1
|
Wu C, Lima EABF, Stowers CE, Xu Z, Yam C, Son JB, Ma J, Rauch GM, Yankeelov TE. MRI-based digital twins to improve treatment response of breast cancer by optimizing neoadjuvant chemotherapy regimens. NPJ Digit Med 2025; 8:195. [PMID: 40195521 PMCID: PMC11976917 DOI: 10.1038/s41746-025-01579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/20/2025] [Indexed: 04/09/2025] Open
Abstract
We developed a practical framework to construct digital twins for predicting and optimizing triple-negative breast cancer (TNBC) response to neoadjuvant chemotherapy (NAC). This study employed 105 TNBC patients from the ARTEMIS trial (NCT02276443, registered on 10/21/2014) who received Adriamycin/Cytoxan (A/C)-Taxol (T). Digital twins were established by calibrating a biology-based mathematical model to patient-specific MRI data, which accurately predicted pathological complete response (pCR) with an AUC of 0.82. We then used each patient's twin to theoretically optimize outcome by identifying their optimal A/C-T schedule from 128 options. The patient-specifically optimized treatment yielded a significant improvement in pCR rate of 20.95-24.76%. Retrospective validation was conducted by virtually treating the twins with AC-T schedules from historical trials and obtaining identical observations on outcomes: bi-weekly A/C-T outperforms tri-weekly A/C-T, and weekly/bi-weekly T outperforms tri-weekly T. This proof-of-principle study demonstrates that our digital twin framework provides a practical methodology to identify patient-specific TNBC treatment schedules.
Collapse
Affiliation(s)
- Chengyue Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA.
| | - Ernesto A B F Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, USA
| | - Casey E Stowers
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Zhan Xu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jong Bum Son
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gaiane M Rauch
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas E Yankeelov
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Vaz SC, Woll JPP, Cardoso F, Groheux D, Cook GJR, Ulaner GA, Jacene H, Rubio IT, Schoones JW, Peeters MJV, Poortmans P, Mann RM, Graff SL, Dibble EH, de Geus-Oei LF. Joint EANM-SNMMI guideline on the role of 2-[ 18F]FDG PET/CT in no special type breast cancer : (endorsed by the ACR, ESSO, ESTRO, EUSOBI/ESR, and EUSOMA). Eur J Nucl Med Mol Imaging 2024; 51:2706-2732. [PMID: 38740576 PMCID: PMC11224102 DOI: 10.1007/s00259-024-06696-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/20/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION There is much literature about the role of 2-[18F]FDG PET/CT in patients with breast cancer (BC). However, there exists no international guideline with involvement of the nuclear medicine societies about this subject. PURPOSE To provide an organized, international, state-of-the-art, and multidisciplinary guideline, led by experts of two nuclear medicine societies (EANM and SNMMI) and representation of important societies in the field of BC (ACR, ESSO, ESTRO, EUSOBI/ESR, and EUSOMA). METHODS Literature review and expert discussion were performed with the aim of collecting updated information regarding the role of 2-[18F]FDG PET/CT in patients with no special type (NST) BC and summarizing its indications according to scientific evidence. Recommendations were scored according to the National Institute for Health and Care Excellence (NICE) criteria. RESULTS Quantitative PET features (SUV, MTV, TLG) are valuable prognostic parameters. In baseline staging, 2-[18F]FDG PET/CT plays a role from stage IIB through stage IV. When assessing response to therapy, 2-[18F]FDG PET/CT should be performed on certified scanners, and reported either according to PERCIST, EORTC PET, or EANM immunotherapy response criteria, as appropriate. 2-[18F]FDG PET/CT may be useful to assess early metabolic response, particularly in non-metastatic triple-negative and HER2+ tumours. 2-[18F]FDG PET/CT is useful to detect the site and extent of recurrence when conventional imaging methods are equivocal and when there is clinical and/or laboratorial suspicion of relapse. Recent developments are promising. CONCLUSION 2-[18F]FDG PET/CT is extremely useful in BC management, as supported by extensive evidence of its utility compared to other imaging modalities in several clinical scenarios.
Collapse
Affiliation(s)
- Sofia C Vaz
- Nuclear Medicine-Radiopharmacology, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal.
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | - Fatima Cardoso
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - David Groheux
- Nuclear Medicine Department, Saint-Louis Hospital, Paris, France
- University Paris-Diderot, INSERM U976, Paris, France
- Centre d'Imagerie Radio-Isotopique (CIRI), La Rochelle, France
| | - Gary J R Cook
- Department of Cancer Imaging, King's College London, London, UK
- King's College London and Guy's & St Thomas' PET Centre, London, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | - Heather Jacene
- Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Isabel T Rubio
- Breast Surgical Oncology, Clinica Universidad de Navarra, Madrid, Cancer Center Clinica Universidad de Navarra, Navarra, Spain
| | - Jan W Schoones
- Directorate of Research Policy, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie-Jeanne Vrancken Peeters
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Philip Poortmans
- Department of Radiation Oncology, Iridium Netwerk, Antwerp, Belgium
- University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Ritse M Mann
- Radiology Department, RadboudUMC, Nijmegen, The Netherlands
| | - Stephanie L Graff
- Lifespan Cancer Institute, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Elizabeth H Dibble
- Department of Diagnostic Imaging, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
- Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands.
- Department of Radiation Science & Technology, Technical University of Delft, Delft, The Netherlands.
| |
Collapse
|
3
|
Vural Topuz O, Akkurt T, Erdem G, Kaya E, Kaya M, Akkaş B. Can post neoadjuvant chemotherapy 18F-FDG PET/CT predict residual cancer burden in locally advanced breast cancer? MÉDECINE NUCLÉAIRE 2024; 48:141-149. [DOI: 10.1016/j.mednuc.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Diwanji D, Onishi N, Hathi DK, Lawhn-Heath C, Kornak J, Li W, Guo R, Molina-Vega J, Seo Y, Flavell RR, Heditsian D, Brain S, Esserman LJ, Joe BN, Hylton NM, Jones EF, Ray KM. 18F-FDG Dedicated Breast PET Complementary to Breast MRI for Evaluating Early Response to Neoadjuvant Chemotherapy. Radiol Imaging Cancer 2024; 6:e230082. [PMID: 38551406 PMCID: PMC10988337 DOI: 10.1148/rycan.230082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/30/2023] [Accepted: 02/16/2024] [Indexed: 04/02/2024]
Abstract
Purpose To compare quantitative measures of tumor metabolism and perfusion using fluorine 18 (18F) fluorodeoxyglucose (FDG) dedicated breast PET (dbPET) and breast dynamic contrast-enhanced (DCE) MRI during early treatment with neoadjuvant chemotherapy (NAC). Materials and Methods Prospectively collected DCE MRI and 18F-FDG dbPET examinations were analyzed at baseline (T0) and after 3 weeks (T1) of NAC in 20 participants with 22 invasive breast cancers. FDG dbPET-derived standardized uptake value (SUV), metabolic tumor volume, and total lesion glycolysis (TLG) and MRI-derived percent enhancement (PE), signal enhancement ratio (SER), and functional tumor volume (FTV) were calculated at both time points. Differences between FDG dbPET and MRI parameters were evaluated after stratifying by receptor status, Ki-67 index, and residual cancer burden. Parameters were compared using Wilcoxon signed rank and Mann-Whitney U tests. Results High Ki-67 tumors had higher baseline SUVmean (difference, 5.1; P = .01) and SUVpeak (difference, 5.5; P = .04). At T1, decreases were observed in FDG dbPET measures (pseudo-median difference T0 minus T1 value [95% CI]) of SUVmax (-6.2 [-10.2, -2.6]; P < .001), SUVmean (-2.6 [-4.9, -1.3]; P < .001), SUVpeak (-4.2 [-6.9, -2.3]; P < .001), and TLG (-29.1 mL3 [-71.4, -6.8]; P = .005) and MRI measures of SERpeak (-1.0 [-1.3, -0.2]; P = .02) and FTV (-11.6 mL3 [-22.2, -1.7]; P = .009). Relative to nonresponsive tumors, responsive tumors showed a difference (95% CI) in percent change in SUVmax of -34.3% (-55.9%, 1.5%; P = .06) and in PEpeak of -42.4% (95% CI: -110.5%, 8.5%; P = .08). Conclusion 18F-FDG dbPET was sensitive to early changes during NAC and provided complementary information to DCE MRI that may be useful for treatment response evaluation. Keywords: Breast, PET, Dynamic Contrast-enhanced MRI Clinical trial registration no. NCT01042379 Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
- Devan Diwanji
- From the Departments of Radiology and Biomedical Imaging (D.D., N.O.,
D.K.H., C.L.H., W.L., R.G., Y.S., R.R.F., B.N.J., N.M.H., E.F.J., K.M.R.),
Epidemiology and Biostatistics (J.K.), and Surgery (J.M.V., L.J.E.), University
of California San Francisco, 550 16th St, San Francisco, CA 94158; and
I-SPY 2 Advocacy Group, San Francisco, Calif (D.H., S.B.)
| | - Natsuko Onishi
- From the Departments of Radiology and Biomedical Imaging (D.D., N.O.,
D.K.H., C.L.H., W.L., R.G., Y.S., R.R.F., B.N.J., N.M.H., E.F.J., K.M.R.),
Epidemiology and Biostatistics (J.K.), and Surgery (J.M.V., L.J.E.), University
of California San Francisco, 550 16th St, San Francisco, CA 94158; and
I-SPY 2 Advocacy Group, San Francisco, Calif (D.H., S.B.)
| | - Deep K. Hathi
- From the Departments of Radiology and Biomedical Imaging (D.D., N.O.,
D.K.H., C.L.H., W.L., R.G., Y.S., R.R.F., B.N.J., N.M.H., E.F.J., K.M.R.),
Epidemiology and Biostatistics (J.K.), and Surgery (J.M.V., L.J.E.), University
of California San Francisco, 550 16th St, San Francisco, CA 94158; and
I-SPY 2 Advocacy Group, San Francisco, Calif (D.H., S.B.)
| | - Courtney Lawhn-Heath
- From the Departments of Radiology and Biomedical Imaging (D.D., N.O.,
D.K.H., C.L.H., W.L., R.G., Y.S., R.R.F., B.N.J., N.M.H., E.F.J., K.M.R.),
Epidemiology and Biostatistics (J.K.), and Surgery (J.M.V., L.J.E.), University
of California San Francisco, 550 16th St, San Francisco, CA 94158; and
I-SPY 2 Advocacy Group, San Francisco, Calif (D.H., S.B.)
| | - John Kornak
- From the Departments of Radiology and Biomedical Imaging (D.D., N.O.,
D.K.H., C.L.H., W.L., R.G., Y.S., R.R.F., B.N.J., N.M.H., E.F.J., K.M.R.),
Epidemiology and Biostatistics (J.K.), and Surgery (J.M.V., L.J.E.), University
of California San Francisco, 550 16th St, San Francisco, CA 94158; and
I-SPY 2 Advocacy Group, San Francisco, Calif (D.H., S.B.)
| | - Wen Li
- From the Departments of Radiology and Biomedical Imaging (D.D., N.O.,
D.K.H., C.L.H., W.L., R.G., Y.S., R.R.F., B.N.J., N.M.H., E.F.J., K.M.R.),
Epidemiology and Biostatistics (J.K.), and Surgery (J.M.V., L.J.E.), University
of California San Francisco, 550 16th St, San Francisco, CA 94158; and
I-SPY 2 Advocacy Group, San Francisco, Calif (D.H., S.B.)
| | - Ruby Guo
- From the Departments of Radiology and Biomedical Imaging (D.D., N.O.,
D.K.H., C.L.H., W.L., R.G., Y.S., R.R.F., B.N.J., N.M.H., E.F.J., K.M.R.),
Epidemiology and Biostatistics (J.K.), and Surgery (J.M.V., L.J.E.), University
of California San Francisco, 550 16th St, San Francisco, CA 94158; and
I-SPY 2 Advocacy Group, San Francisco, Calif (D.H., S.B.)
| | - Julissa Molina-Vega
- From the Departments of Radiology and Biomedical Imaging (D.D., N.O.,
D.K.H., C.L.H., W.L., R.G., Y.S., R.R.F., B.N.J., N.M.H., E.F.J., K.M.R.),
Epidemiology and Biostatistics (J.K.), and Surgery (J.M.V., L.J.E.), University
of California San Francisco, 550 16th St, San Francisco, CA 94158; and
I-SPY 2 Advocacy Group, San Francisco, Calif (D.H., S.B.)
| | - Youngho Seo
- From the Departments of Radiology and Biomedical Imaging (D.D., N.O.,
D.K.H., C.L.H., W.L., R.G., Y.S., R.R.F., B.N.J., N.M.H., E.F.J., K.M.R.),
Epidemiology and Biostatistics (J.K.), and Surgery (J.M.V., L.J.E.), University
of California San Francisco, 550 16th St, San Francisco, CA 94158; and
I-SPY 2 Advocacy Group, San Francisco, Calif (D.H., S.B.)
| | - Robert R. Flavell
- From the Departments of Radiology and Biomedical Imaging (D.D., N.O.,
D.K.H., C.L.H., W.L., R.G., Y.S., R.R.F., B.N.J., N.M.H., E.F.J., K.M.R.),
Epidemiology and Biostatistics (J.K.), and Surgery (J.M.V., L.J.E.), University
of California San Francisco, 550 16th St, San Francisco, CA 94158; and
I-SPY 2 Advocacy Group, San Francisco, Calif (D.H., S.B.)
| | - Diane Heditsian
- From the Departments of Radiology and Biomedical Imaging (D.D., N.O.,
D.K.H., C.L.H., W.L., R.G., Y.S., R.R.F., B.N.J., N.M.H., E.F.J., K.M.R.),
Epidemiology and Biostatistics (J.K.), and Surgery (J.M.V., L.J.E.), University
of California San Francisco, 550 16th St, San Francisco, CA 94158; and
I-SPY 2 Advocacy Group, San Francisco, Calif (D.H., S.B.)
| | - Susie Brain
- From the Departments of Radiology and Biomedical Imaging (D.D., N.O.,
D.K.H., C.L.H., W.L., R.G., Y.S., R.R.F., B.N.J., N.M.H., E.F.J., K.M.R.),
Epidemiology and Biostatistics (J.K.), and Surgery (J.M.V., L.J.E.), University
of California San Francisco, 550 16th St, San Francisco, CA 94158; and
I-SPY 2 Advocacy Group, San Francisco, Calif (D.H., S.B.)
| | - Laura J. Esserman
- From the Departments of Radiology and Biomedical Imaging (D.D., N.O.,
D.K.H., C.L.H., W.L., R.G., Y.S., R.R.F., B.N.J., N.M.H., E.F.J., K.M.R.),
Epidemiology and Biostatistics (J.K.), and Surgery (J.M.V., L.J.E.), University
of California San Francisco, 550 16th St, San Francisco, CA 94158; and
I-SPY 2 Advocacy Group, San Francisco, Calif (D.H., S.B.)
| | - Bonnie N. Joe
- From the Departments of Radiology and Biomedical Imaging (D.D., N.O.,
D.K.H., C.L.H., W.L., R.G., Y.S., R.R.F., B.N.J., N.M.H., E.F.J., K.M.R.),
Epidemiology and Biostatistics (J.K.), and Surgery (J.M.V., L.J.E.), University
of California San Francisco, 550 16th St, San Francisco, CA 94158; and
I-SPY 2 Advocacy Group, San Francisco, Calif (D.H., S.B.)
| | - Nola M. Hylton
- From the Departments of Radiology and Biomedical Imaging (D.D., N.O.,
D.K.H., C.L.H., W.L., R.G., Y.S., R.R.F., B.N.J., N.M.H., E.F.J., K.M.R.),
Epidemiology and Biostatistics (J.K.), and Surgery (J.M.V., L.J.E.), University
of California San Francisco, 550 16th St, San Francisco, CA 94158; and
I-SPY 2 Advocacy Group, San Francisco, Calif (D.H., S.B.)
| | - Ella F. Jones
- From the Departments of Radiology and Biomedical Imaging (D.D., N.O.,
D.K.H., C.L.H., W.L., R.G., Y.S., R.R.F., B.N.J., N.M.H., E.F.J., K.M.R.),
Epidemiology and Biostatistics (J.K.), and Surgery (J.M.V., L.J.E.), University
of California San Francisco, 550 16th St, San Francisco, CA 94158; and
I-SPY 2 Advocacy Group, San Francisco, Calif (D.H., S.B.)
| | - Kimberly M. Ray
- From the Departments of Radiology and Biomedical Imaging (D.D., N.O.,
D.K.H., C.L.H., W.L., R.G., Y.S., R.R.F., B.N.J., N.M.H., E.F.J., K.M.R.),
Epidemiology and Biostatistics (J.K.), and Surgery (J.M.V., L.J.E.), University
of California San Francisco, 550 16th St, San Francisco, CA 94158; and
I-SPY 2 Advocacy Group, San Francisco, Calif (D.H., S.B.)
| |
Collapse
|
5
|
Abstract
Breast cancer (BC) remains one of the leading causes of death among women. The management and outcome in BC are strongly influenced by a multidisciplinary approach, which includes available treatment options and different imaging modalities for accurate response assessment. Among breast imaging modalities, MR imaging is the modality of choice in evaluating response to neoadjuvant therapy, whereas F-18 Fluorodeoxyglucose positron emission tomography, conventional computed tomography (CT), and bone scan play a vital role in assessing response to therapy in metastatic BC. There is an unmet need for a standardized patient-centric approach to use different imaging methods for response assessment.
Collapse
Affiliation(s)
- Saima Muzahir
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, 1364 Clifton Road, Atlanta GA 30322, USA; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital, Room E152, 1364 Clifton Road, Atlanta, GA 30322, USA.
| | - Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, CA, USA; Radiology and Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - David M Schuster
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital, Room E152, 1364 Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Caracciolo M, Castello A, Urso L, Borgia F, Marzola MC, Uccelli L, Cittanti C, Bartolomei M, Castellani M, Lopci E. Comparison of MRI vs. [ 18F]FDG PET/CT for Treatment Response Evaluation of Primary Breast Cancer after Neoadjuvant Chemotherapy: Literature Review and Future Perspectives. J Clin Med 2023; 12:5355. [PMID: 37629397 PMCID: PMC10455346 DOI: 10.3390/jcm12165355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
The purpose of this systematic review was to investigate the diagnostic accuracy of [18F]FDG PET/CT and breast MRI for primary breast cancer (BC) response assessment after neoadjuvant chemotherapy (NAC) and to evaluate future perspectives in this setting. We performed a critical review using three bibliographic databases (i.e., PubMed, Scopus, and Web of Science) for articles published up to the 6 June 2023, starting from 2012. The Quality Assessment of Diagnosis Accuracy Study (QUADAS-2) tool was adopted to evaluate the risk of bias. A total of 76 studies were identified and screened, while 14 articles were included in our systematic review after a full-text assessment. The total number of patients included was 842. Eight out of fourteen studies (57.1%) were prospective, while all except one study were conducted in a single center. In the majority of the included studies (71.4%), 3.0 Tesla (T) MRI scans were adopted. Three out of fourteen studies (21.4%) used both 1.5 and 3.0 T MRI and only two used 1.5 T. [18F]FDG was the radiotracer used in every study included. All patients accepted surgical treatment after NAC and each study used pathological complete response (pCR) as the reference standard. Some of the studies have demonstrated the superiority of [18F]FDG PET/CT, while others proved that MRI was superior to PET/CT. Recent studies indicate that PET/CT has a better specificity, while MRI has a superior sensitivity for assessing pCR in BC patients after NAC. The complementary value of the combined use of these modalities represents probably the most important tool to improve diagnostic performance in this setting. Overall, larger prospective studies, possibly randomized, are needed, hopefully evaluating PET/MR and allowing for new tools, such as radiomic parameters, to find a proper place in the setting of BC patients undergoing NAC.
Collapse
Affiliation(s)
- Matteo Caracciolo
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, 44124 Ferrara, Italy
| | - Angelo Castello
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Luca Urso
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy
| | - Francesca Borgia
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, 44124 Ferrara, Italy
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Cristina Marzola
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy
| | - Licia Uccelli
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, 44124 Ferrara, Italy
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Corrado Cittanti
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, 44124 Ferrara, Italy
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mirco Bartolomei
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, 44124 Ferrara, Italy
| | - Massimo Castellani
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS—Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| |
Collapse
|
7
|
Jiang W, Deng X, Zhu T, Fang J, Li J. ABVS-Based Radiomics for Early Predicting the Efficacy of Neoadjuvant Chemotherapy in Patients with Breast Cancers. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:625-636. [PMID: 37600669 PMCID: PMC10439736 DOI: 10.2147/bctt.s418376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Background Neoadjuvant chemotherapy (NAC) plays a significant role in breast cancer (BC) management; however, its efficacy varies among patients. Current evaluation methods may lead to delayed treatment alterations, and traditional imaging modalities often yield inaccurate results. Radiomics, an emerging field in medical imaging, offers potential for improved tumor characterization and personalized medicine. Nevertheless, its application in early and accurately predicting NAC response remains underinvestigated. Objective This study aims to develop an automated breast volume scanner (ABVS)-based radiomics model to facilitate early detection of suboptimal NAC response, ultimately promoting personalized therapeutic approaches for BC patients. Methods This retrospective study involved 248 BC patients receiving NAC. Standard guidelines were followed, and patients were classified as responders or non-responders based on treatment outcomes. ABVS images were obtained before and during NAC, and radiomics features were extracted using the PyRadiomics toolkit. Inter-observer consistency and hierarchical feature selection were assessed. Three machine learning classifiers, logistic regression, support vector machine, and random forest, were trained and validated using a five-fold cross-validation with three repetitions. Model performance was comprehensively evaluated based on discrimination, calibration, and clinical utility. Results Of the 248 BC patients, 157 (63.3%) were responders, and 91 (36.7%) were non-responders. Radiomics feature selection revealed 7 pre-NAC and 6 post-NAC ABVS features, with higher weights for post-NAC features (min >0.05) than pre-NAC (max <0.03). The three post-NAC classifiers demonstrated AUCs of approximately 0.9, indicating excellent discrimination. DCA curves revealed a substantial net benefit when the threshold probability exceeded 40%. Conversely, the three pre-NAC classifiers had AUCs between 0.7 and 0.8, suggesting moderate discrimination and limited clinical utility based on their DCA curves. Conclusion The ABVS-based radiomics model effectively predicted suboptimal NAC responses in BC patients, with early post-NAC classifiers outperforming pre-NAC classifiers in discrimination and clinical utility. It could enhance personalized treatment and improve patient outcomes in BC management.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Ultrasound, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong province, People’s Republic of China
| | - Xiaofei Deng
- Department of Ultrasound, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong province, People’s Republic of China
| | - Ting Zhu
- Department of Ultrasound, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong province, People’s Republic of China
| | - Jing Fang
- Department of Ultrasound, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong province, People’s Republic of China
| | - Jinyao Li
- Department of Ultrasound, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong province, People’s Republic of China
| |
Collapse
|
8
|
Groheux D, Ulaner GA, Hindie E. Breast cancer: treatment response assessment with FDG-PET/CT in the neoadjuvant and in the metastatic setting. Clin Transl Imaging 2023; 11:439-452. [DOI: 10.1007/s40336-023-00584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/10/2023] [Indexed: 01/03/2025]
|
9
|
Backhaus P, Burg MC, Asmus I, Pixberg M, Büther F, Breyholz HJ, Yeh R, Weigel SB, Stichling P, Heindel W, Bobe S, Barth P, Tio J, Schäfers M. Initial Results of 68Ga-FAPI-46 PET/MRI to Assess Response to Neoadjuvant Chemotherapy in Breast Cancer. J Nucl Med 2023; 64:717-723. [PMID: 36396458 PMCID: PMC10152127 DOI: 10.2967/jnumed.122.264871] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Improving imaging-based response after neoadjuvant chemotherapy (NAC) in breast cancer assessment could obviate histologic confirmation of pathologic complete response (pCR) and facilitate deescalation of chemotherapy or surgery. Fibroblast activation protein inhibitor (FAPI) PET/MRI is a promising novel molecular imaging agent for the tumor microenvironment with intense uptake in breast cancer. We assessed the diagnostic performance of follow-up breast 68Ga-FAPI-46 (68Ga-FAPI) PET/MRI in classifying the response status of local breast cancer and lymph node metastases after completion of NAC and validated this approach immunohistochemically. Methods: In women who completed NAC for invasive breast cancer, follow-up 68Ga-FAPI PET/MRI and corresponding fibroblast activation protein (FAP) immunostainings were retrospectively analyzed. Metrics of 68Ga-FAPI uptake and FAP immunoreactivity in women with or without pCR were compared using the Mann-Whitney U test. Diagnostic performance to detect remnant invasive cancer was calculated for tracer uptake metrics using receiver-operating-characteristic curves and for masked readers' visual assessment categories of PET/MRI and MRI alone. Results: Thirteen women (mean age ± SD, 47 ± 9 y) were evaluated. Seven of the 13 achieved pCR in the breast and 6 in the axilla. FAP immunoreactivity was significantly associated with response status. The 68Ga-FAPI PET/MRI mean breast tumor-to-background ratio was 0.9 (range, 0.6-1.2) for pCR and 2.1 (range, 1.4-3.1) for no pCR (P = 0.001). Integrated PET/MRI could classify breast response correctly in all 13 women based on readers' visual assessment or tumor-to-background ratio. Evaluation of MRI alone resulted in at least 2 false-positives. For lymph nodes, PET/MRI readers had at least 2 false-negative classifications, whereas MRI alone resulted in 2 false-negatives and 1 false-positive. Conclusion: To our knowledge, this was the first analysis of 68Ga-FAPI PET/MRI for response assessment after NAC for breast cancer. The diagnostic performance of PET/MRI in a small study sample trended toward a gain over MRI alone, clearly supporting future prospective studies.
Collapse
Affiliation(s)
| | - Matthias C. Burg
- Clinic for Radiology, University Hospital Münster, Münster, Germany
| | - Inga Asmus
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Michaela Pixberg
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Florian Büther
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Hans-Jörg Breyholz
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Randy Yeh
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, New York
| | | | | | - Walter Heindel
- Clinic for Radiology, University Hospital Münster, Münster, Germany
| | - Stefanie Bobe
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
- Gerhard-Domagk Institute for Pathology, University of Münster, Münster, Germany; and
| | - Peter Barth
- Gerhard-Domagk Institute for Pathology, University of Münster, Münster, Germany; and
| | - Joke Tio
- Department of Gynecology and Obstetrics, University Hospital Münster, Münster, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| |
Collapse
|
10
|
Rossi EMC, Invento A, Pesapane F, Pagan E, Bagnardi V, Fusco N, Venetis K, Dominelli V, Trentin C, Cassano E, Gilardi L, Mazza M, Lazzeroni M, De Lorenzi F, Caldarella P, De Scalzi A, Girardi A, Sangalli C, Alberti L, Sacchini V, Galimberti V, Veronesi P. Diagnostic performance of image-guided vacuum-assisted breast biopsy after neoadjuvant therapy for breast cancer: prospective pilot study. Br J Surg 2023; 110:217-224. [PMID: 36477768 PMCID: PMC10364486 DOI: 10.1093/bjs/znac391] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/14/2022] [Accepted: 10/23/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Image-guided vacuum-assisted breast biopsy (VABB) of the tumour bed, performed after neoadjuvant therapy, is increasingly being used to assess residual cancer and to potentially identify to identify pathological complete response (pCR). In this study, the accuracy of preoperative VABB specimens was assessed and compared with surgical specimens in patients with triple-negative or human epidermal growth factor receptor 2 (HER2)-positive invasive ductal breast cancer after neoadjuvant therapy. As a secondary endpoint, the performance of contrast-enhanced MRI of the breast and PET-CT for response prediction was assessed. METHODS This single-institution prospective pilot study enrolled patients from April 2018 to April 2021 with a complete response on imaging (iCR) who subsequently underwent VABB before surgery. Those with a pCR at VABB were included in the primary analysis of the accuracy of VABB. The performance of imaging (MRI and PET-CT) was analysed for prediction of a pCR considering both patients with an iCR and those with residual disease at postneoadjuvant therapy imaging. RESULTS Twenty patients were included in the primary analysis. The median age was 44 (range 35-51) years. At surgery, 18 of 20 patients showed a complete response (accuracy 90 (95 per cent exact c.i. 68 to 99) per cent). Only two patients showed residual ductal intraepithelial neoplasia of grade 2 and 3 respectively. In the secondary analysis, accuracy was similar for MRI and PET-CT (77 versus 78 per cent; P = 0.76). CONCLUSION VABB in patients with an iCR might be a promising method to select patients for de-escalation of surgical treatment in triple-negative or HER2-positive breast cancer. The present results support such an approach and should inform the design of future trials on de-escalation of surgery.
Collapse
Affiliation(s)
| | - Alessandra Invento
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Filippo Pesapane
- Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Eleonora Pagan
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy
| | - Vincenzo Bagnardi
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy
| | - Nicola Fusco
- Division of Pathology, IEO European Institute of Oncology IRCSS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, IEO European Institute of Oncology IRCSS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valeria Dominelli
- Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Trentin
- Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Laura Gilardi
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Manuelita Mazza
- Division of Medical Senology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Matteo Lazzeroni
- Division of Cancer Prevention and Genetics, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca De Lorenzi
- Department of Plastic and Reconstructive Surgery, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Pietro Caldarella
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | | | - Antonia Girardi
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Claudia Sangalli
- Data Management, European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Alberti
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Virgilio Sacchini
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Viviana Galimberti
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Paolo Veronesi
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
11
|
Inno A, Peri M, Turazza M, Bogina G, Modena A, Massocco A, Pezzella M, Valerio M, Mazzola R, Olivari L, Severi F, Foti G, Mazzi C, Marchetti F, Lunardi G, Salgarello M, Russo A, Gori S. The predictive and prognostic role of metabolic and volume-based parameters of positron emission tomography/computed tomography as non-invasive dynamic biological markers in early breast cancer treated with preoperative systemic therapy. Front Oncol 2023; 12:976823. [PMID: 36686832 PMCID: PMC9846157 DOI: 10.3389/fonc.2022.976823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction The role of fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in early breast cancer treated with preoperative systemic therapy (PST) is not yet established in clinical practice. PET parameters have aroused great interest in the recent years, as non-invasive dynamic biological markers for predicting response to PST. Methods In this retrospective study, we included 141 patients with stage II-III breast cancer who underwent surgery after PST. Using ROC analysis, we set optimal cutoff of FDG-PET/CT parameters predictive for pathological complete response (pCR). We investigated the correlation between FDG-PET/CT parameters and pCR, median disease-free survival (DFS), and median overall survival (mOS). Results At multivariable analysis, baseline SUVmax (high vs low: OR 9.00, CI 1.85 - 61.9, p=0.012) and Delta SUVmax (high vs low: OR 9.64, CI 1.84, 69.2, p=0.012) were significantly associated with pCR rates. Interestingly, we found that a combined analysis of the metabolic parameter Delta SUVmax with the volume-based parameter Delta MTV, may help to identify patients with pCR, especially in the subgroup of hormone receptor positive breast cancer. Delta SUVmax was also an independent predictive marker for both mDFS (high vs low: HR 0.17, 95%CI 0.05-0.58, p=0.004) and mOS (high vs. low: HR 0.19, 95%CI 0.04-0.95, p=0.029). Discussion Our results suggest that Delta SUVmax may predict survival of early BC patients treated with PST.
Collapse
Affiliation(s)
- Alessandro Inno
- Medical Oncology Unit, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR), Italy,*Correspondence: Alessandro Inno,
| | - Marta Peri
- Medical Oncology Unit, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR), Italy,Medical Oncology Unit, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Monica Turazza
- Medical Oncology Unit, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR), Italy
| | - Giuseppe Bogina
- Pathology Unit, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR), Italy
| | - Alessandra Modena
- Medical Oncology Unit, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR), Italy
| | - Alberto Massocco
- Breast Surgery Unit, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR), Italy
| | - Modestino Pezzella
- Breast Surgery Unit, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR), Italy
| | - Matteo Valerio
- Medical Oncology Unit, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR), Italy
| | - Rosario Mazzola
- Radiation Oncology Unit, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR), Italy
| | - Laura Olivari
- Nuclear Medicine Unit, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR), Italy
| | - Fabrizia Severi
- Medical Physics Unit, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR), Italy
| | - Giovanni Foti
- Radiology Unit, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR), Italy
| | - Cristina Mazzi
- Clinical Research Unit, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR), Italy
| | - Fabiana Marchetti
- Clinical Research Unit, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR), Italy
| | - Gianluigi Lunardi
- Clinical Analysis Laboratory and Transfusional Medicine, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR), Italy
| | - Matteo Salgarello
- Nuclear Medicine Unit, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR), Italy
| | - Antonio Russo
- Medical Oncology Unit, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Stefania Gori
- Medical Oncology Unit, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella (VR), Italy
| |
Collapse
|
12
|
Baysal H, Serdaroglu AY, Ozemir IA, Baysal B, Gungor S, Erol CI, Ozsoy MS, Ekinci O, Alimoglu O. Comparison of Magnetic Resonance Imaging With Positron Emission Tomography/Computed Tomography in the Evaluation of Response to Neoadjuvant Therapy of Breast Cancer. J Surg Res 2022; 278:223-232. [DOI: 10.1016/j.jss.2022.04.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 04/12/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
|
13
|
Wu C, Jarrett AM, Zhou Z, Elshafeey N, Adrada BE, Candelaria RP, Mohamed RM, Boge M, Huo L, White JB, Tripathy D, Valero V, Litton JK, Yam C, Son JB, Ma J, Rauch GM, Yankeelov TE. MRI-Based Digital Models Forecast Patient-Specific Treatment Responses to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Cancer Res 2022; 82:3394-3404. [PMID: 35914239 PMCID: PMC9481712 DOI: 10.1158/0008-5472.can-22-1329] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/14/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
Abstract
Triple-negative breast cancer (TNBC) is persistently refractory to therapy, and methods to improve targeting and evaluation of responses to therapy in this disease are needed. Here, we integrate quantitative MRI data with biologically based mathematical modeling to accurately predict the response of TNBC to neoadjuvant systemic therapy (NAST) on an individual basis. Specifically, 56 patients with TNBC enrolled in the ARTEMIS trial (NCT02276443) underwent standard-of-care doxorubicin/cyclophosphamide (A/C) and then paclitaxel for NAST, where dynamic contrast-enhanced MRI and diffusion-weighted MRI were acquired before treatment and after two and four cycles of A/C. A biologically based model was established to characterize tumor cell movement, proliferation, and treatment-induced cell death. Two evaluation frameworks were investigated using: (i) images acquired before and after two cycles of A/C for calibration and predicting tumor status after A/C, and (ii) images acquired before, after two cycles, and after four cycles of A/C for calibration and predicting response following NAST. For Framework 1, the concordance correlation coefficients between the predicted and measured patient-specific, post-A/C changes in tumor cellularity and volume were 0.95 and 0.94, respectively. For Framework 2, the biologically based model achieved an area under the receiver operator characteristic curve of 0.89 (sensitivity/specificity = 0.72/0.95) for differentiating pathological complete response (pCR) from non-pCR, which is statistically superior (P < 0.05) to the value of 0.78 (sensitivity/specificity = 0.72/0.79) achieved by tumor volume measured after four cycles of A/C. Overall, this model successfully captured patient-specific, spatiotemporal dynamics of TNBC response to NAST, providing highly accurate predictions of NAST response. SIGNIFICANCE Integrating MRI data with biologically based mathematical modeling successfully predicts breast cancer response to chemotherapy, suggesting digital twins could facilitate a paradigm shift from simply assessing response to predicting and optimizing therapeutic efficacy.
Collapse
Affiliation(s)
- Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin. Austin, Texas 78712
| | - Angela M. Jarrett
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin. Austin, Texas 78712
- Livestrong Cancer Institutes, The University of Texas at Austin. Austin, Texas 78712
| | - Zijian Zhou
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Nabil Elshafeey
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Beatriz E. Adrada
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Rosalind P. Candelaria
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Rania M.M. Mohamed
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Medine Boge
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jason B. White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jennifer K. Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jong Bum Son
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Gaiane M. Rauch
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Thomas E. Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin. Austin, Texas 78712
- Livestrong Cancer Institutes, The University of Texas at Austin. Austin, Texas 78712
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
- Department of Biomedical Engineering, The University of Texas at Austin. Austin, Texas 78712
- Department of Diagnostic Medicine, The University of Texas at Austin. Austin, Texas 78712
- Department of Oncology, The University of Texas at Austin. Austin, Texas 78712
| |
Collapse
|
14
|
Le-Petross HT, Slanetz PJ, Lewin AA, Bao J, Dibble EH, Golshan M, Hayward JH, Kubicky CD, Leitch AM, Newell MS, Prifti C, Sanford MF, Scheel JR, Sharpe RE, Weinstein SP, Moy L. ACR Appropriateness Criteria® Imaging of the Axilla. J Am Coll Radiol 2022; 19:S87-S113. [PMID: 35550807 DOI: 10.1016/j.jacr.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 11/26/2022]
Abstract
This publication reviews the current evidence supporting the imaging approach of the axilla in various scenarios with broad differential diagnosis ranging from inflammatory to malignant etiologies. Controversies on the management of axillary adenopathy results in disagreement on the appropriate axillary imaging tests. Ultrasound is often the appropriate initial imaging test in several clinical scenarios. Clinical information (such as age, physical examinations, risk factors) and concurrent complete breast evaluation with mammogram, tomosynthesis, or MRI impact the type of initial imaging test for the axilla. Several impactful clinical trials demonstrated that selected patient's population can received sentinel lymph node biopsy instead of axillary lymph node dissection with similar overall survival, and axillary lymph node dissection is a safe alternative as the nodal staging procedure for clinically node negative patients or even for some node positive patients with limited nodal tumor burden. This approach is not universally accepted, which adversely affect the type of imaging tests considered appropriate for axilla. This document is focused on the initial imaging of the axilla in various scenarios, with the understanding that concurrent or subsequent additional tests may also be performed for the breast. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
| | - Huong T Le-Petross
- The University of Texas MD Anderson Cancer Center, Houston, Texas; Director of Breast MRI.
| | - Priscilla J Slanetz
- Panel Chair, Boston University School of Medicine, Boston, Massachusetts; Vice Chair of Academic Affairs, Department of Radiology, Boston Medical Center; Associate Program Director, Diagnostic Radiology Residency, Boston Medical Center; Program Director, Early Career Faculty Development Program, Boston University Medical Campus; Co-Director, Academic Writing Program, Boston University Medical Group; President, Massachusetts Radiological Society; Vice President, Association of University Radiologists
| | - Alana A Lewin
- Panel Vice-Chair, New York University School of Medicine, New York, New York; Associate Program Director, Breast Imaging Fellowship, NYU Langone Medical Center
| | - Jean Bao
- Stanford University Medical Center, Stanford, California; Society of Surgical Oncology
| | | | - Mehra Golshan
- Smilow Cancer Hospital, Yale Cancer Center, New Haven, Connecticut; American College of Surgeons; Deputy CMO for Surgical Services and Breast Program Director, Smilow Cancer Hospital at Yale; Executive Vice Chair for Surgery, Yale School of Medicine
| | - Jessica H Hayward
- University of California San Francisco, San Francisco, California; Co-Fellowship Direction, Breast Imaging Fellowship
| | | | - A Marilyn Leitch
- UT Southwestern Medical Center, Dallas, Texas; American Society of Clinical Oncology
| | - Mary S Newell
- Emory University Hospital, Atlanta, Georgia; Interim Director, Division of Breast Imaging at Emory; ACR: Chair of BI-RADS; Chair of PP/TS
| | - Christine Prifti
- Boston Medical Center, Boston, Massachusetts, Primary care physician
| | | | | | | | - Susan P Weinstein
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania; Associate Chief of Radiology, San Francisco VA Health Systems
| | - Linda Moy
- Specialty Chair, NYU Clinical Cancer Center, New York, New York; Chair of ACR Practice Parameter for Breast Imaging, Chair ACR NMD
| |
Collapse
|
15
|
Valor predictivo de los índices 18F-FDG PET/TC sobre la carga tumoral residual en pacientes con cáncer de mama extenso tratadas con quimioterapia neoadyuvante. Rev Esp Med Nucl Imagen Mol 2022. [DOI: 10.1016/j.remn.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Gupta A. Gall Bladder and Biliary Tuberculosis. TUBERCULOSIS OF THE GASTROINTESTINAL SYSTEM 2022:239-246. [DOI: 10.1007/978-981-16-9053-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Fowler AM, Strigel RM. Clinical advances in PET-MRI for breast cancer. Lancet Oncol 2022; 23:e32-e43. [PMID: 34973230 PMCID: PMC9673821 DOI: 10.1016/s1470-2045(21)00577-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 01/03/2023]
Abstract
Imaging is paramount for the early detection and clinical staging of breast cancer, as well as to inform management decisions and direct therapy. PET-MRI is a quantitative hybrid imaging technology that combines metabolic and functional PET data with anatomical detail and functional perfusion information from MRI. The clinical applicability of PET-MRI for breast cancer is an active area of research. In this Review, we discuss the rationale and summarise the clinical evidence for the use of PET-MRI in the diagnosis, staging, prognosis, tumour phenotyping, and assessment of treatment response in breast cancer. The continued development and approval of targeted radiopharmaceuticals, together with radiomics and automated analysis tools, will further expand the opportunity for PET-MRI to provide added value for breast cancer imaging and patient care.
Collapse
Affiliation(s)
- Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| | - Roberta M Strigel
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
18
|
Prihantono, Faruk M. Breast cancer resistance to chemotherapy: When should we suspect it and how can we prevent it? Ann Med Surg (Lond) 2021; 70:102793. [PMID: 34691411 PMCID: PMC8519754 DOI: 10.1016/j.amsu.2021.102793] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy is an essential treatment for breast cancer, inducing cancer cell death. However, chemoresistance is a problem that limits the effectiveness of chemotherapy. Many factors influence chemoresistance, including drug inactivation, changes in drug targets, overexpression of ABC transporters, epithelial-to-mesenchymal transitions, apoptotic dysregulation, and cancer stem cells. The effectiveness of chemotherapy can be assessed clinically and pathologically. Clinical response evaluation is based on physical examination or imaging (mammography, ultrasonography, computed tomography scan, or magnetic resonance imaging) and includes tumor size changes after chemotherapy. Pathological response evaluation is a method based on tumor residues in histopathological preparations. We should be suspicious of chemoresistance if there are no significant changes clinically according to the Response Evaluation Criteria in Solid Tumors and World Health Organization criteria or pathological changes according to the Miller and Payne criteria, especially after 2–3 cycles of chemotherapy treatments. Chemoresistance is mostly detected after the administration of chemotherapy drugs. No reliable parameters or biomarkers can predict chemotherapy responses appropriately and effectively. Well-known parameters such as cancer type, grade, subtype, estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, Ki-67, and MDR-1/P-gP have been used for selecting chemotherapy regimens. Some new methods for predicting chemoresistance include chemosensitivity and chemoresistance assays, multigene expressions, and positron emission tomography assays. The latest approaches are based on evaluation of molecular processes and the metabolic activity of cancer cells. Some methods for preventing chemoresistance include using the right regimen, using some combination of chemotherapy methods, conducting adequate monitoring, and using drugs that could prevent the emergence of multidrug resistance. Chemotherapy is an essential treatment in the management of breast cancer. Chemotherapy is carried out based on the selection of regimens for the specific individual and tumor characteristics. Combination therapy, monitoring, and evaluation are used to prevent chemoresistance.
Collapse
Affiliation(s)
- Prihantono
- Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Faruk
- Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
19
|
Abstract
Imaging plays an integral role in the clinical care of patients with breast cancer. This review article focuses on the use of PET imaging for breast cancer, highlighting the clinical indications and limitations of 2-deoxy-2-[18F]fluoro-d-glucose (FDG) PET/CT, the potential use of PET/MRI, and 16α-[18F]fluoroestradiol (FES), a newly approved radiopharmaceutical for estrogen receptor imaging.
Collapse
Affiliation(s)
- Amy M Fowler
- Breast Imaging and Intervention Section, Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, 600 Highland Avenue, Madison, WI 53792, USA.
| | - Steve Y Cho
- University of Wisconsin Carbone Cancer Center, 600 Highland Avenue, Madison, WI 53792, USA; Nuclear Medicine and Molecular Imaging Section, Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252, USA
| |
Collapse
|
20
|
Capozza M, Anemone A, Dhakan C, Della Peruta M, Bracesco M, Zullino S, Villano D, Terreno E, Longo DL, Aime S. GlucoCEST MRI for the Evaluation Response to Chemotherapeutic and Metabolic Treatments in a Murine Triple-Negative Breast Cancer: A Comparison with[ 18F]F-FDG-PET. Mol Imaging Biol 2021; 24:126-134. [PMID: 34383241 DOI: 10.1007/s11307-021-01637-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) patients have usually poor outcome after chemotherapy and early prediction of therapeutic response would be helpful. [18F]F-FDG-PET/CT acquisitions are often carried out to monitor variation in metabolic activity associated with response to the therapy, despite moderate accuracy and radiation exposure limit its application. The glucoCEST technique relies on the use of unlabelled D-glucose to assess glucose uptake with conventional MRI scanners and is currently under active investigations at clinical level. This work aims at validating the potential of MRI-glucoCEST in monitoring the therapeutic responses in a TNBC tumor murine model. PROCEDURES Breast tumor (4T1)-bearing mice were treated with doxorubicin or dichloroacetate for 1 week. PET/CT with [18F]F-FDG and MRI-glucoCEST were performed at baseline and after 3 cycles of treatment. Metabolic changes measured with [18F]F-FDG-PET and glucoCEST were compared and evaluated with changes in tumor volumes. RESULTS Doxorubicin-treated mice showed a significant decrease in tumor growth when compared to the control group. GlucoCEST imaging provided metabolic response after three cycles of treatment. Conversely, no variations were detected in [18F]F-FDG uptake. Dichloroacetate-treated mice did not show any decrease either in tumor volume or in tumor metabolic activity as assessed by both glucoCEST and [18F]F-FDG-PET. CONCLUSIONS Metabolic changes during doxorubicin treatment can be predicted by glucoCEST imaging that appears more sensitive than [18F]F-FDG-PET in reporting on therapeutic response. These findings support the view that glucoCEST may be a sensitive technique for monitoring metabolic response, but future studies are needed to explore the accuracy of this approach in other tumor types and treatments.
Collapse
Affiliation(s)
- Martina Capozza
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Annasofia Anemone
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Chetan Dhakan
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| | - Melania Della Peruta
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Martina Bracesco
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Sara Zullino
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Daisy Villano
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy
| | - Enzo Terreno
- Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy.,Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy.,Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza, 52, Turin, 10126, Italy.,Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Via Nizza 52, Turin, 10126, Italy
| |
Collapse
|
21
|
Place de la TEP-TDM au 18FDG dans la prise en charge des cancers du sein et influence des facteurs histologiques et moléculaires. IMAGERIE DE LA FEMME 2021. [DOI: 10.1016/j.femme.2021.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Başoğlu T, Özgüven S, Özkan HŞ, Çınar M, Köstek O, Demircan NC, Arıkan R, Telli TA, Ercelep Ö, Kaya H, Öneş T, Erdil TY, Uğurlu MÜ, Dane F, Yumuk PF. Predictive value of 18F-FDG PET/CT indices on extensive residual cancer burden in breast cancer patients treated with neoadjuvant chemotherapy. Rev Esp Med Nucl Imagen Mol 2021; 41:171-178. [DOI: 10.1016/j.remnie.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/29/2021] [Indexed: 11/26/2022]
|
23
|
Akdeniz N, Kömek H, Küçüköner M, Kaplan MA, Urakçi Z, Oruç Z, Işikdoğan A. The role of basal 18F-FDG PET/CT maximum standard uptake value and maximum standard uptake change in predicting pathological response in breast cancer patients receiving neoadjuvant chemotherapy. Nucl Med Commun 2021; 42:315-324. [PMID: 33315727 DOI: 10.1097/mnm.0000000000001332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to determine the role of 18F-FDG PET/CT in predicting pathological response among patients diagnosed with local or locally advanced breast cancer and receiving neoadjuvant chemotherapy (NAC). METHODS Basal SUVmax value were analyzed in 212 patients and 142 of these patients had posttreatment SUVmax value. Overall pathological complete response (pCRC) was defined as no evidence of residual invasive cancer in breast (pCRB) and axilla (pCRA). Basal SUVmax value of the breast (SUVmaxBI) and axilla (SUVmaxAI) and change in SUVmax of the breast (ΔSUVmaxB) and axilla (ΔSUVmaxA) were measured. The optimal cutoff value of SUVmax and ΔSUVmax were determined by receiver operating characteristic curve analysis. RESULTS The number of patients with pCRB was 85 (40.1%), pCRA was 76 (42.5%) and pCRC was 70 (33%). In the artificial neural network-based analysis the ΔSUVmaxB (100%) was the most important variable for predicting pCRB. ΔSUVmaxA (100%) was the most important variable in estimation of pCRA. When pCRC was evaluated, the highest relation was found with ΔSUVmaxB. When the ΔSUVmaxB cutoff value for pCRB and pCRC accepted as ≤-87.9%, its sensitivity was 82.3 and 82.4%, and specificity was 72.5% and 65.9%, respectively (P < 0.001 and P < 0.001, respectively). When the ΔSUVmaxA cutoff value for pCRA and pCRC accepted as ≤-86.6%, its sensitivity was 94.3% and 97.6%, and specificity was 31.3% and 28.2%, respectively (P = 0.017 and P = 0.024, respectively). CONCLUSION Albeit varies according to the molecular subtypes of the breast cancer during NAC, ΔSUVmax value seems to be the most strong factor associated with pCR.
Collapse
Affiliation(s)
- Nadiye Akdeniz
- Department of Medical Oncology, Adiyaman Training and Research Hospital, Adiyaman
| | - Halil Kömek
- Department of Nuclear Medicine, Gazi Yasargil Training and Research Hospital
| | - Mehmet Küçüköner
- Department of Medical Oncology, Dicle University Medical Faculty, Diyarbakir, Turkey
| | - Muhammet A Kaplan
- Department of Medical Oncology, Dicle University Medical Faculty, Diyarbakir, Turkey
| | - Zuhat Urakçi
- Department of Medical Oncology, Dicle University Medical Faculty, Diyarbakir, Turkey
| | - Zeynep Oruç
- Department of Medical Oncology, Dicle University Medical Faculty, Diyarbakir, Turkey
| | - Abdurrahman Işikdoğan
- Department of Medical Oncology, Dicle University Medical Faculty, Diyarbakir, Turkey
| |
Collapse
|
24
|
L-type amino acid transporter 1 is associated with chemoresistance in breast cancer via the promotion of amino acid metabolism. Sci Rep 2021; 11:589. [PMID: 33436954 PMCID: PMC7803739 DOI: 10.1038/s41598-020-80668-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
18F-FDG PET/CT has been used as an indicator of chemotherapy effects, but cancer cells can remain even when no FDG uptake is detected, indicating the importance of exploring other metabolomic pathways. Therefore, we explored the amino acid metabolism, including L-type amino acid transporter-1 (LAT1), in breast cancer tissues and clarified the role of LAT1 in therapeutic resistance and clinical outcomes of patients. We evaluated LAT1 expression before and after neoadjuvant chemotherapy and examined the correlation of glucose uptake using FDG-PET with the pathological response of patients. It revealed that LAT1 levels correlated with proliferation after chemotherapy, and amino acid and glucose metabolism were closely correlated. In addition, LAT1 was considered to be involved in treatment resistance and sensitivity only in luminal type breast cancer. Results of in vitro analyses revealed that LAT1 promoted amino acid uptake, which contributed to energy production by supplying amino acids to the TCA cycle. However, in MCF-7 cells treated with chemotherapeutic agents, oncometabolites and branched-chain amino acids also played a pivotal role in energy production and drug resistance, despite decreased glucose metabolism. In conclusion, LAT1 was involved in drug resistance and could be a novel therapeutic target against chemotherapy resistance in luminal type breast cancer.
Collapse
|
25
|
Yixin HMD, Fei LMD, Jianhua ZMD. Current Status and Advances in Imaging Evaluation of Neoadjuvant Chemotherapy of Breast Cancer. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2021. [DOI: 10.37015/audt.2021.190036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
26
|
Tumor-Infiltrating Lymphocytes in Low-Risk Patients With Breast Cancer Treated With Single-Dose Preoperative Partial Breast Irradiation. Int J Radiat Oncol Biol Phys 2020; 109:1325-1331. [PMID: 33333201 DOI: 10.1016/j.ijrobp.2020.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE Preoperative partial breast irradiation (PBI) has the potential to induce tumor regression. We evaluated the differences in the numbers of preirradiation tumor infiltrating lymphocytes (TILs) between responders and nonresponders after preoperative PBI in low-risk patients with breast cancer. Furthermore, we evaluated the change in number of TILs before and after irradiation. METHODS AND MATERIALS In the prospective ABLATIVE study, low-risk patients with breast cancer underwent treatment with single-dose preoperative PBI (20 Gy) to the tumor and breast-conserving surgery after 6 or 8 months. In the preirradiation diagnostic biopsy and postirradiation resection specimen, numbers of TILs in 3 square regions of 450 × 450 μm were counted manually. TILs were visualized with CD3, CD4, and CD8 immunohistochemistry. Differences in numbers of preirradiation TILs between responders and nonresponders were tested using Mann-Whitney U test. Responders were defined as pathologic complete or near-complete response, and nonresponders were defined "as all other response." Changes in numbers of TILs after preoperative PBI was evaluated with the Wilcoxon signed rank test. RESULTS Preirradiation tissue was available from 28 patients, postirradiation tissue from 29 patients, resulting in 22 pairs of preirradiation and postirradiation tissue. In these 35 patients, 15 had pathologic complete response (43%), 11 had a near-complete response (31%), 7 had a partial response (20%), and 2 had stable disease (6%). The median numbers of CD3+ TILs, CD4+ TILs, and CD8+ TILs in the preirradiation tumor tissue were 49 (interquartile range [IQR], 36-80), 45 (IQR, 28-57), and 19 (IQR, 8-35), respectively. The number of preirradiation TILs did not differ significantly between responders and nonresponders. The median numbers of CD3+ TILs, CD4+ TILs, and CD8+ TILs in postirradiation tumor tissue were 17 (IQR, 13-31), 26 (IQR, 16-35), and 7 (IQR, 5-11), respectively. CONCLUSIONS After preoperative PBI in this limited cohort, the number of TILs in tumor tissue decreased. No differences in numbers of preirradiation TILs between responders and nonresponders were observed.
Collapse
|
27
|
Skarping I, Förnvik D, Heide-Jørgensen U, Rydén L, Zackrisson S, Borgquist S. Neoadjuvant breast cancer treatment response; tumor size evaluation through different conventional imaging modalities in the NeoDense study. Acta Oncol 2020; 59:1528-1537. [PMID: 33063567 DOI: 10.1080/0284186x.2020.1830167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Neoadjuvant chemotherapy (NACT) is offered to an increasing number of breast cancer (BC) patients, and comprehensive monitoring of treatment response is of utmost importance. Several imaging modalities are available to follow tumor response, although likely to provide different clinical information. We aimed to examine the association between early radiological response by three conventional imaging modalities and pathological complete response (pCR). Further, we investigated the agreement between these modalities pre-, during, and post-NACT, and the accuracy of predicting pathological residual tumor burden by these imaging modalities post-NACT. MATERIAL AND METHODS This prospective Swedish cohort study included 202 BC patients assigned to NACT (2014-2019). Breast imaging with clinically used modalities: mammography, ultrasound, and tomosynthesis was performed pre-, during, and post-NACT. We investigated the agreement of tumor size by the different imaging modalities, and their accuracy of tumor size estimation. Patients with a radiological complete response or radiological partial response (≥30% decrease in tumor diameter) during NACT were classified as radiological early responders. RESULTS Patients with an early radiological response by ultrasound had 2.9 times higher chance of pCR than early radiological non-responders; the corresponding relative chance for mammography and tomosynthesis tumor size measures was 1.8 and 2.8, respectively. Post-NACT, each modality, separately, could accurately estimate tumor size (within 5 mm margin compared to pathological evaluation) in 43-46% of all tumors. The diagnostic precision in predicting pCR post-NACT was similar between the three imaging modalities; however, tomosynthesis had slightly higher specificity and positive predictive values. CONCLUSION Breast imaging modalities correctly estimated pathological tumor size in less than half of the tumors. Based on this finding, predicting residual tumor size post-NACT is challenging using conventional imaging. Patients with early radiological non-response might need improved monitoring during NACT and be considered for changed treatment plans.
Collapse
Affiliation(s)
- Ida Skarping
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Daniel Förnvik
- Department of Translational Medicine, Medical Radiation Physics, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Uffe Heide-Jørgensen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Lisa Rydén
- Department of Surgery, Lund University, Skåne University Hospital, Lund, Sweden
| | - Sophia Zackrisson
- Department of Translational Medicine, Diagnostic Radiology, Lund University, Skåne University Hospital, Lund, Sweden
- Department of Translational Medicine, Diagnostic Radiology, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Signe Borgquist
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Skåne University Hospital, Lund, Sweden
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
28
|
Prognostic value of 18F-FDG PET and PET/CT for assessment of treatment response to neoadjuvant chemotherapy in breast cancer: a systematic review and meta-analysis. Breast Cancer Res 2020; 22:119. [PMID: 33129348 PMCID: PMC7603771 DOI: 10.1186/s13058-020-01350-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Background We performed a systematic review and meta-analysis to evaluate the prognostic significance of 18F-FDG PET and PET/CT for evaluation of responses to neoadjuvant chemotherapy (NAC) in breast cancer patients. Methods We searched PubMed, Embase, and the Cochrane Library databases until June 2020 to identify studies that assessed the prognostic value of 18F-FDG PET scans during or after NAC with regard to overall (OS) and disease-free survival (DFS). Hazard ratios (HRs) and their 95% confidence intervals (CIs) were pooled meta-analytically using a random-effects model. Results Twenty-one studies consisting of 1630 patients were included in the qualitative synthesis. Twelve studies investigated the use of PET scans for interim response evaluation (during NAC) and 10 studies assessed post-treatment PET evaluation (after NAC). The most widely evaluated parameter distinguishing metabolic responders from poor responders on interim or post-treatment PET scans was %ΔSUVmax, defined as the percent reduction of SUVmax compared to baseline PET, followed by SUVmax and complete metabolic response (CMR). For the 17 studies included in the meta-analysis, the pooled HR of metabolic responses on DFS was 0.21 (95% confidence interval [CI], 0.14–0.32) for interim PET scans and 0.31 (95% CI, 0.21–0.46) for post-treatment PET scans. Regarding the influence of metabolic responses on OS, the pooled HRs for interim and post-treatment PET scans were 0.20 (95% CI, 0.09–0.44) and 0.26 (95% CI, 0.14–0.51), respectively. Conclusions The currently available literature suggests that the use of 18F-FDG PET or PET/CT for evaluation of response to NAC provides significant predictive value for disease recurrence and survival in breast cancer patients and might allow risk stratification and guide rational management.
Collapse
|
29
|
Ming Y, Wu N, Qian T, Li X, Wan DQ, Li C, Li Y, Wu Z, Wang X, Liu J, Wu N. Progress and Future Trends in PET/CT and PET/MRI Molecular Imaging Approaches for Breast Cancer. Front Oncol 2020; 10:1301. [PMID: 32903496 PMCID: PMC7435066 DOI: 10.3389/fonc.2020.01301] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is a major disease with high morbidity and mortality in women worldwide. Increased use of imaging biomarkers has been shown to add more information with clinical utility in the detection and evaluation of breast cancer. To date, numerous studies related to PET-based imaging in breast cancer have been published. Here, we review available studies on the clinical utility of different PET-based molecular imaging methods in breast cancer diagnosis, staging, distant-metastasis detection, therapeutic and prognostic prediction, and evaluation of therapeutic responses. For primary breast cancer, PET/MRI performed similarly to MRI but better than PET/CT. PET/CT and PET/MRI both have higher sensitivity than MRI in the detection of axillary and extra-axillary nodal metastases. For distant metastases, PET/CT has better performance in the detection of lung metastasis, while PET/MRI performs better in the liver and bone. Additionally, PET/CT is superior in terms of monitoring local recurrence. The progress in novel radiotracers and PET radiomics presents opportunities to reclassify tumors by combining their fine anatomical features with molecular characteristics and develop a beneficial pathway from bench to bedside to predict the treatment response and prognosis of breast cancer. However, further investigation is still needed before application of these modalities in clinical practice. In conclusion, PET-based imaging is not suitable for early-stage breast cancer, but it adds value in identifying regional nodal disease and distant metastases as an adjuvant to standard diagnostic imaging. Recent advances in imaging techniques would further widen the comprehensive and convergent applications of PET approaches in the clinical management of breast cancer.
Collapse
Affiliation(s)
- Yue Ming
- PET-CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Tianyi Qian
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Li
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - David Q Wan
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, Health and Science Center at Houston, University of Texas, Houston, TX, United States
| | - Caiying Li
- Department of Medical Imaging, Second Hospital of Hebei Medical University, Hebei, China
| | - Yalun Li
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiang Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaqi Liu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Wu
- PET-CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Zhu J, Li J, Fan Z, Wang H, Zhang J, Yin Y, Fu P, Geng C, Jin F, Jiang Z, Liu Z. Association of higher axillary pathologic complete response rate with breast pathologic complete response after neoadjuvant chemotherapy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:992. [PMID: 32953792 PMCID: PMC7475504 DOI: 10.21037/atm-20-5172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background To investigate the association of axillary pathologic complete response (pCR) rate among breast cancer patients with pCR after neoadjuvant chemotherapy (NCT). Methods The retrospective clinical data of 1,903 patients who were treated with NCT between March, 2010 and December, 2018, were collected from one Chinese database and analyzed. The correlations between clinicopathological characteristics and breast pCR with axillary pCR were calculated by χ2 test. Binary logistic regression analysis was used for multivariate analysis. The relative risk of positive axillary nodes after NCT in patients with and without breast pCR was analyzed using a Cochran-Mantel-Haenszel (CMH) test stratified by initial N stage and tumor subtype. Results The rate of axillary pCR was increased in the cases with initial cN0, Ki67 high expression, HR+HER2+/HR-HER2+/TN subtypes, and breast pCR. After NCT, the relative risk of nodal disease burden was 4.81 in patients without breast pCR compared with patients with breast pCR. The relative risk of positive nodal status in patients with cN0, cN1, cN2, and cN3 disease without vs. with breast pCR was 6.45, 4.88, 5.69 and 6.24, respectively. The relative risk of positive nodal status in patients with HR+HER2−, HR+HER2+, HR−HER2+, and TN disease was 4.02, 4.50, 3.82 and 4.18, respectively. Of cN0 patients with breast pCR, only 4 out of 44 (9%) with HER2-positive disease had 1 or 2 axillary lymph node metastases at final surgical pathology compared to 30 out of 98 (31%) of those without breast pCR. There was no evidence of positive nodal residue among all 21 patients (100%) with TN disease compared to 65% (36 of 55) of patients without breast pCR. Conclusions Nodal status is strongly correlated with breast pCR after NCT. Patients with initial cN0/1 TN/HER2 positive disease who achieve breast pCR at surgery have a low risk of nodal metastasis. These results suggest that the failure rate of missing positive lymph nodes among those patients was very low and that it is safe for such patients to undergo sentinel lymph node biopsy (SLNB) after NCT. This study also provides a theoretical basis for clinical trials focused on the avoidance of axillary surgery in selected patients.
Collapse
Affiliation(s)
- Jiujun Zhu
- Department of Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University; Henan Cancer Hospital, Zhengzhou, China
| | - Jianbin Li
- Department of Breast Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Haibo Wang
- Department of Breast Cancer Center, Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Jianguo Zhang
- Department of Breast Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongmei Yin
- Department of Breast Cancer, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Peifen Fu
- Department of Breast Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cuizhi Geng
- Department of Breast Cancer Center, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, China
| | - Feng Jin
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zefei Jiang
- Department of Breast Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhenzhen Liu
- Department of Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University; Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
31
|
Jones EF, Hathi DK, Freimanis R, Mukhtar RA, Chien AJ, Esserman LJ, van’t Veer LJ, Joe BN, Hylton NM. Current Landscape of Breast Cancer Imaging and Potential Quantitative Imaging Markers of Response in ER-Positive Breast Cancers Treated with Neoadjuvant Therapy. Cancers (Basel) 2020; 12:E1511. [PMID: 32527022 PMCID: PMC7352259 DOI: 10.3390/cancers12061511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/24/2022] Open
Abstract
In recent years, neoadjuvant treatment trials have shown that breast cancer subtypes identified on the basis of genomic and/or molecular signatures exhibit different response rates and recurrence outcomes, with the implication that subtype-specific treatment approaches are needed. Estrogen receptor-positive (ER+) breast cancers present a unique set of challenges for determining optimal neoadjuvant treatment approaches. There is increased recognition that not all ER+ breast cancers benefit from chemotherapy, and that there may be a subset of ER+ breast cancers that can be treated effectively using endocrine therapies alone. With this uncertainty, there is a need to improve the assessment and to optimize the treatment of ER+ breast cancers. While pathology-based markers offer a snapshot of tumor response to neoadjuvant therapy, non-invasive imaging of the ER disease in response to treatment would provide broader insights into tumor heterogeneity, ER biology, and the timing of surrogate endpoint measurements. In this review, we provide an overview of the current landscape of breast imaging in neoadjuvant studies and highlight the technological advances in each imaging modality. We then further examine some potential imaging markers for neoadjuvant treatment response in ER+ breast cancers.
Collapse
Affiliation(s)
- Ella F. Jones
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94115, USA; (D.K.H.); (R.F.); (B.N.J.); (N.M.H.)
| | - Deep K. Hathi
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94115, USA; (D.K.H.); (R.F.); (B.N.J.); (N.M.H.)
| | - Rita Freimanis
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94115, USA; (D.K.H.); (R.F.); (B.N.J.); (N.M.H.)
| | - Rita A. Mukhtar
- Department of Surgery, University of California, San Francisco, CA 94115, USA;
| | - A. Jo Chien
- School of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA; (A.J.C.); (L.J.v.V.)
| | - Laura J. Esserman
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA;
| | - Laura J. van’t Veer
- School of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115, USA; (A.J.C.); (L.J.v.V.)
| | - Bonnie N. Joe
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94115, USA; (D.K.H.); (R.F.); (B.N.J.); (N.M.H.)
| | - Nola M. Hylton
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94115, USA; (D.K.H.); (R.F.); (B.N.J.); (N.M.H.)
| |
Collapse
|
32
|
Boughdad S, Champion L, Becette V, Cherel P, Fourme E, Lemonnier J, Lerebours F, Alberini JL. Early metabolic response of breast cancer to neoadjuvant endocrine therapy: comparison to morphological and pathological response. Cancer Imaging 2020; 20:11. [PMID: 31992361 PMCID: PMC6986018 DOI: 10.1186/s40644-020-0287-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/13/2020] [Indexed: 12/23/2022] Open
Abstract
Background Neoadjuvant endocrine therapy (NET) has shown efficacy in terms of clinical response and surgical outcome in postmenopausal patients with estrogen receptor-positive / HER2-negative breast cancer (ER+/HER2- BC) but monitoring of tumor response is challenging. The aim of the present study was to investigate the value of an early metabolic response compared to morphological and pathological responses in this population. Methods This was an ancillary study of CARMINA 02, a phase II clinical trial evaluating side-by-side the efficacy of 4 to 6 months of anastrozole or fulvestrant. Positron Emission Tomography/Computed Tomography using 2-deoxy-2-[18F]fluoro-D-glucose (FDG-PET/CT) scans were performed at baseline (M0), early after 1 month of treatment (M1) and pre-operatively in 11 patients (74.2 yo ± 3.6). Patients were classified as early “metabolic responders” (mR) when the decrease of SUVmax was higher than 40%, and “metabolic non-responders” (mNR) otherwise. Early metabolic response was compared to morphological response (palpation, US and MRI), variation of Ki-67 index, pathological response according to the Sataloff classification and also to Preoperative Endocrine Prognostic Index (PEPI) score. It was also correlated with overall survival (OS) and recurrence-free survival (RFS). Results Tumor size measured on US and on MRI was smaller in mR than mNR, with the highest statistically significant difference at M1 (p = 0.01 and 7.1 × 10− 5, respectively). No statistically significant difference in the variation of tumor size between M0 and M1 assessed on US or MRI was observed between mR and mNR. mR had a better clinical response: no progressive disease in mR vs 2 in mNR and 2 partial response in mR vs 1 partial response in mNR. One patient with a pre-operative complete metabolic response had the best pathological response. Pathological response did not show any statistically significant difference between mR and mNR. mR had better OS and RFS (Kaplan-Meier p = 0.08 and 0.06, respectively). All cancer-related events occurred in mNR: 3 patients died, 2 of them from progressive disease. Conclusions FDG-PET/CT imaging could become a “surrogate marker” to monitor tumor response, especially as NET is a valuable treatment option in postmenopausal women with ER+/HER2- BC.
Collapse
Affiliation(s)
- Sarah Boughdad
- Department of Nuclear Medicine, Institut Curie-Saint-Cloud, 92210, Saint-Cloud, France
| | - Laurence Champion
- Department of Nuclear Medicine, Institut Curie-Saint-Cloud, 92210, Saint-Cloud, France
| | | | - Pascal Cherel
- Department of Radiology, Institut Curie, Saint-Cloud, France
| | | | | | | | - Jean-Louis Alberini
- Department of Nuclear Medicine, Institut Curie-Saint-Cloud, 92210, Saint-Cloud, France. .,Université Versailles Saint-Quentin, Paris-Saclay, Saint-Quentin-en-Yvelines, France.
| |
Collapse
|
33
|
Jouberton E, Schmitt S, Chautard E, Maisonial-Besset A, Roy M, Radosevic-Robin N, Chezal JM, Miot-Noirault E, Bouvet Y, Cachin F. [ 18F]ML-10 PET imaging fails to assess early response to neoadjuvant chemotherapy in a preclinical model of triple negative breast cancer. EJNMMI Res 2020; 10:2. [PMID: 31907640 PMCID: PMC6944726 DOI: 10.1186/s13550-019-0587-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Pathological complete response to the neoadjuvant therapy (NAT) for triple negative breast cancer (TNBC) is predictive of prolonged patient survival. Methods for early evaluation of NAT efficiency are still needed, in order to rapidly adjust the therapeutic strategy in case of initial non-response. One option for this is molecular imaging of apoptosis induced by chemotherapy. Therefore, we investigated the capacity of [18F]ML-10 PET imaging, an apoptosis radiotracer, to detect tumor cell apoptosis and early predict the therapeutic response of human TNBC. RESULTS Initially, the induction of apoptosis by different therapies was quantified. We confirmed, in vitro, that paclitaxel or epirubicin, the fundamental cytotoxic drugs for breast cancer, induce apoptosis in TNBC cell lines. Exposure of TNBC models MDA-MB-231 and MDA-MB-468 to these drugs induced a significant increase (p < 0.01) of the apoptotic hallmarks: DNA fragmentation, membrane phospholipid scrambling, and PARP activation. Secondarily, apoptotic fraction was compared to the intracellular accumulation of the radiotracer. [18F]ML-10 accumulated in the apoptotic cells after 72 h of treatment by paclitaxel in vitro; this accumulation positively correlated with the apoptotic fraction. In vivo, [18F]ML-10 was rapidly cleared from the nontarget organs and mainly eliminated by the kidneys. Comparison of the in vivo [18F]FDG, [18F]FMISO, and [18F]ML-10 uptakes revealed that the tumor accumulation of [18F]ML-10 was directly related to the tumor hypoxia level. Finally, after the in vivo treatment of TNBC murine xenografts by paclitaxel, apoptosis was well induced, as demonstrated by the cleaved caspase-3 levels; however, no significant increase of [18F]ML-10 accumulation in the tumors was observed, either on day 3 or day 6 after the end of the treatment. CONCLUSIONS These results highlighted that PET imaging using [18F]ML-10 allows the visualization of apoptotic cells in TNBC models. Nevertheless, the increase of the chemotherapy-induced apoptotic response when using paclitaxel could not be assessed using this radiotracer in our mouse model.
Collapse
Affiliation(s)
- Elodie Jouberton
- Service de Médecine Nucléaire, Centre Jean Perrin, Clermont-Ferrand, France
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Clermont-Ferrand, France
- Zionexa, Aubière, France
| | - Sébastien Schmitt
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Clermont-Ferrand, France
| | - Emmanuel Chautard
- Département de Pathologie, Centre Jean Perrin, Clermont-Ferrand, France
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Clermont-Ferrand, France
| | - Aurélie Maisonial-Besset
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Clermont-Ferrand, France
| | - Marie Roy
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Clermont-Ferrand, France
| | - Nina Radosevic-Robin
- Département de Pathologie, Centre Jean Perrin, Clermont-Ferrand, France
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Clermont-Ferrand, France
| | - Jean-Michel Chezal
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Clermont-Ferrand, France
| | - Elisabeth Miot-Noirault
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Clermont-Ferrand, France
| | | | - Florent Cachin
- Service de Médecine Nucléaire, Centre Jean Perrin, Clermont-Ferrand, France.
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Clermont-Ferrand, France.
- Centre de Lutte Contre le Cancer, Centre Jean Perrin, 58 rue Montalembert, 63011, Clermont-Ferrand, France.
| |
Collapse
|
34
|
Fernandes J, Sannachi L, Tran WT, Koven A, Watkins E, Hadizad F, Gandhi S, Wright F, Curpen B, El Kaffas A, Faltyn J, Sadeghi-Naini A, Czarnota G. Monitoring Breast Cancer Response to Neoadjuvant Chemotherapy Using Ultrasound Strain Elastography. Transl Oncol 2019; 12:1177-1184. [PMID: 31226518 PMCID: PMC6586920 DOI: 10.1016/j.tranon.2019.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Strain elastography was used to monitor response to neoadjuvant chemotherapy (NAC) in 92 patients with biopsy-proven, locally advanced breast cancer. Strain elastography data were collected before, during, and after NAC. Relative changes in tumor strain ratio (SR) were calculated over time, and responder status was classified according to tumor size changes. Statistical analyses determined the significance of changes in SR over time and between response groups. Machine learning techniques, such as a naïve Bayes classifier, were used to evaluate the performance of the SR as a marker for Miller-Payne pathological endpoints. With pathological complete response (pCR) as an endpoint, a significant difference (P < .01) in the SR was observed between response groups as early as 2 weeks into NAC. Naïve Bayes classifiers predicted pCR with a sensitivity of 84%, specificity of 85%, and area under the curve of 81% at the preoperative scan. This study demonstrates that strain elastography may be predictive of NAC response in locally advanced breast cancer as early as 2 weeks into treatment, with high sensitivity and specificity, granting it the potential to be used for active monitoring of tumor response to chemotherapy.
Collapse
Affiliation(s)
- Jason Fernandes
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, CA
| | - Lakshmanan Sannachi
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, CA; Physical Sciences, Sunnybrook Research Institute, Toronto, CA
| | - William T Tran
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, CA; Department of Radiation Oncology, University of Toronto, Toronto, CA; Centre for Health and Social Care Research, Sheffield Hallam University, Sheffield, UK; Institute of Clinical Evaluative Sciences, Sunnybrook Research Institute, Toronto, CA
| | - Alexander Koven
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, CA
| | - Elyse Watkins
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, CA
| | - Farnoosh Hadizad
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, CA
| | - Sonal Gandhi
- Division of Medical Oncology, Sunnybrook Health Sciences Centre, Toronto, CA
| | - Frances Wright
- Division of Surgical Oncology, Sunnybrook Health Sciences Centre, Toronto, CA
| | - Belinda Curpen
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, CA
| | - Ahmed El Kaffas
- Physical Sciences, Sunnybrook Research Institute, Toronto, CA
| | - Joanna Faltyn
- Physical Sciences, Sunnybrook Research Institute, Toronto, CA
| | - Ali Sadeghi-Naini
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, CA; Department of Radiation Oncology, University of Toronto, Toronto, CA; Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, CA; Physical Sciences, Sunnybrook Research Institute, Toronto, CA
| | - Gregory Czarnota
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, CA; Department of Radiation Oncology, University of Toronto, Toronto, CA; Department of Medical Biophysics, University of Toronto, Toronto, CA; Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, CA; Physical Sciences, Sunnybrook Research Institute, Toronto, CA.
| |
Collapse
|
35
|
Yoo J, Kim BS, Yoon HJ. Predictive value of primary tumor parameters using 18F-FDG PET/CT for occult lymph node metastasis in breast cancer with clinically negative axillary lymph node. Ann Nucl Med 2018; 32:642-648. [PMID: 30094546 DOI: 10.1007/s12149-018-1288-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/20/2018] [Indexed: 12/01/2022]
Abstract
OBJECTIVE This study aimed to demonstrate the clinical significance of total lesion glycolysis (TLG) of primary breast cancer using 18F-FDG PET/CT to predict axillary lymph node (ALN) metastasis in invasive ductal breast cancer (IDC) with a clinically negative axillary lymph node (cN-ALN). METHODS 135 patients, newly diagnosed with IDC with CN-ALN between July 2016 and October 2017, were retrospectively enrolled. We estimated primary tumor PET/CT parameters including the maximum standard uptake value (SUVmax), metabolic tumor volume (MTV), and TLG, as well as clinicopathologic findings. All patients received breast surgery followed by pathologic axillary lymph node examination. RESULTS Of the 135 patients, 31 (23.0%) were diagnosed with pathologically proven metastatic ALN. In univariate analysis, SUVmax, MTV, and TLG of the primary breast tumor were correlated with metastatic ALN along with tumor size, lymphovascular invasion, CD34, and D2-40. On multivariate analysis, TLG (> 5.74, p = 0.009) had independent significance for predicting ALN metastasis in IDC with cN-ALN. CONCLUSION We demonstrated that TLG of primary tumors can be useful in predicting pathologic ALN metastasis in IDC patients with cN-ALN.
Collapse
Affiliation(s)
- Jang Yoo
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Bom Sahn Kim
- Department of Nuclear Medicine, Ewha Womans University School of Medicine, Seoul, South Korea.
| | - Hai-Jeon Yoon
- Department of Nuclear Medicine, Ewha Womans University School of Medicine, Seoul, South Korea
| |
Collapse
|
36
|
Groheux D. Now Is the Time to Use 18F-FDG PET/CT to Optimize Neoadjuvant Treatment in Triple-Negative Breast Cancer! J Nucl Med 2018; 59:863-864. [DOI: 10.2967/jnumed.118.210922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/12/2018] [Indexed: 11/16/2022] Open
|
37
|
ICG fluorescence imaging as a new tool for optimization of pathological evaluation in breast cancer tumors after neoadjuvant chemotherapy. PLoS One 2018; 13:e0197857. [PMID: 29799849 PMCID: PMC5969773 DOI: 10.1371/journal.pone.0197857] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 05/09/2018] [Indexed: 11/19/2022] Open
Abstract
Background Response to neoadjuvant chemotherapy (NACT), particularly pathologic complete response (pCR), is an independent predictor of favorable clinical outcome in breast cancer (BC). The accuracy of residual disease measurement and reporting is of critical importance in treatment planning and prognosis for these patients. Currently, gross pathological evaluation of the residual tumor bed is the greatest determinant for accurate reporting of NACT response. Fluorescence imaging (FI) is a new technology that is being evaluated for use in the detection of tumors in different oncological conditions. Objective The aim of this study was to evaluate whether indocyanine green fluorescence imaging (ICG-FI) is able to detect residual breast tumor tissue after NACT in breast surgical operative specimens. Methods Patients who underwent NACT for BC and were admitted for breast surgery were selected for participation in this study. Free ICG (0.25 mg/kg) was injected intraoperatively. Tumor-to-background fluorescence ratio (TBFR) was calculated on ex vivo samples from the surgical specimen. Results One hundred and seventy-two samples from nine breast surgical specimens were evaluated for their fluorescence intensity. Among them, 52 were malignant (30.2%) and 120 were benign (69.8%). The mean TBFR was 3.3 (SD 1.68) in malignant samples and 1.9 (SD 0.97) in benign samples (p = 0.0002). With a TBFR cut-off value of 1.3, the sensitivity, specificity, negative predictive value, false negative rate, and false positive rate of ICG-FI to predict residual tumoral disease in breast surgical samples post-NACT were 94.2%, 31.7%, 92.7%, 5.8%, and 68.3%, respectively. If we restricted our analysis to only patients who achieved pCR, the negative predictive value for ICG-FI was 100%. Conclusions These first observations indicate that ex vivo ICG-FI is sensitive but not sufficiently specific to discriminate between benign breast tissue and malignant residual tissue. Nevertheless, its negative predictive value seems sufficiently accurate to exclude the presence of residual breast tumor tissue on the operative specimen of patients treated by NACT, representing a potential tool to assist pathologists in the assessment of breast surgical specimens.
Collapse
|
38
|
Abstract
After an overview of the principles of fludeoxyglucose-PET/computed tomography (CT) in breast cancer, its advantages and limits to evaluate treatment response are discussed. The metabolic information is helpful for early assessment of the response to neoadjuvant chemotherapy and could be used to monitor treatment, especially in aggressive breast cancer subtypes. PET/CT is also a powerful method for early assessment of the treatment response in the metastatic setting. It allows evaluation of different sites of metastases in a single examination and detection of a heterogeneous response. However, to use PET/CT to assess responses, methodology for image acquisition and analysis needs standardization.
Collapse
Affiliation(s)
- David Groheux
- Department of Nuclear Medicine, Saint-Louis Hospital, 1 Avenue Claude Vellefaux, Paris 75475 Cedex 10, France.
| |
Collapse
|
39
|
Groheux D, Biard L, Lehmann-Che J, Teixeira L, Bouhidel FA, Poirot B, Bertheau P, Merlet P, Espié M, Resche-Rigon M, Sotiriou C, de Cremoux P. Tumor metabolism assessed by FDG-PET/CT and tumor proliferation assessed by genomic grade index to predict response to neoadjuvant chemotherapy in triple negative breast cancer. Eur J Nucl Med Mol Imaging 2018; 45:1279-1288. [DOI: 10.1007/s00259-018-3998-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/21/2018] [Indexed: 12/18/2022]
|
40
|
de Cremoux P, Biard L, Poirot B, Bertheau P, Teixeira L, Lehmann-Che J, Bouhidel FA, Merlet P, Espié M, Resche-Rigon M, Sotiriou C, Groheux D. 18FDG-PET/CT and molecular markers to predict response to neoadjuvant chemotherapy and outcome in HER2-negative advanced luminal breast cancers patients. Oncotarget 2018; 9:16343-16353. [PMID: 29662649 PMCID: PMC5893244 DOI: 10.18632/oncotarget.24674] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/26/2018] [Indexed: 11/25/2022] Open
Abstract
Background The efficacy of neoadjuvant chemotherapy regimens in advanced luminal breast cancer patients is difficult to predict. Intrinsic properties of breast tumors, including altered gene expression profile and dynamic evaluation of metabolic properties of tumor cells using positron emission tomography/computed tomography (PET/CT) of tumor cells, have been identified to guide patient's prognosis. The aim of this study is to determine if both analyses may improve the prediction of response to neoadjuvant chemotherapy in ER-positive / HER2-negative breast cancers (BCs) patients. Methods We used metabolic PET parameters, at diagnosis and after two cycles of chemotherapy and proliferation gene expression profile on biopsy at diagnosis, in particular, the genomic grade index (GGI) analyzed by reverse transcription and quantitative polymerase chain reaction (RT-qPCR). The pathological response was the surrogate endpoint. Results The change of FDG uptake between baseline PET and interim PET after 2 cycles of neoadjuvant chemotherapy (ΔSUVmax) was highly associated with pCR (p=0.008). We also observed an ability of P53 mutated status (p=0.042), in addition to histological grade (p=0. 0004), and PR expression (p=0.01) to predict pCR in ER-positive BCs, whereas no proliferation marker predicted pCR (P=0.39 for GGI). Finally, only ΔSUVmax was significantly associated with event free survival (p=0.047). Conclusions Our results confirm the predictive and prognostic value of tumor ΔSUVmax in ER-positive /HER2-negative advanced BCs patients. These findings can be helpful to select high-risk patients within trials investigating novel treatment strategies.
Collapse
Affiliation(s)
- Patricia de Cremoux
- Molecular Oncology Unit, Saint-Louis Hospital, Paris, France.,University Paris-Diderot, Sorbonne Paris Cité, INSERM/CNRS UMR944/7212, Paris, France
| | - Lucie Biard
- Department of Biostatistics, Saint-Louis Hospital, Paris, France.,University Paris-Diderot, Sorbonne Paris Cité, INSERM UMR 1153 ECSTRA team, Paris, France
| | - Brigitte Poirot
- Molecular Oncology Unit, Saint-Louis Hospital, Paris, France
| | - Philippe Bertheau
- Department of Pathology, Saint-Louis Hospital, Paris, France.,University Paris-Diderot, Sorbonne Paris Cité, INSERM UMR-S-1165, Paris, France
| | - Luis Teixeira
- University Paris-Diderot, Sorbonne Paris Cité, INSERM/CNRS UMR944/7212, Paris, France.,Breast Diseases Unit, Saint-Louis Hospital, Paris, France
| | - Jacqueline Lehmann-Che
- Molecular Oncology Unit, Saint-Louis Hospital, Paris, France.,University Paris-Diderot, Sorbonne Paris Cité, INSERM/CNRS UMR944/7212, Paris, France
| | | | - Pascal Merlet
- Department of Nuclear Medicine, Saint-Louis Hospital, Paris, France
| | - Marc Espié
- University Paris-Diderot, Sorbonne Paris Cité, INSERM/CNRS UMR944/7212, Paris, France.,Breast Diseases Unit, Saint-Louis Hospital, Paris, France
| | - Matthieu Resche-Rigon
- Department of Biostatistics, Saint-Louis Hospital, Paris, France.,University Paris-Diderot, Sorbonne Paris Cité, INSERM UMR 1153 ECSTRA team, Paris, France
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - David Groheux
- University Paris-Diderot, Sorbonne Paris Cité, INSERM/CNRS UMR944/7212, Paris, France.,Department of Nuclear Medicine, Saint-Louis Hospital, Paris, France
| |
Collapse
|
41
|
Shibasaki M, Iwai T, Oguri S, Koizumi T, Hirota M, Mitsudo K, Ozawa Y, Tohnai I. Role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in predicting pathological response to preoperative super-selective intra-arterial chemoradiotherapy for advanced squamous cell carcinoma of the mandible. J Bone Oncol 2018; 11:33-37. [PMID: 29552462 PMCID: PMC5852282 DOI: 10.1016/j.jbo.2018.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 12/04/2022] Open
Abstract
Introduction Although chemoradiotherapy (CRT) for oral squamous cell carcinoma (SCC) has been shown to preserve organ function and improve cosmetic results, site-specific data, especially mandible, are limited. The aim of this study was to evaluate the predictability of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) on response to super-selective intra-arterial CRT for advanced SCC of the mandible. Methods Fifteen patients with advanced SCC of the mandible underwent super-selective intra-arterial CRT followed by radical resection. Maximum standardized uptake value (SUVmax) of the mandibular lesion was evaluated with FDG-PET/CT before and after CRT. The SUVmax before and after CRT was defined as pre-SUVmax and post-SUVmax, respectively. The difference between pre- and post-SUVmax was calculated as SUVmax reduction rate to evaluate treatment response of the mandibular lesion. Each SUVmax reduction rate and surgical specimen of the corresponding lesion was analyzed to evaluate an accuracy of the modality for predicting pathological response. Results The median of pre-SUVmax was significantly lower than that of post-SUVmax (p = 0.001). Of the 15 patients, 6 had a pathological complete response (pCR) and 9 had a non-pCR. Neither pCR patients nor non-pCR patients showed significant difference of the median of SUVmax between pre- and post-CRT (pre-CRT p = 0.099 post-CRT p =0.074). The SUVmax reduction rate in patients with pCR was significantly higher than that with non-pCR (p = 0.002). Receiver operating characteristic analysis revealed that the optimal cut-off point of the reduction rate was 64.7%, with 83% sensitivity and 100% specificity. Conclusions These results concluded that SUVmax reduction rate can predict pathological complete response of preoperative super-selective intra-arterial CRT for advanced SCC of the mandible.
Collapse
Affiliation(s)
- Maiko Shibasaki
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Toshinori Iwai
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Senri Oguri
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Toshiyuki Koizumi
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Makoto Hirota
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Yukihiko Ozawa
- Yuai Clinic, 1-6-2 Kitashinyokohama, Kohoku-ku, Yokohama 223-0059, Japan
| | - Iwai Tohnai
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| |
Collapse
|
42
|
Collarino A, de Koster EJ, Valdés Olmos RA, de Geus-Oei LF, Pereira Arias-Bouda LM. Is Technetium-99m Sestamibi Imaging Able to Predict Pathologic Nonresponse to Neoadjuvant Chemotherapy in Breast Cancer? A Meta-analysis Evaluating Current Use and Shortcomings. Clin Breast Cancer 2018; 18:9-18. [DOI: 10.1016/j.clbc.2017.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/19/2017] [Accepted: 06/21/2017] [Indexed: 01/01/2023]
|
43
|
Malya FU, Kadioglu H, Bektasoglu HK, Gucin Z, Yildiz S, Guzel M, Erdogan EB, Yucel S, Ersoy YE. The role of PET and MRI in evaluating the feasibility of skin-sparing mastectomy following neoadjuvant therapy. J Int Med Res 2018; 46:626-636. [PMID: 29332418 PMCID: PMC5971500 DOI: 10.1177/0300060517719837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/19/2017] [Indexed: 11/16/2022] Open
Abstract
Objective To investigate the role of positron emission tomography (PET) and magnetic resonance imaging (MRI) in evaluating the feasibility of skin-sparing mastectomy in patients with locally-advanced breast cancer (LABC) who will undergo neoadjuvant chemotherapy (NAC) by evaluating the sensitivity and specificity of PET and MRI compared with skin biopsy results before and after NAC treatment. Methods Patients with LABC who were treated with NAC between November 2013 and November 2015 were included in this study. Demographic, clinical, radiological and histopathological features of the patients were recorded. Results A total of 30 patients were included in the study with a mean age of 52.6 years (range, 35-70 years). Sensitivity and specificity for detecting skin involvement in LABC was 100%/10% (62%/85%) with MRI and 60%/80% (12%/92%) with PET before (after) NAC, respectively. When radiological skin involvement was assessed in relation to the final histopathological results, the preNAC PET results and histopathological skin involvement were not significantly different; and there was no difference between postNAC MRI and histopathological skin involvement. Conclusions As preNAC PET and postNAC MRI more accurately determined skin involvement, it might be possible to use these two radiological evaluation methods together to assess patient suitability for skin-sparing mastectomy in selected patients.
Collapse
Affiliation(s)
- Fatma Umit Malya
- Department of General Surgery, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Huseyin Kadioglu
- Department of General Surgery, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Huseyin Kazim Bektasoglu
- Department of General Surgery, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Zuhal Gucin
- Department of Pathology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Seyma Yildiz
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Mehmet Guzel
- Department of General Surgery, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ezgi Basak Erdogan
- Department of Nuclear Medicine, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Serap Yucel
- Department of Radiation Oncology, Acibadem University, Istanbul, Turkey
| | - Yeliz Emine Ersoy
- Department of General Surgery, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
44
|
Richter H, Hennigs A, Schaefgen B, Hahn M, Blohmer JU, Kümmel S, Kühn T, Thill M, Friedrichs K, Sohn C, Golatta M, Heil J. Is Breast Surgery Necessary for Breast Carcinoma in Complete Remission Following Neoadjuvant Chemotherapy? Geburtshilfe Frauenheilkd 2018; 78:48-53. [PMID: 29375145 PMCID: PMC5778196 DOI: 10.1055/s-0043-124082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/02/2017] [Accepted: 12/03/2017] [Indexed: 11/19/2022] Open
Abstract
The likelihood of pathological complete remission (pCR) of breast cancer following neoadjuvant chemotherapy (NACT) is increasing; most of all in the triple negative and HER2 positive tumour subgroups. The question thus arises whether or not breast surgery is necessary when there is complete remission after NACT, and whether it provides any improvement of the oncological treatment result when tumour is no longer detectable. Avoiding surgery and possibly even radiotherapy would only be conceivable on the basis of a reliable diagnosis of pCR without operating. Current imaging does not achieve the necessary sensitivity and specificity to assure the diagnosis of pathological complete remission. Further studies are therefore required to determine which methods are best able to evaluate tumour response to NACT. Studies on image-guided, minimally invasive biopsies after NACT have delivered first promising results towards diagnosing pCR before surgery and could provide the basis for further studies on the possibility of avoiding surgery in this specific patient collective.
Collapse
Affiliation(s)
- Hannah Richter
- Brustzentrum der Universitäts-Frauenklinik Heidelberg, Heidelberg, Germany
| | - André Hennigs
- Brustzentrum der Universitäts-Frauenklinik Heidelberg, Heidelberg, Germany
| | - Benedikt Schaefgen
- Brustzentrum der Universitäts-Frauenklinik Heidelberg, Heidelberg, Germany
| | - Markus Hahn
- Department für Frauengesundheit, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Jens Uwe Blohmer
- Brustzentrum der Klinik für Gynäkologie, Campus Charité Mitte, Berlin, Germany
| | - Sherko Kümmel
- Brustzentrum der Kliniken Essen-Mitte, Evang. Huyssens-Stiftung/Knappschaft GmbH, Essen, Germany
| | - Thorsten Kühn
- Klinik für Frauenheilkunde und Geburtshilfe, Klinikum Esslingen GmbH, Esslingen, Germany
| | - Marc Thill
- Brustzentrum, Agaplesion Markus Krankenhaus, Frankfurt am Main, Germany
| | - Kay Friedrichs
- Mammazentrum am Krankenhaus Jerusalem Hamburg, Hamburg, Germany
| | - Christof Sohn
- Brustzentrum der Universitäts-Frauenklinik Heidelberg, Heidelberg, Germany
| | - Michael Golatta
- Brustzentrum der Universitäts-Frauenklinik Heidelberg, Heidelberg, Germany
| | - Jörg Heil
- Brustzentrum der Universitäts-Frauenklinik Heidelberg, Heidelberg, Germany
| |
Collapse
|
45
|
The use of breast imaging for predicting response to neoadjuvant lapatinib, trastuzumab and their combination in HER2-positive breast cancer: Results from Neo-ALTTO. Eur J Cancer 2017; 89:42-48. [PMID: 29227816 DOI: 10.1016/j.ejca.2017.10.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 11/22/2022]
Abstract
AIM To determine the value of mammography and breast ultrasound (US) in predicting outcomes in HER2 positive breast cancer patients (pts) within Neo-ALTTO trial. PATIENTS AND METHODS Mammography and US were required at baseline, week 6 and surgery. Two independent blinded investigators reviewed the measurements and assigned the corresponding response category. Pts showing complete or partial response according to RECIST (v1.1) were classified as responders. The association between imaging response at week 6 or prior to surgery was evaluated with respect to pathological complete response (pCR) and event-free Survival (EFS). RESULTS Of the 455 pts enrolled in the trial, 267 (61%) and 340 (77%) had evaluable mammography and US at week 6; 248 (56%) and 309 (70%) pts had evaluable mammography and US prior to surgery. At week 6, 32% and 43% of pts were classified as responders by mammography and US, respectively. pCR rates were twice as high for responders than non-responders (week 6: 46% versus 23% by US, p < 0.0001; 41% versus 24% by mammography, p = 0.007). Positive and negative predictive values of mammography and US prior to surgery were 37% and 35%, and 82% and 70%, respectively. No significant correlation was found between response by mammography and/or US at week 6/surgery and EFS. CONCLUSIONS Mammography and US were underused in Neo-ALTTO although US had the potential to assess early response whereas mammography to detect residual disease prior to surgery. Our data still emphasise the need for further imaging studies on pts treated with neoadjuvant HER2-targeted therapy.
Collapse
|
46
|
Fowler AM, Mankoff DA, Joe BN. Imaging Neoadjuvant Therapy Response in Breast Cancer. Radiology 2017; 285:358-375. [DOI: 10.1148/radiol.2017170180] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amy M. Fowler
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792-3252 (A.M.F.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa (D.A.M.); and Department of Radiology and Biomedical Imaging, University of California–San Francisco School of Medicine, San Francisco, Calif (B.N.J.)
| | - David A. Mankoff
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792-3252 (A.M.F.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa (D.A.M.); and Department of Radiology and Biomedical Imaging, University of California–San Francisco School of Medicine, San Francisco, Calif (B.N.J.)
| | - Bonnie N. Joe
- From the Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI 53792-3252 (A.M.F.); Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa (D.A.M.); and Department of Radiology and Biomedical Imaging, University of California–San Francisco School of Medicine, San Francisco, Calif (B.N.J.)
| |
Collapse
|
47
|
Sorace AG, Harvey S, Syed A, Yankeelov TE. Imaging Considerations and Interprofessional Opportunities in the Care of Breast Cancer Patients in the Neoadjuvant Setting. Semin Oncol Nurs 2017; 33:425-439. [PMID: 28927763 DOI: 10.1016/j.soncn.2017.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To discuss standard-of-care and emerging imaging techniques employed for screening and detection, diagnosis and staging, monitoring response to therapy, and guiding cancer treatments. DATA SOURCES Published journal articles indexed in the National Library of Medicine database and relevant websites. CONCLUSION Imaging plays a fundamental role in the care of cancer patients and specifically, breast cancer patients in the neoadjuvant setting, providing an excellent opportunity for interprofessional collaboration between oncologists, researchers, radiologists, and oncology nurses. Quantitative imaging strategies to assess cellular, molecular, and vascular characteristics within the tumor is needed to better evaluate initial diagnosis and treatment response. IMPLICATIONS FOR NURSING PRACTICE Nurses caring for patients in all settings must continue to seek education on emerging imaging techniques. Oncology nurses provide education about the test, ensure the patient has appropriate pre-testing instructions, and manage patient expectations about timing of results availability.
Collapse
|
48
|
Kollberg P, Almquist H, Bläckberg M, Cwikiel M, Gudjonsson S, Lyttkens K, Patschan O, Liedberg F. [18F]Fluorodeoxyglucose-positron emission tomography/computed tomography response evaluation can predict histological response at surgery after induction chemotherapy for oligometastatic bladder cancer. Scand J Urol 2017; 51:308-313. [DOI: 10.1080/21681805.2017.1321579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Petter Kollberg
- Department of Urology, Helsingborg County Hospital, Helsingborg, Sweden
- Department of Translational Medicine, Lund University, Lund, Sweden
| | - Helen Almquist
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Mats Bläckberg
- Department of Urology, Helsingborg County Hospital, Helsingborg, Sweden
| | | | - Sigurdur Gudjonsson
- Department of Translational Medicine, Lund University, Lund, Sweden
- Department of Urology, Landspitali University Hospital, Reykjavik, Iceland
| | - Kerstin Lyttkens
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Oliver Patschan
- Department of Translational Medicine, Lund University, Lund, Sweden
- Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - Fredrik Liedberg
- Department of Translational Medicine, Lund University, Lund, Sweden
- Department of Urology, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
49
|
The accuracy of 18F-FDG PET/CT in predicting the pathological response to neoadjuvant chemotherapy in patients with breast cancer: a meta-analysis and systematic review. Eur Radiol 2017; 27:4786-4796. [DOI: 10.1007/s00330-017-4831-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 12/22/2022]
|
50
|
Song BI, Kim HW, Won KS. Predictive Value of 18F-FDG PET/CT for Axillary Lymph Node Metastasis in Invasive Ductal Breast Cancer. Ann Surg Oncol 2017; 24:2174-2181. [PMID: 28432480 DOI: 10.1245/s10434-017-5860-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND This study assessed whether primary tumor maximum standardized uptake value (pSUVmax) measured by 18F-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) could improve the prediction of axillary lymph node (ALN) metastasis in invasive ductal breast cancer (IDC). METHODS In this study, 128 IDC patients who underwent pretreatment 18F-FDG PET/CT and surgical resection of primary tumor with sentinel lymph node biopsy, ALN dissection, or both were analyzed. All the patients were classified as five molecular subtypes. The optimal cutoff values of pSUVmax for all the patients and each molecular subtype for the prediction of ALN metastasis were determined using receiver operating characteristic (ROC) analysis. Furthermore, the prognostic accuracy of ALN metastasis was assessed using c-statistics. RESULTS The findings showed ALN metastasis in 52 patients (40.6%). The 18F-FDG PET/CT procedure had a sensitivity of 48.1% and a specificity of 94.7% for ALN metastasis. In the ROC analysis of pSUVmax for ALN metastasis, the optimal cutoff value was 3.9 for all the patients, 2.8 for the luminal A subtype, 3.3 for the luminal B (human epidermal growth factor receptor 2 [HER2]-negative) subtype, 5.3 for the luminal B (HER2-positive) subtype, 12.7 for the HER2-positive subtype, and 11.5 for the triple-negative subtype. A predictive ALN metastasis model using nodal 18F-FDG uptake finding gave a c-statistic of 0.714, and a model combination of nodal 18F-FDG uptake finding with pSUVmax of all the patients gave a c-statistic of 0.736 (P = 0.3926). However, the combination of nodal the 18F-FDG uptake finding with the pSUVmax of each molecular subtype gave a c-statistic of 0.791 (P = 0.0047). CONCLUSIONS Combining the pSUVmax of each molecular subtype with the nodal 18F-FDG uptake finding can improve the prediction of ALN metastasis in IDC.
Collapse
Affiliation(s)
- Bong-Il Song
- Department of Nuclear Medicine, Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea.
| | - Hae Won Kim
- Department of Nuclear Medicine, Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea
| | - Kyoung Sook Won
- Department of Nuclear Medicine, Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|