been identified as a key regulator downstream of growth factor and adhesion signalling and as a direct binding partner of PP2A. Our objective was to further characterise the interaction between PP2A and RACK1 and to advance our understanding of this complex in breast cancer cells. We examined how the PP2A holoenzyme is assembled on the RACK1 scaffold in MCF-7 cells. We used immobilized peptide arrays representing the entire PP2A-catalytic subunit to identify candidate amino acids on the C subunit of PP2A that might be involved in binding of RACK1. We identified the RACK1 interaction sites on PP2A. Stable cell lines expressing PP2A with FR69/70AA, R214A and Y218F substitutions were generated and it was confirmed that the RACK1/PP2A interaction is essential to stabilise PP2A activity. We used Real-Time Cell Analysis and a series of assays to demonstrate that disruption of the RACK1/PP2A complex also reduces the adhesion, proliferation, migration and invasion of breast cancer cells and plays a role in maintenance of the cancer phenotype. This work has significantly advanced our understanding of the RACK1/PP2A complex and suggests a pro-carcinogenic role for the RACK1/PP2A interaction. This work suggests that approaches to target the RACK1/PP2A complex are a viable option to regulate PP2A activity and identifies a novel potential therapeutic target in the treatment of breast cancer.
Collapse
Affiliation(s)
- Maeve Kiely
- Graduate Entry Medical School, Materials and Surface Science Institute and Health Research Institute, University of Limerick, Ireland
| | - David R Adams
- Institute of Chemical Sciences, Heriot-Watt University, Riccarton Campus, Edinburgh EH14AS, UK
| | - Sheri L Hayes
- Graduate Entry Medical School, Materials and Surface Science Institute and Health Research Institute, University of Limerick, Ireland
| | - Rosemary O'Connor
- Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, University College Cork, Cork, Ireland
| | - George S Baillie
- Institute of Cardiovascular & Medical Science, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Patrick A Kiely
- Graduate Entry Medical School, Materials and Surface Science Institute and Health Research Institute, University of Limerick, Ireland.
| |
Collapse
|
7
|
Peng H, Gong PG, Li JB, Cai LM, Yang L, Liu YY, Yao KT, Li X. The important role of the receptor for activated C kinase 1 (RACK1) in nasopharyngeal carcinoma progression. J Transl Med 2016; 14:131. [PMID: 27170279 PMCID: PMC4864934 DOI: 10.1186/s12967-016-0885-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/28/2016] [Indexed: 01/26/2023] Open
Abstract
Background The receptor for activated C kinase 1 (RACK1) is involved in various cancers, but its roles in nasopharyngeal carcinoma (NPC) have not yet been fully elucidated. Methods Initially, RACK1 expression was analyzed by immunohistochemistry in NPC and normal nasopharyngeal (NP) tissues. It was also detected by qPCR and Western blot in NPC cells. Confocal microscope and immunofluorescence were performed to detect the subcellular compartmentalization of RACK1. Subsequently, after up- or down-regulating RACK1 in NPC cells, cell proliferation and migration/invasion were tested using in vitro assays including MTT, EdU, colony formation, Transwell and Boyden assays. Furthermore, several key molecules were detected by Western blot to explore underlying mechanism. Finally, clinical samples were analyzed to confirm the relationship between RACK1 expression and clinical features. Results Receptor for activated C kinase 1 expression was much higher in NPC than NP tissues. And RACK1 was mainly located in the cytoplasm. Overexpression of RACK1 promoted NPC cell proliferation and metastasis/invasion, whereas depletion of this protein suppressed NPC cell proliferation and metastasis/invasion. Mechanistically, RACK1 deprivation obviously suppressed the activation of Akt and FAK, suggesting the PI3K/Akt/FAK pathway as one of functional mechanisms of RACK1 in NPC. Furthermore, clinical sample analysis indicated a positive correlation between in vivo expression of RACK1 with lymph node invasion and clinical stage of NPC. Conclusion Our results demonstrate that RACK1 protein plays an important role in NPC development and progression. The upregulation of RACK1 can promote the proliferation and invasion of NPC by regulating the PI3K/Akt/FAK signal pathway. Thus, this study contributes to the discovery of a potential therapeutic target for NPC. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0885-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong Peng
- Department of Otolaryngology-Head and Neck Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, 510317, China.
| | - Ping-Gui Gong
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jin-Bang Li
- Department of Pathology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, China
| | - Long-Mei Cai
- Cancer Research Institute and the Provincial Key Laboratory of Cancer Immunotherapy, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Le Yang
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yun-Yi Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Kai-Tai Yao
- Cancer Research Institute and the Provincial Key Laboratory of Cancer Immunotherapy, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xin Li
- Cancer Research Institute and the Provincial Key Laboratory of Cancer Immunotherapy, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
8
|
Gandin V, Senft D, Topisirovic I, Ronai ZA. RACK1 Function in Cell Motility and Protein Synthesis. Genes Cancer 2014; 4:369-77. [PMID: 24349634 DOI: 10.1177/1947601913486348] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The receptor for activated C kinase 1 (RACK1) serves as an adaptor for a number of proteins along the MAPK, protein kinase C, and Src signaling pathways. The abundance and near ubiquitous expression of RACK1 reflect its role in coordinating signaling molecules for many critical biological processes, from mRNA translation to cell motility to cell survival and death. Complete deficiency of Rack1 is embryonic lethal, but the recent development of genetic Rack1 hypomorphic mice has highlighted the central role that RACK1 plays in cell movement and protein synthesis. This review focuses on the importance of RACK1 in these processes and places the recent work in the larger context of understanding RACK1 function.
Collapse
Affiliation(s)
- Valentina Gandin
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC, Canada ; Department of Oncology, McGill University, Montréal, QC, Canada
| | - Daniela Senft
- Signal Transduction Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC, Canada ; Department of Oncology, McGill University, Montréal, QC, Canada
| | - Ze'ev A Ronai
- Signal Transduction Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| |
Collapse
|
9
|
RACK1, a versatile hub in cancer. Oncogene 2014; 34:1890-8. [PMID: 24882575 DOI: 10.1038/onc.2014.127] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 01/15/2023]
Abstract
RACK1 is a highly conserved intracellular adaptor protein with significant homology to Gβ and was originally identified as the anchoring protein for activated protein kinase C. In the past 20 years, the number of binding partners and validated cellular functions for RACK1 has increased, which facilitates clarification of its involvement in different biological events. In this review, we will focus on its role in cancer, summarizing its aberrant expression, pro- or anti-oncogenic effects and the underlying mechanisms in various cancers.
Collapse
|
10
|
Jin S, Mu Y, Wang X, Liu Z, Wan L, Xiong Y, Zhang Y, Zhou L, Li L. Overexpressed RACK1 is positively correlated with malignant degree of human colorectal carcinoma. Mol Biol Rep 2014; 41:3393-9. [PMID: 24504450 DOI: 10.1007/s11033-014-3201-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 01/25/2014] [Indexed: 12/20/2022]
Abstract
RACK1 is a crucial scaffold and anchoring protein, which plays a vital role in multiple signaling pathways of tumorigenesis. The aim of the present study was to identify the correlation between expressions of RACK1 and malignant degrees in colorectal carcinoma (CRC) patients. All together 157 CRC patients were enrolled, and their clinical data were analyzed. Expressions of RACK1 in CRC and pericarcinous tissues in these patients were determined by RT-PCR, Western-blot, and immunohistochemistry, respectively. The correlation between RACK1 expressions and histological grades, as well as lymph node metastasis was evaluated. Results showed that the expressions of RACK1 were positively correlated with differentiation level and lymph node metastasis in CRC patients.
Collapse
Affiliation(s)
- Shaoju Jin
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dave JM, Kang H, Abbey CA, Maxwell SA, Bayless KJ. Proteomic profiling of endothelial invasion revealed receptor for activated C kinase 1 (RACK1) complexed with vimentin to regulate focal adhesion kinase (FAK). J Biol Chem 2013; 288:30720-30733. [PMID: 24005669 DOI: 10.1074/jbc.m113.512467] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Angiogenesis is critical for many physiological and pathological processes. To identify molecules relevant to angiogenesis, we performed a proteomic screen comparing invading versus non-invading endothelial cells in three-dimensional collagen matrices. We found up-regulated levels of receptor for activated C kinase 1 (RACK1) and the intermediate filament protein vimentin that correlated with increased endothelial cell invasion. Because both RACK1 and vimentin have been linked to focal adhesion kinase (FAK), we investigated whether this pathway regulated invasion. RACK1 depletion reduced invasion responses, and this was associated with attenuated activation of FAK. Knockdown of vimentin significantly decreased levels of phosphorylated and total FAK. Treatment with a pharmacological inhibitor of FAK dose-dependently reduced invasion, indicating a crucial role for FAK activity during invasion. Because RACK1 and vimentin were both up-regulated with sphingosine 1-phosphate treatment, required for invasion, and regulated FAK, we tested whether they complexed together. RACK1 complexed with vimentin, and growth factors enhanced this interaction. In addition, RACK1, vimentin, and FAK formed an intermolecular complex in invading endothelial cultures in three dimensions in response to stimulation by sphingosine 1-phosphate and growth factors. Moreover, depletion of RACK1 decreased the association of vimentin and FAK, suggesting that RACK1 was required for stabilizing vimentin-FAK interactions during sprouting. Silencing of vimentin and RACK1 decreased cell adhesion and focal contact formation. Taken together, these results demonstrate that proangiogenic signals converge to enhance expression and association of RACK1 and vimentin, which regulated FAK, resulting in successful endothelial sprout formation in three-dimensional collagen matrices.
Collapse
Affiliation(s)
- Jui M Dave
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Hojin Kang
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Colette A Abbey
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Steve A Maxwell
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Kayla J Bayless
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843.
| |
Collapse
|
12
|
Zhong X, Li M, Nie B, Wu F, Zhang L, Wang E, Han Y. Overexpressions of RACK1 and CD147 associated with poor prognosis in stage T1 pulmonary adenocarcinoma. Ann Surg Oncol 2012; 20:1044-52. [PMID: 22592183 DOI: 10.1245/s10434-012-2377-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Indexed: 01/29/2023]
Abstract
BACKGROUND RACK1 has been shown to be able to interact with some key cellular proteins involved in tumor development and progression. Our study showed that the expressions of RACK1 and CD147 are correlated with each other. The purpose of this study is to clarify the relationship between expression of RACK1 and CD147 in 180 patients with operable stage T1 human pulmonary adenocarcinoma and their clinicopathological features and prognostic significance. METHODS DNA transfection and RNA interference of RACK1 were conducted to produce pulmonary adenocarcinoma cell lines with differential RACK1 expression. Western blot and RT-PCR were used to quantify RACK1 and CD147 expression in protein and mRNA levels in pulmonary adenocarcinoma cell lines. Immunohistochemistry, double-labeling immunofluorescence, confocal laser scanning microscopy, and Western blot were used to correlate the clinicopathological significance of RACK1 and CD147 expression in cases of stage T1 pulmonary adenocarcinoma. RESULTS We detected high levels of RACK1 and CD147 mRNA as well as protein expression in pulmonary adenocarcinoma in vitro. In pulmonary adenocarcinoma, the expression of RACK1 and CD147 were correlated both in vitro and in vivo. Our clinicopathological analysis demonstrated that RACK1 or CD147 expression correlated with higher incidence of lymph node metastasis and lower differentiation than tumors that were negative for expression of either RACK1 or CD147. The expression of RACK1 and CD147 was not associated with the patient age or gender. Multivariate analysis demonstrated that the co-overexpression of RACK1 and CD147 was an independent prognostic factor for stage T1 pulmonary adenocarcinoma (P = 0.012). CONCLUSIONS Tumor invasiveness is associated with expression of RACK1 and CD147 in pulmonary adenocarcinoma. The co-expression of RACK1 and CD147 could be an important prognostic biomarker for stage T1 pulmonary adenocarcinoma.
Collapse
Affiliation(s)
- Xinwen Zhong
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Adams DR, Ron D, Kiely PA. RACK1, A multifaceted scaffolding protein: Structure and function. Cell Commun Signal 2011; 9:22. [PMID: 21978545 PMCID: PMC3195729 DOI: 10.1186/1478-811x-9-22] [Citation(s) in RCA: 347] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 10/06/2011] [Indexed: 12/17/2022] Open
Abstract
The Receptor for Activated C Kinase 1 (RACK1) is a member of the tryptophan-aspartate repeat (WD-repeat) family of proteins and shares significant homology to the β subunit of G-proteins (Gβ). RACK1 adopts a seven-bladed β-propeller structure which facilitates protein binding. RACK1 has a significant role to play in shuttling proteins around the cell, anchoring proteins at particular locations and in stabilising protein activity. It interacts with the ribosomal machinery, with several cell surface receptors and with proteins in the nucleus. As a result, RACK1 is a key mediator of various pathways and contributes to numerous aspects of cellular function. Here, we discuss RACK1 gene and structure and its role in specific signaling pathways, and address how posttranslational modifications facilitate subcellular location and translocation of RACK1. This review condenses several recent studies suggesting a role for RACK1 in physiological processes such as development, cell migration, central nervous system (CN) function and circadian rhythm as well as reviewing the role of RACK1 in disease.
Collapse
Affiliation(s)
- David R Adams
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland.
| | | | | |
Collapse
|