1
|
Gaumond SI, Lee KJ, Warp PV, Kamholtz I, Dreifus EM, Jimenez JJ. Parallel Toxicities: A Comparative Analysis of Chemotherapy-Induced Neutropenia and Alopecia. Cancers (Basel) 2025; 17:1163. [PMID: 40227705 PMCID: PMC11987909 DOI: 10.3390/cancers17071163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
Chemotherapy-induced neutropenia (CIN) and chemotherapy-induced alopecia (CIA) are significant toxicities affecting cancer patients. CIN is a potentially fatal complication of chemotherapy caused by myelosuppression and increased infection susceptibility, while CIA, although not fatal, severely affects treatment adherence and mental health. This study provides a comprehensive comparative analysis of CIN and CIA, focusing on patient, disease, treatment, and genetic risk factors. Key risk factors for CIN and CIA include age, poor performance status, body mass index (BMI), laboratory abnormalities, and pre-existing comorbidities. Both toxicities were significantly associated with breast cancer patients, although CIN patients were more likely to have hematological cancer, and CIA patients were more likely to have solid tumors. Notably, anthracyclines, alkylators, and taxanes frequently induce both toxicities, although their timelines and clinical implications differed. There was no clear overlap between genetic predispositions and toxicities beyond single-nucleotide polymorphisms (SNPs) in the ABCB1 gene. This is the first study to directly compare CIN and CIA, offering insights into personalized oncology care. Understanding the risk factors implicated in the development of CIN and CIA will enable physicians to manage patient outcomes.
Collapse
Affiliation(s)
- Simonetta I. Gaumond
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (K.J.L.); (P.V.W.); (I.K.); (E.M.D.)
| | - Karen J. Lee
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (K.J.L.); (P.V.W.); (I.K.); (E.M.D.)
| | - Peyton V. Warp
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (K.J.L.); (P.V.W.); (I.K.); (E.M.D.)
| | - Isabella Kamholtz
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (K.J.L.); (P.V.W.); (I.K.); (E.M.D.)
| | - Emilee M. Dreifus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (K.J.L.); (P.V.W.); (I.K.); (E.M.D.)
| | - Joaquin J. Jimenez
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (K.J.L.); (P.V.W.); (I.K.); (E.M.D.)
| |
Collapse
|
2
|
Hatletvedt ND, Engebrethsen C, Geisler J, Geisler S, Aas T, Lønning PE, Gansmo LB, Knappskog S. The impact of functional MDM2-polymorphisms on neutrophil counts in breast cancer patients during neoadjuvant chemotherapy. BMC Cancer 2025; 25:308. [PMID: 39979836 PMCID: PMC11843751 DOI: 10.1186/s12885-025-13675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Functional polymorphisms in the MDM2 promoters have been linked to cancer risk and several non-malignant conditions. Their potential role in bone marrow function during chemotherapy is largely unknown. METHODS We investigated the potential associations between genotypes of MDM2 SNP309 (rs2279744), SNP285 (rs117039649) and del1518 (rs3730485) and neutrophil counts in breast cancer patients receiving neoadjuvant sequential epirubicin and docetaxel, with additional G-CSF, in the DDP-trial (NCT00496795). We applied longitudinal ratios, post vs. pre-treatment, of neutrophil counts as our main measure. Differences by genotypes were tested by Jonckheere-Terpstra test for ranked alternatives, while dominant and recessive models were tested by Mann-Whitney U test, and additional sub-analyses were performed for genotype combinations. RESULTS The SNP309 reference T-allele was associated with a better sustained neutrophil count (p = 0.035). A similar association was observed for the alternative del-allele of the del1518 (p = 0.049). Additionally, in combined genotype-analyses, patients with the SNP309 TT genotype and at least one copy of the del1518 del-allele had particularly favorable sustained neutrophil counts during chemotherapy treatment (p = 0.005). CONCLUSIONS Our study provides evidence that MDM2 promoter polymorphisms may be associated with neutrophil counts and bone marrow recovery during chemotherapy treatment in breast cancer patients. TRIAL REGISTRATION The DDP-trial was registered at ClinicalTrials.gov (NCT00496795; registration date 2007-07-04).
Collapse
Affiliation(s)
- Nora D Hatletvedt
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Christina Engebrethsen
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Stephanie Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Turid Aas
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Per E Lønning
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Liv B Gansmo
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Stian Knappskog
- Department of Clinical Science, University of Bergen, 5020, Bergen, Norway.
- Department of Oncology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
3
|
Fasching PA, Liu D, Scully S, Ingle JN, Lyra PC, Rack B, Hein A, Ekici AB, Reis A, Schneeweiss A, Tesch H, Fehm TN, Heinrich G, Beckmann MW, Ruebner M, Huebner H, Lambrechts D, Madden E, Shen J, Romm J, Doheny K, Jenkins GD, Carlson EE, Li L, Fridley BL, Cunningham JM, Janni W, Monteiro ANA, Schaid DJ, Häberle L, Weinshilboum RM, Wang L. Identification of Two Genetic Loci Associated with Leukopenia after Chemotherapy in Patients with Breast Cancer. Clin Cancer Res 2022; 28:3342-3355. [PMID: 35653140 PMCID: PMC9357161 DOI: 10.1158/1078-0432.ccr-20-4774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE To identify molecular predictors of grade 3/4 neutropenic or leukopenic events (NLE) after chemotherapy using a genome-wide association study (GWAS). EXPERIMENTAL DESIGN A GWAS was performed on patients in the phase III chemotherapy study SUCCESS-A (n = 3,322). Genotyping was done using the Illumina HumanOmniExpress-12v1 array. Findings were functionally validated with cell culture models and the genotypes and gene expression of possible causative genes were correlated with clinical treatment response and prognostic outcomes. RESULTS One locus on chromosome 16 (rs4784750; NLRC5; P = 1.56E-8) and another locus on chromosome 13 (rs16972207; TNFSF13B; P = 3.42E-8) were identified at a genome-wide significance level. Functional validation revealed that expression of these two genes is altered by genotype-dependent and chemotherapy-dependent activity of two transcription factors. Genotypes also showed an association with disease-free survival in patients with an NLE. CONCLUSIONS Two loci in NLRC5 and TNFSF13B are associated with NLEs. The involvement of the MHC I regulator NLRC5 implies the possible involvement of immuno-oncological pathways.
Collapse
Affiliation(s)
- Peter A Fasching
- Department of Gynecology and Obstetrics, University Breast Center for Franconia, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen EMN, Erlangen, Germany
| | - Duan Liu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Steve Scully
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - James N Ingle
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Paulo C Lyra
- Biotechnology/RENORBIO Program, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Brigitte Rack
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Alexander Hein
- Department of Gynecology and Obstetrics, University Breast Center for Franconia, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen EMN, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Andre Reis
- Institute of Human Genetics, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, Division of Gynecologic Oncology, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Hans Tesch
- Onkologie Bethanien, Frankfurt am Main, Germany
| | - Tanja N Fehm
- Department of Gynecology and Obstetrics, Düsseldorf University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Georg Heinrich
- Schwerpunktpraxis für Gynäkologische Onkologie, Fürstenwalde, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, University Breast Center for Franconia, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen EMN, Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, University Breast Center for Franconia, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen EMN, Erlangen, Germany
| | - Hanna Huebner
- Department of Gynecology and Obstetrics, University Breast Center for Franconia, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen EMN, Erlangen, Germany
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB and Laboratory for Translational Genetics, KU Leuven, Leuven, Belgium
| | - Ebony Madden
- Division of Genomic Medicine, National Human Genome Research Institute, Bethesda, Maryland
| | - Jess Shen
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jane Romm
- McKusick-Nathans Department of Genetic Medicine, Center for Inherited Disease Research, Johns Hopkins University, Baltimore, Maryland
| | - Kim Doheny
- McKusick-Nathans Department of Genetic Medicine, Center for Inherited Disease Research, Johns Hopkins University, Baltimore, Maryland
| | - Gregory D Jenkins
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Erin E Carlson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Liang Li
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantan Xili, Beijing, China
| | - Brooke L Fridley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Daniel J Schaid
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Lothar Häberle
- Department of Gynecology and Obstetrics, University Breast Center for Franconia, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen EMN, Erlangen, Germany
- Department of Gynecology and Obstetrics, Unit of Biostatistics, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Richard M Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
4
|
Ong SS, Ho PJ, Khng AJ, Lim EH, Wong FY, Tan BKT, Lim SH, Tan EY, Tan SM, Tan VKM, Dent R, Tan TJY, Ngeow J, Madhukumar P, Hamzah JLB, Sim Y, Lim GH, Pang JS, Alcantara VS, Chan PMY, Chen JJC, Kuah S, Seah JCM, Buhari SA, Tang SW, Ng CWQ, Li J, Hartman M. Association between Breast Cancer Polygenic Risk Score and Chemotherapy-Induced Febrile Neutropenia: Null Results. Cancers (Basel) 2022; 14:cancers14112714. [PMID: 35681694 PMCID: PMC9179461 DOI: 10.3390/cancers14112714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The hypothesis that breast cancer (BC) susceptibility variants are linked to chemotherapy-induced toxicity has been previously explored. Here, we investigated the association between a validated 313-marker-based BC polygenic risk score (PRS) and chemotherapy-induced neutropenia without fever and febrile neutropenia (FNc) in Asian BC patients. METHODS This observational case-control study of Asian BC patients treated with chemotherapy included 161 FNc patients, 219 neutropenia patients, and 936 patients who did not develop neutropenia. A continuous PRS was calculated by summing weighted risk alleles associated with overall, estrogen receptor- (ER-) positive, and ER-negative BC risk. PRS distributions neutropenia or FNc cases were compared to controls who did not develop neutropenia using two-sample t-tests. Odds ratios (OR) and corresponding 95% confidence intervals were estimated for the associations between PRS (quartiles and per standard deviation (SD) increase) and neutropenia-related outcomes compared to controls. RESULTS PRS distributions were not significantly different in any of the comparisons. Higher PRSoverall quartiles were negatively correlated with neutropenia or FNc. However, the associations were not statistically significant (PRS per SD increase OR neutropenia: 0.91 [0.79-1.06]; FNc: 0.87 [0.73-1.03]). No dose-dependent trend was observed for the ER-positive weighted PRS (PRSER-pos) and ER-negative weighted PRS (PRSER-neg). CONCLUSION BC PRS was not strongly associated with chemotherapy-induced neutropenia or FNc.
Collapse
Affiliation(s)
- Seeu Si Ong
- Women’s Health and Genetics, Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore 138672, Singapore; (S.S.O.); (P.J.H.); (A.J.K.)
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Peh Joo Ho
- Women’s Health and Genetics, Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore 138672, Singapore; (S.S.O.); (P.J.H.); (A.J.K.)
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| | - Alexis Jiaying Khng
- Women’s Health and Genetics, Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore 138672, Singapore; (S.S.O.); (P.J.H.); (A.J.K.)
| | - Elaine Hsuen Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore; (E.H.L.); (R.D.); (T.J.Y.T.); (J.N.)
| | - Fuh Yong Wong
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore;
| | - Benita Kiat-Tee Tan
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore; (B.K.-T.T.); (V.K.M.T.); (P.M.); (J.L.B.H.); (Y.S.)
- Department of Breast Surgery, Singapore General Hospital, Singapore 169608, Singapore
- Department of General Surgery, Sengkang General Hospital, Singapore 544886, Singapore
| | - Swee Ho Lim
- KK Breast Department, KK Women’s and Children’s Hospital, Singapore 229899, Singapore; (S.H.L.); (G.H.L.); (J.S.P.); (V.S.A.)
| | - Ern Yu Tan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore; (E.Y.T.); (P.M.Y.C.); (J.J.C.C.); (S.K.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Su-Ming Tan
- Division of Breast Surgery, Changi General Hospital, Singapore 529889, Singapore; (S.-M.T.); (J.C.M.S.)
| | - Veronique Kiak Mien Tan
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore; (B.K.-T.T.); (V.K.M.T.); (P.M.); (J.L.B.H.); (Y.S.)
- Department of Breast Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Rebecca Dent
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore; (E.H.L.); (R.D.); (T.J.Y.T.); (J.N.)
| | - Tira Jing Ying Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore; (E.H.L.); (R.D.); (T.J.Y.T.); (J.N.)
| | - Joanne Ngeow
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore; (E.H.L.); (R.D.); (T.J.Y.T.); (J.N.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Preetha Madhukumar
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore; (B.K.-T.T.); (V.K.M.T.); (P.M.); (J.L.B.H.); (Y.S.)
- Department of Breast Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Julie Liana Bte Hamzah
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore; (B.K.-T.T.); (V.K.M.T.); (P.M.); (J.L.B.H.); (Y.S.)
- Department of Breast Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Yirong Sim
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore; (B.K.-T.T.); (V.K.M.T.); (P.M.); (J.L.B.H.); (Y.S.)
- Department of Breast Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Geok Hoon Lim
- KK Breast Department, KK Women’s and Children’s Hospital, Singapore 229899, Singapore; (S.H.L.); (G.H.L.); (J.S.P.); (V.S.A.)
| | - Jinnie Siyan Pang
- KK Breast Department, KK Women’s and Children’s Hospital, Singapore 229899, Singapore; (S.H.L.); (G.H.L.); (J.S.P.); (V.S.A.)
| | - Veronica Siton Alcantara
- KK Breast Department, KK Women’s and Children’s Hospital, Singapore 229899, Singapore; (S.H.L.); (G.H.L.); (J.S.P.); (V.S.A.)
| | - Patrick Mun Yew Chan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore; (E.Y.T.); (P.M.Y.C.); (J.J.C.C.); (S.K.)
| | - Juliana Jia Chuan Chen
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore; (E.Y.T.); (P.M.Y.C.); (J.J.C.C.); (S.K.)
| | - Sherwin Kuah
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore; (E.Y.T.); (P.M.Y.C.); (J.J.C.C.); (S.K.)
| | - Jaime Chin Mui Seah
- Division of Breast Surgery, Changi General Hospital, Singapore 529889, Singapore; (S.-M.T.); (J.C.M.S.)
| | - Shaik Ahmad Buhari
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore; (S.A.B.); (S.W.T.); (C.W.Q.N.)
| | - Siau Wei Tang
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore; (S.A.B.); (S.W.T.); (C.W.Q.N.)
| | - Celene Wei Qi Ng
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore; (S.A.B.); (S.W.T.); (C.W.Q.N.)
| | - Jingmei Li
- Women’s Health and Genetics, Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore 138672, Singapore; (S.S.O.); (P.J.H.); (A.J.K.)
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Correspondence: ; Tel.: +65-6808-8312
| | - Mikael Hartman
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore; (S.A.B.); (S.W.T.); (C.W.Q.N.)
| |
Collapse
|
5
|
Kubeček O, Paterová P, Novosadová M. Risk Factors for Infections, Antibiotic Therapy, and Its Impact on Cancer Therapy Outcomes for Patients with Solid Tumors. Life (Basel) 2021; 11:1387. [PMID: 34947918 PMCID: PMC8705721 DOI: 10.3390/life11121387] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Infections represent a significant cause of morbidity and mortality in cancer patients. Multiple factors related to the patient, tumor, and cancer therapy can affect the risk of infection in patients with solid tumors. A thorough understanding of such factors can aid in the identification of patients with substantial risk of infection, allowing medical practitioners to tailor therapy and apply prophylactic measures to avoid serious complications. The use of novel treatment modalities, including targeted therapy and immunotherapy, brings diagnostic and therapeutic challenges into the management of infections in cancer patients. A growing body of evidence suggests that antibiotic therapy can modulate both toxicity and antitumor response induced by chemotherapy, radiotherapy, and especially immunotherapy. This article provides a comprehensive review of potential risk factors for infections and therapeutic approaches for the most prevalent infections in patients with solid tumors, and discusses the potential effect of antibiotic therapy on toxicity and efficacy of cancer therapy.
Collapse
Affiliation(s)
- Ondřej Kubeček
- Department of Oncology and Radiotherapy, Faculty of Medicine and University Hospital in Hradec Králové, Charles University, Sokolská 581, 50005 Hradec Králové, Czech Republic;
| | - Pavla Paterová
- Department of Clinical Microbiology, Faculty of Medicine and University Hospital in Hradec Králové, Charles University, Sokolská 581, 50005 Hradec Králové, Czech Republic
| | - Martina Novosadová
- Department of Clinical Pharmacy, Hospital Pharmacy, University Hospital in Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic;
| |
Collapse
|
6
|
Alshari O, Al Zu'bi YO, Al Sharie AH, Wafai FH, Aleshawi AJ, Atawneh FH, Obeidat HA, Daoud MN, Khrais MZ, Albals D, Tubaishat F. Evaluating the Prognostic Role of Monocytopenia in Chemotherapy-Induced Febrile Neutropenia Patients Treated with Granulocyte Colony-Stimulating Factor. Ther Clin Risk Manag 2021; 17:963-973. [PMID: 34522100 PMCID: PMC8435033 DOI: 10.2147/tcrm.s318370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
Objective Chemotherapy-induced febrile neutropenia is a common and serious oncological emergency which carries a substantial mortality and morbidity. The main objective of this study is to evaluate the usage of absolute monocyte count (AMC) at presentation as a prognostic factor for patients with chemotherapy-induced febrile neutropenia who were subsequently treated with granulocyte colony-stimulating factor (G-CSF). Study Design The electronic medical records of our center were used retrospectively to identify patients diagnosed with unprecedented chemotherapy-induced febrile neutropenia treated with G-CSF between January 2010 to December 2020 and diagnosed with solid and hematological malignancies. Patient’s demographics, disease characteristics and laboratory investigations were extracted. Disease progression measures were statistically compared between the study groups in the short-term period of follow-up (six days) including absolute neutrophil count (ANC), ANC difference compared to the baseline readings, hospitalization period, and mortality. Results A total of 80 patients were identified and categorized into two groups namely monocytopenia (n = 34) and non-monocytopenia (n = 46) with an AMC cutoff point of 0.1×109 cells/L. The monocytopenia group exhibited a worse prognosis with lower ANC values and slower improvement illustrated by the low ANC difference values at all follow up points (P-value ≤ 0.05) apart from day 5. A statistically significant lower hospitalization period was also observed in the non-monocytopenia group (P-value = 0.006). Linear regression analysis evaluated the association between AMC values at admission and ANC values at admission along with subsequent days of follow up which were found to be statistically significant (P-value ≤ 0.05). Receiver operating characteristic curves suggest a satisfactory predictability of ANC changes by AMC values at admission, days1, 2, 3, 4 and 6. Conclusion Monocytopenia holds a worse prognosis in chemotherapy-induced febrile neutropenia patients treated with G-CSF. In addition, AMC values at presentation represents a potential risk factor that can predict short-term changes regarding ANC measures.
Collapse
Affiliation(s)
- Osama Alshari
- Division of Oncology, Department of Internal Medicine, Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Yazan O Al Zu'bi
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Ahmed H Al Sharie
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Farouk H Wafai
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | | | - Farah H Atawneh
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Hasan A Obeidat
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Majd N Daoud
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | - Mohammad Z Khrais
- Department of Internal Medicine, King Hussein Cancer Foundation and Center, Amman, Jordan
| | - Dima Albals
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Faize Tubaishat
- Division of Oncology, Department of Internal Medicine, Al Bashir Hospital, Amman, Jordan
| |
Collapse
|
7
|
Alimardani M, Moghbeli M, Rastgar-Moghadam A, Shandiz FH, Abbaszadegan MR. Single nucleotide polymorphisms as the efficient prognostic markers in breast cancer. Curr Cancer Drug Targets 2021; 21:768-793. [PMID: 34036920 DOI: 10.2174/1568009621666210525151846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/15/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast cancer (BC) is known as the most common malignancy in women. Environmental and genetic factors are associated with BC progression. Genetic polymorphisms have been reported as important risk factors of BC prognosis and drug response. Main body: Therefore, in the present review, we have summarized all single nucleotide polymorphisms (SNPs) which have been significantly associated with drug response in BC patients around the world. We have also categorized the reported SNPs based on their related genes functions to clarify the molecular biology of drug responses in BC. CONCLUSION The majority of SNPs were reported in detoxifying enzymes, which introduced such genes as the main genetic risk factors during BC drug responses. This review paves the way for introducing a prognostic panel of SNPs for the BC patients in the world.
Collapse
Affiliation(s)
- Maliheh Alimardani
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azam Rastgar-Moghadam
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Homaei Shandiz
- Department of Radiotherapy/Oncology, Omid Hospital, Mashhad University of Medical Science, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Bidadi B, Liu D, Kalari KR, Rubner M, Hein A, Beckmann MW, Rack B, Janni W, Fasching PA, Weinshilboum RM, Wang L. Pathway-Based Analysis of Genome-Wide Association Data Identified SNPs in HMMR as Biomarker for Chemotherapy- Induced Neutropenia in Breast Cancer Patients. Front Pharmacol 2018; 9:158. [PMID: 29593529 PMCID: PMC5859084 DOI: 10.3389/fphar.2018.00158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/13/2018] [Indexed: 12/14/2022] Open
Abstract
Neutropenia secondary to chemotherapy in breast cancer patients can be life-threatening and there are no biomarkers available to predict the risk of drug-induced neutropenia in those patients. We previously performed a genome-wide association study (GWAS) for neutropenia events in women with breast cancer who were treated with 5-fluorouracil, epirubicin and cyclophosphamide and recruited to the SUCCESS-A trial. A genome-wide significant single-nucleotide polymorphism (SNP) signal in the tumor necrosis factor superfamily member 13B (TNFSF13B) gene, encoding the cytokine B-cell activating factor (BAFF), was identified in that GWAS. Taking advantage of these existing GWAS data, in the present study we utilized a pathway-based analysis approach by leveraging knowledge of the pharmacokinetics and pharmacodynamics of drugs and breast cancer pathophysiology to identify additional SNPs/genes associated with the underlying etiology of chemotherapy-induced neutropenia. We identified three SNPs in the hyaluronan mediated motility receptor (HMMR) gene that were significantly associated with neutropenia (p < 1.0E-04). Those three SNPs were trans-expression quantitative trait loci for the expression of TNFSF13B (p < 1.0E-04). The minor allele of these HMMR SNPs was associated with a decreased TNFSF13B mRNA level. Additional functional studies performed with lymphoblastoid cell lines (LCLs) demonstrated that LCLs possessing the minor allele for the HMMR SNPs were more sensitive to drug treatment. Knock-down of TNFSF13B in LCLs and HL-60 promyelocytic cells and treatment of those cells with BAFF modulated the cell sensitivity to chemotherapy treatment. These results demonstrate that HMMR SNP-dependent cytotoxicity of these chemotherapeutic agents might be related to TNFSF13B expression level. In summary, utilizing a pathway-based approach for the analysis of GWAS data, we identified additional SNPs in the HMMR gene that were associated with neutropenia and also were correlated with TNFSF13B expression.
Collapse
Affiliation(s)
- Behzad Bidadi
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Duan Liu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Krishna R Kalari
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Matthias Rubner
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Alexander Hein
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Brigitte Rack
- Department of Gynecology and Obstetrics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Richard M Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
9
|
Impact of chemotherapy-induced neutropenia (CIN) and febrile neutropenia (FN) on cancer treatment outcomes: An overview about well-established and recently emerging clinical data. Crit Rev Oncol Hematol 2017; 120:163-179. [DOI: 10.1016/j.critrevonc.2017.11.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/20/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
|
10
|
van Rossum AGJ, Kok M, McCool D, Opdam M, Miltenburg NC, Mandjes IAM, van Leeuwen-Stok E, Imholz ALT, Portielje JEA, Bos MMEM, van Bochove A, van Werkhoven E, Schmidt MK, Oosterkamp HM, Linn SC. Independent replication of polymorphisms predicting toxicity in breast cancer patients randomized between dose-dense and docetaxel-containing adjuvant chemotherapy. Oncotarget 2017; 8:113531-113542. [PMID: 29371927 PMCID: PMC5768344 DOI: 10.18632/oncotarget.22697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022] Open
Abstract
Introduction Although pharmacogenomics has evolved substantially, a predictive test for chemotherapy toxicity is still lacking. We compared the toxicity of adjuvant dose-dense doxorubicin-cyclophosphamide (ddAC) and docetaxel-doxorubicin-cyclophosphamide (TAC) in a randomized multicenter phase III trial and replicated previously reported associations between genotypes and toxicity. Results 646 patients (97%) were evaluable for toxicity (grade 2 and higher). Whereas AN was more frequent after ddAC (P < 0.001), TAC treated patients more often had PNP (P < 0.001). We could replicate 2 previously reported associations: TECTA (rs1829; OR 4.18, 95% CI 1.84-9.51, P = 0.001) with PNP, and GSTP1 (rs1138272; OR 2.04, 95% CI 1.13-3.68, P = 0.018) with PNP. Materials and methods Patients with pT1-3, pN0-3 breast cancer were randomized between six cycles A60C600 every 2 weeks or T75A50C500 every 3 weeks. Associations of 13 previously reported single nucleotide polymorphisms (SNPs) with the most frequent toxicities: anemia (AN), febrile neutropenia (FN) and peripheral neuropathy (PNP) were analyzed using logistic regression models. Conclusions In this independent replication, we could replicate an association between 2 out of 13 SNPs and chemotherapy toxicities. These results warrant further validation in order to enable tailored treatment for breast cancer patients.
Collapse
Affiliation(s)
- Annelot G J van Rossum
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marleen Kok
- Division of Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Danielle McCool
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mark Opdam
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nienke C Miltenburg
- Department of Neurology, Medical Center Slotervaart, Amsterdam, The Netherlands
| | | | | | - Alex L T Imholz
- Department of Medical Oncology, Deventer Ziekenhuis, Deventer, The Netherlands
| | | | - Monique M E M Bos
- Department of Medical Oncology, Reinier de Graaf Groep, Delft, The Netherlands
| | - Aart van Bochove
- Department of Medical Oncology, Zaans Medisch Centrum, Zaandam, The Netherlands
| | - Erik van Werkhoven
- Biometrics Division, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marjanka K Schmidt
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hendrika M Oosterkamp
- Department of Medical Oncology, Haaglanden Medisch Centrum, The Hague, The Netherlands
| | - Sabine C Linn
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Pathology, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
11
|
Clinical validation of genetic variants associated with in vitro chemotherapy-related lymphoblastoid cell toxicity. Oncotarget 2017; 8:78133-78143. [PMID: 29100455 PMCID: PMC5652844 DOI: 10.18632/oncotarget.17726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/06/2017] [Indexed: 11/25/2022] Open
Abstract
Hematotoxicity is one of the major side effects of chemotherapy. The aim of this study was to examine the association between single nucleotide polymorphisms (SNPs) and hematotoxicity in breast cancer patients in a subset of patients of the SUCCESS prospective phase III chemotherapy study. All patients (n = 1678) received three cycles of 5-fluorouracil, epirubicin, and cyclophosphamide (FEC) followed by three cycles of docetaxel or docetaxel/gemcitabine, depending on randomization. Germline DNA was genotyped for 246 SNPs selected from a previous genome-wide association study (GWAS) in a panel of lymphoblastoid cell lines, with gemcitabine toxicity as the phenotype. All SNPs were tested for their value in predicting grade 3 or 4 neutropenic or leukopenic events (NLEs). Their prognostic value in relation to overall survival and disease-free survival was also tested. None of the SNPs was found to be predictive for NLEs during treatment with docetaxel/gemcitabine. Two SNPs in and close to the PIGB gene significantly improved the prediction of NLEs after FEC, in addition to the factors of age and body surface area. The top SNP (rs12050587) had an odds ratio of 1.38 per minor allele (95% confidence interval, 1.17 to 1.62). No associations were identified for predicting disease-free or overall survival. Genetic variance in the PIGB gene may play a role in determining interindividual differences in relation to hematotoxicity after FEC chemotherapy.
Collapse
|
12
|
Domínguez ER, Orona J, Lin K, Pérez CJ, Benavides F, Kusewitt DF, Johnson DG. The p53 R72P polymorphism does not affect the physiological response to ionizing radiation in a mouse model. Cell Cycle 2017; 16:1153-1163. [PMID: 28594296 DOI: 10.1080/15384101.2017.1312234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Tissue culture and mouse model studies show that the presence of the arginine (R) or proline (P) coding single nucleotide polymorphism (SNP) of the tumor suppressor gene p53 at codon 72 (p53 R72P) differentially affects the responses to genotoxic insult. Compared to the P variant, the R variant shows increased apoptosis in most cell cultures and mouse model tissues in response to genotoxins, and epidemiological studies suggest that the R variant may enhance cancer survival and reduce the risks of adverse reactions to genotoxic cancer treatment. As ionizing radiation (IR) treatment is often used in cancer therapy, we sought to test the physiological effects of IR in mouse models of the p53 R72P polymorphism. By performing blood counts, immunohistochemical (IHC) staining and survival studies in mouse populations rigorously controlled for strain background, sex and age, we discovered that p53 R72P polymorphism did not differentially affect the physiological response to IR. Our findings suggest that genotyping for this polymorphism to personalize IR therapy may have little clinical utility.
Collapse
Affiliation(s)
- Emily R Domínguez
- a Department of Epigenetics and Molecular Carcinogenesis , The University of Texas MD Anderson Cancer Center , Smithville , TX , USA
| | - Jennifer Orona
- a Department of Epigenetics and Molecular Carcinogenesis , The University of Texas MD Anderson Cancer Center , Smithville , TX , USA
| | - Kevin Lin
- a Department of Epigenetics and Molecular Carcinogenesis , The University of Texas MD Anderson Cancer Center , Smithville , TX , USA
| | - Carlos J Pérez
- a Department of Epigenetics and Molecular Carcinogenesis , The University of Texas MD Anderson Cancer Center , Smithville , TX , USA
| | - Fernando Benavides
- a Department of Epigenetics and Molecular Carcinogenesis , The University of Texas MD Anderson Cancer Center , Smithville , TX , USA
| | - Donna F Kusewitt
- b Department of Pathology , The University of Mexico School of Medicine , Albuquerque , NM , USA
| | - David G Johnson
- a Department of Epigenetics and Molecular Carcinogenesis , The University of Texas MD Anderson Cancer Center , Smithville , TX , USA
| |
Collapse
|
13
|
Yang J, Yang Q, Xu L, Lou J, Dong Z. An epirubicin-peptide conjugate with anticancer activity is dependent upon the expression level of the surface transferrin receptor. Mol Med Rep 2016; 15:323-330. [PMID: 27959443 DOI: 10.3892/mmr.2016.6004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/02/2016] [Indexed: 02/05/2023] Open
Abstract
Epirubicin (EPI) is one of the most widely used anticarcinogens; however, serious side effects, including cardiomyopathy and congestive heart failure, limit its long‑term administration. To overcome this problem, the HAIYPRH peptide ligand was used with EPI in the synthesis of a HAIYPRH‑EPI conjugate. The anticancer activity and cellular uptake of the conjugate were measured and evaluated. The results of the present study indicated that the cytotoxicity of HAIYPRH‑EPI was correlated with the expression of the cell surface transferrin receptor (TfR). The conjugate exerted high cytotoxicity and proapoptotic function when in an LN229 glioma cell line, which overexpresses surface TfR. It was hypothesized that transferrin (Tf) can promote cytotoxicity. Conversely, the conjugate exhibited very low cytotoxicity and proapoptotic function in a U87 glioma cell line, in which surface TfR expression was undetectable. In addition, fluorescence microscopy and flow cytometry methods were used to evaluate cellular uptake, and the results of these methods were consistent with the present hypotheses. The conjugate cellular uptake of the conjugate in LN229 cells was markedly higher compared with that in U87 cells, and it was hypothesized that Tf can enhance the uptake in LN229 cells. The cytotoxicity of HAIYPRH‑EPI was dependent upon the expression of surface TfR. Considering that the majority of cancer cells have high rates of iron uptake and surface TfR is generally overexpressed on cancer cells, it was speculated by the authors that HAIYPRH‑EPI may form part of an effective strategy for increasing the selectivity of EPI for cancer cells, as well as reducing its systemic toxicity. To confirm the hypothesis, the effects of HAIYPRH‑EPI on non‑cancerous cell lines were investigated. A future study will examine the side effects of HAIYPRH‑EPI, using a suitable delivery system in an animal model.
Collapse
Affiliation(s)
- Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qiyu Yang
- Department of Thoracic Oncology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lu Xu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jie Lou
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhi Dong
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
14
|
Matikas A, Georgoulias V, Kotsakis A. Emerging agents for the prevention of treatment induced neutropenia in adult cancer patients. Expert Opin Emerg Drugs 2016; 21:157-66. [PMID: 27139914 DOI: 10.1080/14728214.2016.1184646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The administration of myeloid growth factors is the only approved treatment for the prevention of chemotherapy induced neutropenia and febrile neutropenia. However, their specific indications and contraindications and potential side effects limit their application to only a relatively small subset of patients at the highest risk for complications, such as infection. AREAS COVERED A computerized systematic literature search was performed through Medline, Google Scholar, Cochrane Library, the Pharmaprojects database and the clinicaltrials.gov website. The shortcomings of the existing treatment approach are reviewed, along with a synopsis of the characteristics of novel agents that protect bone marrow progenitors from the cytotoxic effects of antineoplastic treatment that may be used in the future as a stand-alone preventive strategy or as an adjunct to growth factors. EXPERT OPINION There is an abundance of agents undergoing evaluation for the prevention of treatment-induced neutropenia. The appropriate selection of patients, the optimization of the use of existing agents and the increasing competition from biosimilars which likely ensure future decreases in healthcare costs are essential for growth factors to retain their dominant position in this setting.
Collapse
Affiliation(s)
- Alexios Matikas
- a Department of Medical Oncology , University General Hospital of Heraklion , Heraklion , Greece.,b Hellenic Oncology Research Group (HORG) , Athens , Greece
| | - Vassilis Georgoulias
- b Hellenic Oncology Research Group (HORG) , Athens , Greece.,c Department of Medical Oncology , IASO General , Athens , Greece
| | - Athanasios Kotsakis
- a Department of Medical Oncology , University General Hospital of Heraklion , Heraklion , Greece.,b Hellenic Oncology Research Group (HORG) , Athens , Greece
| |
Collapse
|
15
|
Charehbili A, de Groot S, van der Straaten T, Swen JJ, Pijl H, Gelderblom H, van de Velde CJH, Nortier JWR, Guchelaar HJ, Kroep JR. Exploratory analysis of candidate germline gene polymorphisms in breast cancer patients treated with neoadjuvant anthracycline-containing chemotherapy and associations with febrile neutropenia. Pharmacogenomics 2015; 16:1267-76. [PMID: 26289095 DOI: 10.2217/pgs.15.74] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM SNPs may be associated with (side) effects of chemotherapy and may be useful as biomarkers to predict febrile neutropenia. PATIENTS & METHODS 187 DNA samples extracted from formalin-fixed paraffin-embedded tissue from patients with stage II/III HER2-negative breast cancer were genotyped. RESULTS Candidate SNPs were selected and explored for association with febrile neutropenia and/or pathological complete response. TT genotype of 388 C>T in FGFR4 (rs351855) had a tendency toward higher incidence of febrile neutropenia during neoadjuvant chemotherapy, compared with the CT (p = 0.383) genotype and compared with the CC genotype (p = 0.068). CONCLUSION The TT genotype of 388 C>T FGFR4 may be related to incidence of febrile neutropenia during neoadjuvant TAC (docetaxel, doxorubicin, cyclophosphamide) chemotherapy and is possibly useful as a patient-related risk factor when assessing febrile neutropenia risk. Original submitted 23 January 2015; Revision submitted 26 May 2015.
Collapse
Affiliation(s)
- A Charehbili
- Department of Medical Oncology, Leiden University Medical Center, PO Box 9600, Albinusdreef 2, 2300 RC Leiden, The Netherlands.,Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - S de Groot
- Department of Medical Oncology, Leiden University Medical Center, PO Box 9600, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - T van der Straaten
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - J J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - H Pijl
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - H Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, PO Box 9600, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - C J H van de Velde
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - J W R Nortier
- Department of Medical Oncology, Leiden University Medical Center, PO Box 9600, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| | - H J Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - J R Kroep
- Department of Medical Oncology, Leiden University Medical Center, PO Box 9600, Albinusdreef 2, 2300 RC Leiden, The Netherlands
| |
Collapse
|
16
|
Zheng D, Chen Y, Gao C, Wei Y, Cao G, Lu N, Hou Y, Jiang X, Wang J. Polymorphisms of p53 and MDM2 genes are associated with severe toxicities in patients with non-small cell lung cancer. Cancer Biol Ther 2015; 15:1542-51. [PMID: 25482940 DOI: 10.4161/15384047.2014.956599] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adverse events in platinum-based chemotherapy for patients with advanced non-small cell lung cancer (NSCLC) are major challenges. In this study, we investigated the role of the p53 and MDM2 genes in predicting adverse events in NSCLC patients treated with platinum-based chemotherapy. Specifically, we examined the p53 p. Pro72Arg (rs1042522), MDM2 c.14 + 309T>G (rs2279744) and MDM2 c.- 461C > G (rs937282) polymorphisms using PCR-based restriction fragment length polymorphism (RFLP) in 444 NSCLC patients. We determine that MDM2 c.14 + 309T > G was significantly associated with severe hematologic and overall toxicities for advanced NSCLC patients treated with platinum-based chemotherapy, especially for patients aged 57 and younger. This was also true for patients with adenocarcinoma. Second, we determine that severe gastrointestinal toxicities in patients with heterozygous MDM2 c.-461C > G were significantly higher than in patients with the G/G genotype. Third, patients with the MDM2 c.-461C > G - c.14 + 309T > G CT haplotype show much higher toxicities than those of CG haplotype. Moreover, patients carrying the MDM2 c.-461 > G -c.14 + 309T > G CG/CT diplotype exhibited higher toxicities than those carrying CG/CG. Fourth, we found that the p53 p. Pro72Arg polymorphism interacts with both age and genotype. In addition, no significant associations were observed between the 3 SNPs and the response to first-line platinum-based chemotherapy in advanced NSCLC patients. In summary, we found that the p53 p. Pro72Arg, MDM2 c.14 + 309T > G and MDM2 c.-461C > G polymorphisms are associated with toxicity risks following platinum-based chemotherapy treatment in advanced NSCLC patients. We suggest that MDM2 c.14 + 309T > G may be used as a candidate biomarker to predict adverse events in advanced NSCLC patients who had platinum-based chemotherapy treatment.
Collapse
Key Words
- CBR, clinical benefit rate
- CR, complete response
- MDM2
- NSCLC, non-small cell lung cancer
- ORR, objective response rate
- PCR-RFLP, PCR-based restriction fragment length polymorphism
- PD, progressive disease
- PR, partial response
- PS, performance status
- SCLC, small-cell lung cancer
- SD, stable disease
- SNP, single nucleotide polymorphism
- TNM, tumor/node/metastasis
- non-small cell lung cancer
- p53
- polymorphism
- toxicity
Collapse
Affiliation(s)
- Datong Zheng
- a Department of Biological Science and Technology and State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences ; Nanjing University ; Nanjing , China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Koinis F, Nintos G, Georgoulias V, Kotsakis A. Therapeutic strategies for chemotherapy-induced neutropenia in patients with solid tumors. Expert Opin Pharmacother 2015; 16:1505-19. [DOI: 10.1517/14656566.2015.1055248] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Qian J, Liu H, Gu S, Wu Q, Zhao X, Wu W, Wang H, Wang J, Chen H, Zhang W, Wei Q, Jin L, Lu D. Genetic Variants of the MDM2 Gene Are Predictive of Treatment-Related Toxicities and Overall Survival in Patients With Advanced NSCLC. Clin Lung Cancer 2015; 16:e37-53. [PMID: 25818095 DOI: 10.1016/j.cllc.2015.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Platinum agents can cause the formation of DNA adducts and induce apoptosis to eliminate tumor cells. The aim of the present study was to investigate the influence of genetic variants of MDM2 on chemotherapy-related toxicities and clinical outcomes in patients with advanced non-small-cell lung cancer (NSCLC). MATERIALS AND METHODS We recruited 663 patients with advanced NSCLC who had been treated with first-line platinum-based chemotherapy. Five tagging single nucleotide polymorphisms (SNPs) in MDM2 were genotyped in these patients. The associations of these SNPs with clinical toxicities and outcomes were evaluated using logistic regression and Cox regression analyses. RESULTS Two SNPs (rs1470383 and rs1690924) showed significant associations with chemotherapy-related toxicities (ie, overall, hematologic, and gastrointestinal toxicity). Compared with the wild genotype AA carriers, patients with the GG genotype of rs1470383 had an increased risk of overall toxicity (odds ratio [OR], 3.28; 95% confidence interval [CI], 1.34-8.02; P = .009) and hematologic toxicity (OR, 4.10; 95% CI, 1.73-9.71; P = .001). Likewise, patients with the AG genotype of rs1690924 showed more sensitivity to gastrointestinal toxicity than did those with the wild-type homozygote GG (OR, 2.32; 95% CI, 1.30-4.14; P = .004). Stratified survival analysis revealed significant associations between rs1470383 genotypes and overall survival in patients without overall or hematologic toxicity (P = .007 and P = .0009, respectively). CONCLUSION The results of our study suggest that SNPs in MDM2 might be used to predict the toxicities of platinum-based chemotherapy and overall survival in patients with advanced NSCLC. Additional validations of the association are warranted.
Collapse
Affiliation(s)
- Ji Qian
- Cancer Institute, Fudan University Shanghai Cancer Center, and Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China; State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Fudan University School of Life Sciences and Fudan Taizhou Institute of Health Sciences, Shanghai, China.
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - Shaohua Gu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Fudan University School of Life Sciences and Fudan Taizhou Institute of Health Sciences, Shanghai, China
| | - Qihan Wu
- East China Normal University School of Life Science, Shanghai, China
| | - Xueying Zhao
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Fudan University School of Life Sciences and Fudan Taizhou Institute of Health Sciences, Shanghai, China
| | - Wenting Wu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Fudan University School of Life Sciences and Fudan Taizhou Institute of Health Sciences, Shanghai, China; Beyster Center for Genomics of Psychiatric Diseases, Department of Psychiatry, University of California, San Diego, La Jolla, CA
| | - Haijian Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Fudan University School of Life Sciences and Fudan Taizhou Institute of Health Sciences, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Fudan University School of Life Sciences and Fudan Taizhou Institute of Health Sciences, Shanghai, China
| | - Hongyan Chen
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Fudan University School of Life Sciences and Fudan Taizhou Institute of Health Sciences, Shanghai, China
| | - Wei Zhang
- Department of Respiratory Disease, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Qingyi Wei
- Cancer Institute, Fudan University Shanghai Cancer Center, and Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China; Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - Li Jin
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Fudan University School of Life Sciences and Fudan Taizhou Institute of Health Sciences, Shanghai, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Fudan University School of Life Sciences and Fudan Taizhou Institute of Health Sciences, Shanghai, China.
| |
Collapse
|
19
|
Wang X, Wang YZ, Ma KW, Chen X, Li W. MDM2 rs2279744 and TP53 rs1042522 polymorphisms associated with etoposide- and cisplatin-induced grade III/IV neutropenia in Chinese extensive-stage small-cell lung cancer patients. Oncol Res Treat 2014; 37:176-80. [PMID: 24732641 DOI: 10.1159/000360785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/10/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Etoposide and cisplatin (EP) chemotherapy is the most frequently used regimen in extensive-stage small-cell lung cancer (SCLC) patients, although the side effects (e.g., neutropenia) are high. This study investigates the association of the MDM2 rs2279744 and TP53 rs1042522 single-nucleotide polymorphisms (SNPs) with EP-induced grade III/IV neutropenia and with response to EP in extensive-stage SCLC patients. METHODS Blood samples from 119 extensive-stage SCLC patients were subjected to genotyping of these 2 SNPs, using the allele-specific matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry for determining the association with neutropenia in the patients. RESULTS The data showed that patients carrying the MDM2 rs2279744-GG genotype were associated with a lower incidence of grade III/IV neutropenia in the recessive and additive models, while the TP53 rs1042522-CC genotype was associated with a higher incidence in the recessive model. Furthermore, the combination of the MDM2 rs2279744-TT+TG and the TP53 rs1042522-CC genotype was associated with a significantly higher incidence of grade III/IV neutropenia. And the combination of the MDM2 rs2279744-GG and the TP53 rs1042522-GG+GC genotype was associated with the lowest incidence of grade III/IV neutropenia. CONCLUSIONS MDM2 rs2279744 and TP53 rs1042522 SNPs were associated with EP-induced high-grade neutropenia in extensive-stage SCLC patients. Further studies are needed to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Xu Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | | | | | | | | |
Collapse
|
20
|
Pfeil AM, Vulsteke C, Paridaens R, Dieudonné AS, Pettengell R, Hatse S, Neven P, Lambrechts D, Szucs TD, Schwenkglenks M, Wildiers H. Multivariable regression analysis of febrile neutropenia occurrence in early breast cancer patients receiving chemotherapy assessing patient-related, chemotherapy-related and genetic risk factors. BMC Cancer 2014; 14:201. [PMID: 24641830 PMCID: PMC3994907 DOI: 10.1186/1471-2407-14-201] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 03/11/2014] [Indexed: 12/29/2022] Open
Abstract
Background Febrile neutropenia (FN) is common in breast cancer patients undergoing chemotherapy. Risk factors for FN have been reported, but risk models that include genetic variability have yet to be described. This study aimed to evaluate the predictive value of patient-related, chemotherapy-related, and genetic risk factors. Methods Data from consecutive breast cancer patients receiving chemotherapy with 4–6 cycles of fluorouracil, epirubicin, and cyclophosphamide (FEC) or three cycles of FEC and docetaxel were retrospectively recorded. Multivariable logistic regression was carried out to assess risk of FN during FEC chemotherapy cycles. Results Overall, 166 (16.7%) out of 994 patients developed FN. Significant risk factors for FN in any cycle and the first cycle were lower platelet count (OR = 0.78 [0.65; 0.93]) and haemoglobin (OR = 0.81 [0.67; 0.98]) and homozygous carriers of the rs4148350 variant T-allele (OR = 6.7 [1.04; 43.17]) in MRP1. Other significant factors for FN in any cycle were higher alanine aminotransferase (OR = 1.02 [1.01; 1.03]), carriers of the rs246221 variant C-allele (OR = 2.0 [1.03; 3.86]) in MRP1 and the rs351855 variant C-allele (OR = 2.48 [1.13; 5.44]) in FGFR4. Lower height (OR = 0.62 [0.41; 0.92]) increased risk of FN in the first cycle. Conclusions Both established clinical risk factors and genetic factors predicted FN in breast cancer patients. Prediction was improved by adding genetic information but overall remained limited. Internal validity was satisfactory. Further independent validation is required to confirm these findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hans Wildiers
- Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.
| |
Collapse
|
21
|
Lyman GH, Abella E, Pettengell R. Risk factors for febrile neutropenia among patients with cancer receiving chemotherapy: A systematic review. Crit Rev Oncol Hematol 2013; 90:190-9. [PMID: 24434034 DOI: 10.1016/j.critrevonc.2013.12.006] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022] Open
Abstract
Neutropenia with fever (febrile neutropenia [FN]) is a serious consequence of myelosuppressive chemotherapy that usually results in hospitalization and the need for intravenous antibiotics. FN may result in dose reductions, delays, or even discontinuation of chemotherapy, which, in turn, may compromise patient outcomes. It is important to identify which patients are at high risk for developing FN so that patients can receive optimal chemotherapy while their risk for FN is appropriately managed. A systematic review of the literature was performed to gain a comprehensive and updated understanding of FN risk factors. Older age, poor performance status, advanced disease, certain comorbidities, low baseline blood cell counts, low body surface area/body mass index, treatment with myelosuppressive chemotherapies, and specific genetic polymorphisms correlated with the risk of developing FN. Albeit many studies have analyzed FN risk factors, there are several limitations, including the retrospective nature and small sample sizes of most studies.
Collapse
Affiliation(s)
- Gary H Lyman
- Fred Hutchinson Cancer Research Center and the University of Washington, Seattle, WA, USA.
| | | | | |
Collapse
|
22
|
Huang C, Liu W, Ji GX, Gu AH, Qu JH, Song L, Wang XR. Genetic variants in TP53 and MDM2 associated with male infertility in Chinese population. Asian J Androl 2012; 14:691-4. [PMID: 22773013 DOI: 10.1038/aja.2012.39] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The TP53, a transcriptional regulator and tumor suppressor, is functionally important in spermatogenesis. MDM2 is a key regulator of the p53 pathway and modulates p53 activity. Both proteins have been functionally linked to germ cell apoptosis, which may affect human infertility, but very little is known on how common polymorphisms in these genes may influence germ cell apoptosis and the risk of male infertility. Thus, this study was designed to test whether three previously described polymorphisms 72Arg>Pro (rs1042522) and the Ex2+19C>T (rs2287498) in TP53, and the 5' untranslated region (5' UTR) 309T>G (rs937283) in MDM2, are associated with idiopathic male infertility in a Chinese population. The three polymorphisms were genotyped using OpenArray assay in a hospital-based case-control study, including 580 infertile patients and 580 fertile controls. Our analyses revealed that TP53 Ex2+19C>T and MDM2 309T>G polymorphisms are associated with male infertility. Furthermore, we detected a nearly statistically significant additive interaction between TP53 rs2287498 and MDM2 rs937283 for the development of male infertility (P(interaction)=0.055). In summary, this study found preliminary evidence, demonstrating that genetic variants in genes of the TP53 pathway are risk factors for male infertility.
Collapse
Affiliation(s)
- Cong Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|