1
|
Hanf D, Fasching P, Gass P, Matthias W Beckmann, Hack CC, Heindl F, Lothar Häberle, John N, Erber R, Press MF, Rübner M, Pöschke P. Impact of CCND1 amplification on the prognosis of hormone receptor-positive, HER2-negative breast cancer patients-correlation of clinical and pathological markers. Breast Cancer Res Treat 2025; 210:125-134. [PMID: 39586971 PMCID: PMC11787164 DOI: 10.1007/s10549-024-07545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE The cyclin D1 gene (CCND1) encodes a key cell-cycle regulatory protein. Resistance to endocrine therapy is reportedly observed more often in patients with CCND1-amplified tumors. CCND1 amplification is known to be a driving event in breast cancer, but contradictory findings are reported for its association with prognosis. This study therefore investigated the prognostic value of CCND1 amplification in hormone receptor (HR)-positive breast cancer patients. METHODS A cohort of 894 unselected breast cancer patients from the Bavarian Breast Cancer Cases and Controls (BBCC) study was included. The CCND1 amplification rate was evaluated in tissue microarrays using fluorescence in situ hybridization. A CCND1/CEP11 ratio ≥ 2.0 was considered amplified. Statistical analysis was conducted on cases with ratios based on a range of 20-100 nuclei analyzed per case. A univariable Cox regression model was fitted with disease-free survival (DFS) and overall survival (OS). RESULTS CCND1 gene status was assessable in 511 patients. The CCND1 amplification rate was 12.9% (66 patients). Most patients with CCND1 amplification had luminal B-Like-(51.5%, n = 34) or luminal A-Like tumors (25.8%, n = 17), 13 patients with HER2-positive disease (19.7%) and only two patients had triple-negative tumors (3.0%). Survival analysis, focused on HR-positive, HER2-negative patients, showed no statistically significant differences in the DFS and OS with and without CCND1 amplification (P = 0.20 and 0.14, respectively, in the unadjusted analysis). CONCLUSIONS CCND1 amplification is a recurring event in breast cancer, occurring most frequently in luminal B-like and HER2-amplified subtypes. A trend toward less favorable outcomes was observed among CCND1-amplified HR-positive, HER2-negative tumors.
Collapse
Affiliation(s)
- Dorothea Hanf
- Department of Translational Medical Oncology, National Center for Tumor Diseases Dresden (NCT/UCC) and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) / Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
- Translational Medical Oncology, Faculty of Medicine, Carl Gustav Carus University Hospital, TUD Dresden University of Technology, Dresden, Germany
- Partner Site Dresden, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Peter Fasching
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) / Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
- Comprehensive Cancer Center Alliance WERA (CCC), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Paul Gass
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) / Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
- Comprehensive Cancer Center Alliance WERA (CCC), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) / Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
- Comprehensive Cancer Center Alliance WERA (CCC), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Carolin C Hack
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) / Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
- Comprehensive Cancer Center Alliance WERA (CCC), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Felix Heindl
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) / Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
- Comprehensive Cancer Center Alliance WERA (CCC), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Lothar Häberle
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) / Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
- Biostatistics Unit, Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nelson John
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) / Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
- Biostatistics Unit, Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ramona Erber
- Institute of Pathology, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) / Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Michael F Press
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Matthias Rübner
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) / Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
- Comprehensive Cancer Center Alliance WERA (CCC), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Patrik Pöschke
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN) / Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany.
- Comprehensive Cancer Center Alliance WERA (CCC), Erlangen, Germany.
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany.
| |
Collapse
|
2
|
Tofigh P, Mirghazanfari SM, Hami Z, Nassireslami E, Ebrahimi M. The Investigation of Quercus Infectoria Gall Aqueous Extract Effect on the Cell Proliferation, Apoptosis and Expression of CCND1, TP53, BCL2 and BAX Genes in Cell Line of Lung, Gastric and Esophageal Cancers. Rep Biochem Mol Biol 2024; 12:596-608. [PMID: 39086589 PMCID: PMC11288232 DOI: 10.61186/rbmb.12.4.596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 06/09/2024] [Indexed: 08/02/2024]
Abstract
Background The therapeutic potential of Quercus infectoria (QI) gall, including its anti-inflammatory, antioxidant, and anticancer properties, is well-known. However, its impact on lung, gastric, and esophageal cancer cells remain unclear. This study aims to explore the effects of QI gall aqueous extract on cell viability, apoptosis, and gene expression in A549, BGC823, and KYSE-30 cell lines. Methods A549, BGC823, and KYSE-30 cells were seeded in complete medium and incubated with different concentrations of QI gall extract for 24 hours. Cell viability was measured by an MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay. The induction of apoptosis was assessed through flow cytometric analysis after the adding FITC-conjugated Annexin V (Annexin V-FITC) and propidium iodide (PI). The mRNA expression levels of CCND1, TP53, BCL2 and BAX genes were determined using Real-time Quantitative Polymerase Chain Reaction analysis. Results The MTT assay demonstrated that treatment with QI gall extract significantly reduced the number of viable cells in the A549, BGC823, and KYSE-30 cell lines at IC50 concentrations of 440.1, 437.1, and 465.2 mg/ml, respectively. Additionally, compared to untreated cell population, the percentages of early apoptosis, late apoptosis, and necrosis in the A549, BGC823, and KYSE-30 cells significantly increased following treatment with QI gall extract (P< 0.05). Also, the treatment with QI gall extract influenced the expression of CCND1, TP53, BCL2 and BAX genes. Conclusions The present findings indicated that the gall extract of QI can inhibit the growth of A549, BGC823, and KYSE-30 cells by inducing apoptosis, which may be mediated via mitochondria-dependent pathway.
Collapse
Affiliation(s)
- Pouya Tofigh
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.
| | | | - Zahra Hami
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.
| | - Ehsan Nassireslami
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.
| | - Mohsen Ebrahimi
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Kothapalli KSD, Park HG, Kothapalli NSL, Brenna JT. FADS2 function at the major cancer hotspot 11q13 locus alters fatty acid metabolism in cancer. Prog Lipid Res 2023; 92:101242. [PMID: 37597812 DOI: 10.1016/j.plipres.2023.101242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Dysregulation of fatty acid metabolism and de novo lipogenesis is a key driver of several cancer types through highly unsaturated fatty acid (HUFA) signaling precursors such as arachidonic acid. The human chromosome 11q13 locus has long been established as the most frequently amplified in a variety of human cancers. The fatty acid desaturase genes (FADS1, FADS2 and FADS3) responsible for HUFA biosynthesis localize to the 11q12-13.1 region. FADS2 activity is promiscuous, catalyzing biosynthesis of several unsaturated fatty acids by Δ6, Δ8, and Δ4 desaturation. Our main aim here is to review known and putative consequences of FADS2 dysregulation due to effects on the 11q13 locus potentially driving various cancer types. FADS2 silencing causes synthesis of sciadonic acid (5Z,11Z,14Z-20:3) in MCF7 cells and breast cancer in vivo. 5Z,11Z,14Z-20:3 is structurally identical to arachidonic acid (5Z,8Z,11Z,14Z-20:4) except it lacks the internal Δ8 double bond required for prostaglandin and leukotriene synthesis, among other eicosanoids. Palmitic acid has substrate specificity for both SCD and FADS2. Melanoma, prostate, liver and lung cancer cells insensitive to SCD inhibition show increased FADS2 activity and sapienic acid biosynthesis. Elevated serum mead acid levels found in hepatocellular carcinoma patients suggest an unsatisfied demand for arachidonic acid. FADS2 circular RNAs are at high levels in colorectal and lung cancer tissues. FADS2 circular RNAs are associated with shorter overall survival in colorectal cancer patients. The evidence thusfar supports an effort for future research on the role of FADS2 as a tumor suppressor in a range of neoplastic disorders.
Collapse
Affiliation(s)
- Kumar S D Kothapalli
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA
| | | | - J Thomas Brenna
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| |
Collapse
|
4
|
Wang J, Su W, Zhang T, Zhang S, Lei H, Ma F, Shi M, Shi W, Xie X, Di C. Aberrant Cyclin D1 splicing in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis 2023; 14:244. [PMID: 37024471 PMCID: PMC10079974 DOI: 10.1038/s41419-023-05763-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Cyclin D1 (CCND1), a crucial mediator of cell cycle progression, possesses many mutation types with different mutation frequencies in human cancers. The G870A mutation is the most common mutation in CCND1, which produces two isoforms: full-length CCND1a and divergent C-terminal CCND1b. The dysregulation of the CCND1 isoforms is associated with multiple human cancers. Exploring the molecular mechanism of CCND1 isoforms has offer new insight for cancer treatment. On this basis, the alterations of CCND1 gene are described, including amplification, overexpression, and mutation, especially the G870A mutation. Subsequently, we review the characteristics of CCND1 isoforms caused by G870A mutation. Additionally, we summarize cis-regulatory elements, trans-acting factors, and the splice mutation involved in splicing regulation of CCND1. Furthermore, we highlight the function of CCND1 isoforms in cell cycle, invasion, and metastasis in cancers. Importantly, the clinical role of CCND1 isoforms is also discussed, particularly concerning prognosis, chemotherapy, and radiotherapy. Last, emphasis is given to the corrective strategies that modulate the cancerous CCND1 isoforms. Thus, it is highlighting significance of aberrant isoforms of CCND1 as targets for cancer therapy.
Collapse
Affiliation(s)
- Jing Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wei Su
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Taotao Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shasha Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huiwen Lei
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Fengdie Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Maoning Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wenjing Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
5
|
Li Y, Dong W, Zhang P, Zhang T, Ma L, Qu M, Ma X, Zhou X, He Q. Comprehensive Analysis of Regulatory Factors and Immune-Associated Patterns to Decipher Common and BRCA1/2 Mutation-Type-Specific Critical Regulation in Breast Cancer. Front Cell Dev Biol 2021; 9:750897. [PMID: 34733851 PMCID: PMC8558486 DOI: 10.3389/fcell.2021.750897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: BRCA1/2 mutations are closely related to high lifetime risk of breast cancer (BC). The objective of this study was to identify the genes, regulators, and immune-associated patterns underlying disease pathology in BC with BRCA1/2 somatic mutations and their associations with clinical traits. Methods: RNA sequencing data and clinical information from The Cancer Genome Atlas (TCGA; N = 36 BRCA1-mutant BC; N = 49 BRCA2-mutant BC; and N = 117 BRCA1/2-wild-type BC samples) were used for discovery, which included consensus network analysis, function enrichment, and analysis of hub genes; other TCGA data (N = 117 triple-negative BC) and two Gene Expression Omnibus database expression profiles were used as validation cohorts. Results: Consensus network analysis helped to identify specific co-expressed modules that showed positive correlations with tumor stage, number of positive lymph nodes, and margin status in BRCA1/2-mutant BC but lacking correlations in BRCA1/2-wild-type BC. Functional enrichment suggested potential mechanisms in BRCA1/2 carriers that could regulate the cell cycle, immune response, cellular metabolic processes, and cell migration, via enriched pathways including p53 and JAK-STAT signaling. Consensus network analysis identified the specific and common carcinogenic mechanisms involving BRCA mutations. Regulators cross-linking these modules include E2F or IRF transcription factor family, associated with cell cycle or immune response regulation module, respectively. Eight hub genes, including ISG15, BUB1, and TTK, were upregulated in several BRCA1/2-mutant BC datasets and showed prognostic value in BC. Furthermore, their genetic expression was related to higher levels of immune infiltration in BRCA1/2-mutant BC, which manifested as recruitment of T helper cells (Th1 cells), follicular helper T cells, and regulatory T cells, and T cell exhaustion. Moreover, important indicators for evaluation of BC immunotherapy, tumor mutational burden and neoantigen load also positively correlated with expression of some hub genes. Conclusion: We constructed a BRCA1/2 mutation-type-specific co-expressed gene network with related transcription factors and immune-associated patterns that could regulate and influence tumor metastasis and immune microenvironment, providing novel insights into the pathological process of this disease and the corresponding BRCA mutations.
Collapse
Affiliation(s)
- Yue Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Dong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengqian Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ting Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ling Ma
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Qu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xingcong Ma
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qian He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Jansen K, Farahi N, Büscheck F, Lennartz M, Luebke AM, Burandt E, Menz A, Kluth M, Hube-Magg C, Hinsch A, Höflmayer D, Weidemann S, Fraune C, Möller K, Lebok P, Sauter G, Simon R, Uhlig R, Wilczak W, Jacobsen F, Minner S, Krech R, Clauditz T, Bernreuther C, Dum D, Krech T, Marx A, Steurer S. DOG1 expression is common in human tumors: A tissue microarray study on more than 15,000 tissue samples. Pathol Res Pract 2021; 228:153663. [PMID: 34717148 DOI: 10.1016/j.prp.2021.153663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/17/2021] [Indexed: 02/03/2023]
Abstract
DOG1 (Discovered on GIST1) is a voltage-gated calcium-activated chloride and bicarbonate channel that is highly expressed in interstitial cells of Cajal and in gastrointestinal stromal tumors (GIST) derived from Cajal cells. To systematically determine in what tumor entities and normal tissue types DOG1 may be further expressed, a tissue microarray (TMA) containing 15,965 samples from 121 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. DOG1 immunostaining was found in 67 tumor types including GIST (95.7%), esophageal squamous cell carcinoma (31.9%), pancreatic ductal adenocarcinoma (33.6%), adenocarcinoma of the Papilla Vateri (20%), squamous cell carcinoma of the vulva (15.8%) and the oral cavity (15.3%), mucinous ovarian cancer (15.3%), esophageal adenocarcinoma (12.5%), endometrioid endometrial cancer (12.1%), neuroendocrine carcinoma of the colon (11.1%) and diffuse gastric adenocarcinoma (11%). Low level-DOG1 immunostaining was seen in 17 additional tumor entities. DOG1 expression was unrelated to histopathological parameters of tumor aggressiveness and/or patient prognosis in cancers of the breast (n = 1002), urinary bladder (975), ovary (469), endometrium (173), stomach (233), and thyroid gland (512). High DOG1 expression was linked to estrogen receptor expression in breast cancer (p < 0.0001) and absence of HPV infection in squamous cell carcinomas (p = 0.0008). In conclusion, our data identify several tumor entities that can show DOG1 expression levels at similar levels as in GIST. Although DOG1 is tightly linked to a diagnosis of GIST in spindle cell tumors, the differential diagnosis is much broader in DOG1 positive epithelioid neoplasms.
Collapse
Affiliation(s)
- Kristina Jansen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nagina Farahi
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Krech
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Andreas Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Xu J, Yang X, Deng Q, Yang C, Wang D, Jiang G, Yao X, He X, Ding J, Qiang J, Tu J, Zhang R, Lei QY, Shao ZM, Bian X, Hu R, Zhang L, Liu S. TEM8 marks neovasculogenic tumor-initiating cells in triple-negative breast cancer. Nat Commun 2021; 12:4413. [PMID: 34285210 PMCID: PMC8292527 DOI: 10.1038/s41467-021-24703-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
Enhanced neovasculogenesis, especially vasculogenic mimicry (VM), contributes to the development of triple-negative breast cancer (TNBC). Breast tumor-initiating cells (BTICs) are involved in forming VM; however, the specific VM-forming BTIC population and the regulatory mechanisms remain undefined. We find that tumor endothelial marker 8 (TEM8) is abundantly expressed in TNBC and serves as a marker for VM-forming BTICs. Mechanistically, TEM8 increases active RhoC level and induces ROCK1-mediated phosphorylation of SMAD5, in a cascade essential for promoting stemness and VM capacity of breast cancer cells. ASB10, an estrogen receptor ERα trans-activated E3 ligase, ubiquitylates TEM8 for degradation, and its deficiency in TNBC resulted in a high homeostatic level of TEM8. In this work, we identify TEM8 as a functional marker for VM-forming BTICs in TNBC, providing a target for the development of effective therapies against TNBC targeting both BTIC self-renewal and neovasculogenesis simultaneously. Vasculogenic mimicry (VM) contributes to the development of triple-negative breast cancer. In this study, the authors show that TEM8 is expressed in VM-forming breast cancer stem cells and it promotes stemness and VM differentiation capacity through a RhoC/ROCK1/SMAD5 axis
Collapse
Affiliation(s)
- Jiahui Xu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoli Yang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiaodan Deng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong Yang
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
| | - Dong Wang
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Guojuan Jiang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaohong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University); Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xueyan He
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiajun Ding
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiankun Qiang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Min Shao
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University); Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology; CAS Center for Excellence in Molecular Cell Science; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China.
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Liu B, Qin J, Yin Y, Zhai L, Liu G, Lizaso A, Shi D. The emergence of various genetic alterations mediated the Osimertinib resistance of a patient harboring heterozygous germline EGFR T790M: a case report. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:80. [PMID: 33553373 PMCID: PMC7859814 DOI: 10.21037/atm-20-7626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epidermal growth factor receptor (EGFR) T790M is the major mechanism mediating resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Despite the high frequency of EGFR activating mutations among East Asian lung cancer patients, germline T790M has been the subject of very little research. Questions remain as to whether germline T790M develops resistance to Osimertinib and if so, through which mechanisms. This study examined a patient harboring germline EGFR T790M who acquired resistance to Osimertinib therapy. After the failure of first-line icotinib therapy, which was administered for only 3 months, targeted next-generation sequencing of plasma samples collected at icotinib progression and the re-analysis of the baseline tissue biopsy sample revealed EGFR T790M with allelic frequencies approximating 50%. Lymphocyte genomic deoxyribonucleic acid (DNA) sequencing confirmed the germline heterozygous status of the T790M mutation. In addition to the EGFR T790M, a concurrent EGFR L858R was detected from the baseline tissue sample. Osimertinib therapy was initiated resulting in a partial response within 1 month of the commencement of the therapy. After 15.2 months of Osimertinib therapy, disease progression was evaluated due to the presence of pleural effusion. The targeted sequencing of plasma and pleural effusion samples revealed the emergence of EGFR G719A, tumor protein p53 (TP53) Q136X, and the co-amplification of Cyclin D1, fibroblast growth factor (FGF) 19, FGF3, and FGF4. This case highlights the importance of conducting next-generation sequencing–based molecular testing during both diagnostic and disease progression assessments to reveal sensitizing mutations and mutations that could mediate primary and acquired resistance to targeted therapeutics.
Collapse
Affiliation(s)
- Bin Liu
- Department of Respiratory and Critical Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Jianwen Qin
- Department of Respiratory and Critical Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Yan Yin
- Department of Respiratory and Critical Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Liang Zhai
- Department of Respiratory and Critical Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Guangxin Liu
- Department of Respiratory and Critical Medicine, Tianjin Chest Hospital, Tianjin, China
| | | | - Dongsheng Shi
- Department of Respiratory and Critical Medicine, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
9
|
Tao Z, Li T, Feng Z, Liu C, Shao Y, Zhu M, Gong C, Wang B, Cao J, Wang L, Du Y, Lizaso A, Li B, Zhang J, Hu X. Characterizations of Cancer Gene Mutations in Chinese Metastatic Breast Cancer Patients. Front Oncol 2020; 10:1023. [PMID: 32695676 PMCID: PMC7338574 DOI: 10.3389/fonc.2020.01023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Breast cancer (BC) is a type of disease with high heterogeneity. Molecular profiling, by revealing the intrinsic nature of its various subtypes, has extensively improved the therapeutic management of BC patients. However, the genomic mutation landscape of Chinese metastatic BC has not been fully explored. Methods: Matched plasma and mononuclear cells from 290 Chinese women with metastatic BC were sequenced using either of the two commercially-available panels consisting of 520 cancer-related and 108 BC-related genes. Both panels cover the same critical regions of 91 genes. The circulating tumor DNA mutation profile from our cohort was then compared with publicly-available metastatic BC datasets from Memorial Sloan Kettering Cancer Center (MSKCC) and Pan-cancer analysis of whole genomes (PCAWG). Results: A total of 1,201 mutations spanning 91 genes were detected from 234 patients, resulting in a mutation detection rate of 80.7%. TP53 (64.1%) was the gene with highest mutation frequency, followed by PIK3CA (31%), PTEN (11%), and RB1 (10%). Copy number amplifications (CNAs) in MYC (14.1%), FGFR1 (13.3%), CCND1 (6.6%), FGF3 (6.6%), FGF4 (6.2%) and FGF19 (6.2%) were also detected from our cohort. TP53 mutations were significantly more frequent among triple negative BC (TNBC), HR-/HER2+, and HR+/HER2+ BC, while less common in HR+/HER2- (P < 0.01). Meanwhile, PIK3CA mutations were significantly more frequent among HR+/HER2+, HR+/HER2-, and HR-/HER2+ BC, while less common in TNBC (P < 0.01). Pathogenic or likely pathogenic BRCA1/2 germline mutations were detected in 5.9% of the cohort and 4.4% in TNBC subgroup. Maximum allelic fraction (maxAF) of TP53, RB1, and PIK3CA mutations were associated with multiple organ metastasis. Patients with PIK3CA, PTEN, and RB1 mutation were more likely to have liver metastasis (P < 0.02). Compared with MSKCC and PCAWG dataset, Chinese patients had observably difference in genetic variation rates in different molecular subtypes (TNBC: TP53 73.0 vs. 91.5%, P < 0.001; PIK3CA 21.2 vs. 13.2%, P = 0.061; HR+/HER2-: FGFR1 3.3 vs. 0.7%, P = 0.035; TP 53 46.2 vs. 27.7%, P < 0.001; RB1 6.6 vs. 2.7%, P = 0.046; CDKN2A 7.7 vs. 1.0%, P < 0.001; PIK3CA 30.8 vs. 44.2%, P = 0.012; CDH1 1.1 vs. 18.2%, P < 0.001; GATA3 7.7 vs. 17.2%, P = 0.02). Conclusions: A distinct gene mutation profile was elucidated in Chinese women with metastatic BC, justifying further research. Liquid biopsy provides a quick, real-time, and minimally invasive tool for future clinical trial and routine practice.
Collapse
Affiliation(s)
- Zhonghua Tao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ting Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhe Feng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chang Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yilin Shao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingyu Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chengcheng Gong
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Biyun Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Cao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Leipin Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiqun Du
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | - Bing Li
- Burning Rock Biotech, Guangzhou, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xichun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Terkelsen T, Russo F, Gromov P, Haakensen VD, Brunak S, Gromova I, Krogh A, Papaleo E. Secreted breast tumor interstitial fluid microRNAs and their target genes are associated with triple-negative breast cancer, tumor grade, and immune infiltration. Breast Cancer Res 2020; 22:73. [PMID: 32605588 PMCID: PMC7329449 DOI: 10.1186/s13058-020-01295-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Background Studies on tumor-secreted microRNAs point to a functional role of these in cellular communication and reprogramming of the tumor microenvironment. Uptake of tumor-secreted microRNAs by neighboring cells may result in the silencing of mRNA targets and, in turn, modulation of the transcriptome. Studying miRNAs externalized from tumors could improve cancer patient diagnosis and disease monitoring and help to pinpoint which miRNA-gene interactions are central for tumor properties such as invasiveness and metastasis. Methods Using a bioinformatics approach, we analyzed the profiles of secreted tumor and normal interstitial fluid (IF) microRNAs, from women with breast cancer (BC). We carried out differential abundance analysis (DAA), to obtain miRNAs, which were enriched or depleted in IFs, from patients with different clinical traits. Subsequently, miRNA family enrichment analysis was performed to assess whether any families were over-represented in the specific sets. We identified dysregulated genes in tumor tissues from the same cohort of patients and constructed weighted gene co-expression networks, to extract sets of co-expressed genes and co-abundant miRNAs. Lastly, we integrated miRNAs and mRNAs to obtain interaction networks and supported our findings using prediction tools and cancer gene databases. Results Network analysis showed co-expressed genes and miRNA regulators, associated with tumor lymphocyte infiltration. All of the genes were involved in immune system processes, and many had previously been associated with cancer immunity. A subset of these, BTLA, CXCL13, IL7R, LAMP3, and LTB, was linked to the presence of tertiary lymphoid structures and high endothelial venules within tumors. Co-abundant tumor interstitial fluid miRNAs within this network, including miR-146a and miR-494, were annotated as negative regulators of immune-stimulatory responses. One co-expression network encompassed differences between BC subtypes. Genes differentially co-expressed between luminal B and triple-negative breast cancer (TNBC) were connected with sphingolipid metabolism and predicted to be co-regulated by miR-23a. Co-expressed genes and TIF miRNAs associated with tumor grade were BTRC, CHST1, miR-10a/b, miR-107, miR-301a, and miR-454. Conclusion Integration of IF miRNAs and mRNAs unveiled networks associated with patient clinicopathological traits, and underlined molecular mechanisms, specific to BC sub-groups. Our results highlight the benefits of an integrative approach to biomarker discovery, placing secreted miRNAs within a biological context.
Collapse
Affiliation(s)
- Thilde Terkelsen
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Francesco Russo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pavel Gromov
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Vilde Drageset Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irina Gromova
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Anders Krogh
- Unit of Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark. .,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Penela P, Ribas C, Sánchez-Madrid F, Mayor F. G protein-coupled receptor kinase 2 (GRK2) as a multifunctional signaling hub. Cell Mol Life Sci 2019; 76:4423-4446. [PMID: 31432234 PMCID: PMC6841920 DOI: 10.1007/s00018-019-03274-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
Abstract
Accumulating evidence indicates that G protein-coupled receptor kinase 2 (GRK2) is a versatile protein that acts as a signaling hub by modulating G protein-coupled receptor (GPCR) signaling and also via phosphorylation or scaffolding interactions with an extensive number of non-GPCR cellular partners. GRK2 multifunctionality arises from its multidomain structure and from complex mechanisms of regulation of its expression levels, activity, and localization within the cell, what allows the precise spatio-temporal shaping of GRK2 targets. A better understanding of the GRK2 interactome and its modulation mechanisms is helping to identify the GRK2-interacting proteins and its substrates involved in the participation of this kinase in different cellular processes and pathophysiological contexts.
Collapse
Affiliation(s)
- Petronila Penela
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029, Madrid, Spain
| | - Catalina Ribas
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029, Madrid, Spain
- Cell-Cell Communication Laboratory, Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain.
- Instituto de Investigación Sanitaria La Princesa, 28006, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029, Madrid, Spain.
| |
Collapse
|
12
|
Urbini M, Indio V, Tarantino G, Ravegnini G, Angelini S, Nannini M, Saponara M, Santini D, Ceccarelli C, Fiorentino M, Vincenzi B, Fumagalli E, Casali PG, Grignani G, Pession A, Ardizzoni A, Astolfi A, Pantaleo MA. Gain of FGF4 is a frequent event in KIT/PDGFRA/SDH/RAS-P WT GIST. Genes Chromosomes Cancer 2019; 58:636-642. [PMID: 30887595 PMCID: PMC6619263 DOI: 10.1002/gcc.22753] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 01/22/2023] Open
Abstract
Gastrointestinal stromal tumors (GIST) lacking mutations in KIT/PDGFRA or RAS pathways and retaining an intact SDH complex are usually referred to as KIT/PDGFRA/SDH/RAS‐P WT GIST or more simply quadruple WT GIST (~5% of all GIST). Despite efforts made, no recurrent genetic event in quadruple WT GIST has been identified so far. To further investigate this disease, we performed high throughput copy number analysis on quadruple WT GIST specimens identifying a recurrent focal gain in band 11q13.3 (involving FGF3/FGF4) in 6/8 cases. This event was not found in the other molecular GIST subgroups. FGF3/FGF4 duplication was associated with high expression of FGF4, both at mRNA and protein level, a growth factor normally not expressed in adult tissues or in KIT/PDGFRA‐mutated GIST. FGFR1 was found to be the predominant FGF receptor expressed and phosphorylation of AKT was detected, suggesting that a FGF4‐FGFR1 autocrine loop could stimulate downstream signaling in quadruple WT GIST. Together with the recent reports of quadruple WT cases carrying FGFR1 activating alterations, these findings strengthen the hypothesis of a potential involvement of FGFR pathway deregulation in quadruple WT GIST, which may represent a rationale for novel therapeutic approaches.
Collapse
Affiliation(s)
- Milena Urbini
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Valentina Indio
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Giuseppe Tarantino
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, FaBit; University of Bologna, Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, FaBit; University of Bologna, Bologna, Italy
| | - Margherita Nannini
- Department of Specialized, Experimental and Diagnostic Medicine, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Maristella Saponara
- Department of Specialized, Experimental and Diagnostic Medicine, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Donatella Santini
- Pathology Unit, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Claudio Ceccarelli
- Pathology Unit, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Michelangelo Fiorentino
- Laboratory of Oncological and Transplant Molecular Pathology-Pathology Unit, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Bruno Vincenzi
- Department of Medical Oncology, University Campus Bio-Medico, Rome, Italy
| | - Elena Fumagalli
- Medical Oncology Unit 2, Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Giovanni Casali
- Medical Oncology Unit 2, Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Grignani
- Sarcoma Unit, Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy
| | - Andrea Pession
- Department of Medical and Surgical Sciences, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Andrea Ardizzoni
- Division of Medical Oncology, S.Orsola-Malpighi Hospital, Bologna, Italy
| | - Annalisa Astolfi
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Maria Abbondanza Pantaleo
- Department of Specialized, Experimental and Diagnostic Medicine, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Lundberg A, Lindström LS, Li J, Harrell JC, Darai-Ramqvist E, Sifakis EG, Foukakis T, Perou CM, Czene K, Bergh J, Tobin NP. The long-term prognostic and predictive capacity of cyclin D1 gene amplification in 2305 breast tumours. Breast Cancer Res 2019; 21:34. [PMID: 30819233 PMCID: PMC6394106 DOI: 10.1186/s13058-019-1121-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/14/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Use of cyclin D1 (CCND1) gene amplification as a breast cancer biomarker has been hampered by conflicting assessments of the relationship between cyclin D1 protein levels and patient survival. Here, we aimed to clarify its prognostic and treatment predictive potential through comprehensive long-term survival analyses. METHODS CCND1 amplification was assessed using SNP arrays from two cohorts of 1965 and 340 patients with matching gene expression array and clinical follow-up data of over 15 years. Kaplan-Meier and multivariable Cox regression analyses were used to determine survival differences between CCND1 amplified vs. non-amplified tumours in clinically relevant patient sets, within PAM50 subtypes and within treatment-specific subgroups. Boxplots and differential gene expression analyses were performed to assess differences between amplified vs. non-amplified tumours within PAM50 subtypes. RESULTS When combining both cohorts, worse survival was found for patients with CCND1-amplified tumours in luminal A (HR = 1.68; 95% CI, 1.15-2.46), luminal B (1.37; 1.01-1.86) and ER+/LN-/HER2- (1.66; 1.14-2.41) subgroups. In gene expression analysis, CCND1-amplified luminal A tumours showed increased proliferation (P < 0.001) and decreased progesterone (P = 0.002) levels along with a large overlap in differentially expressed genes when comparing luminal A and B-amplified vs. non-amplified tumours. CONCLUSIONS Our results indicate that CCND1 amplification is associated with worse 15-year survival in ER+/LN-/HER2-, luminal A and luminal B patients. Moreover, luminal A CCND1-amplified tumours display gene expression changes consistent with a more aggressive phenotype. These novel findings highlight the potential of CCND1 to identify patients that could benefit from long-term treatment strategies.
Collapse
Affiliation(s)
- Arian Lundberg
- Department of Oncology and Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Linda S Lindström
- Department of Biosciences and Nutrition, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Jingmei Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - Eva Darai-Ramqvist
- Department of Pathology and Cytology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Emmanouil G Sifakis
- Department of Oncology and Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Theodoros Foukakis
- Department of Oncology and Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Charles M Perou
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology and Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Department of Public Health, Oxford University, Oxford, UK
| | - Nicholas P Tobin
- Department of Oncology and Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden.
| |
Collapse
|
14
|
Serino LTR, Jucoski TS, Morais SBD, Fernandes CCC, Lima RSD, Urban CA, Cavalli LR, Cavalli IJ, Ribeiro EMDSF. Association of FOSL1 copy number alteration and triple negative breast tumors. Genet Mol Biol 2019; 42:26-31. [PMID: 30816904 PMCID: PMC6428133 DOI: 10.1590/1678-4685-gmb-2017-0267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 06/13/2018] [Indexed: 12/18/2022] Open
Abstract
Copy number alterations (CNAs) are a frequent feature in human breast cancer, and
one of the hallmarks of genomic instability. The FOSL1,
GSTP1 and CCND1 genes are located at
11q13, a cytoband commonly affected by CNA in breast cancer, with relevant
function in progression and invasion. Our main goal was to analyze CNAs of these
genes and determine their association with breast cancer subtypes. Seventy-three
cases of invasive breast tumors [52 Luminal, 7 HER2+ and 14 triple negative
(TNBC) subtypes] were analyzed by TaqMan assays. CNAs were observed for all
genes, with gains more frequently observed. Gains of the FOSL1
gene were observed in 71% of the cases. This gene was the only one with a
statistically significant difference (p<0.001) among tumor
subtypes, with increased copy number in TNBC compared to luminal and HER2+. No
significant association of CNA and clinical and histopathological parameters
from the patients was observed. Additional studies in larger breast cancer
patient cohorts based on more refined molecular subtypes are necessary to
confirm the observed association of FOSL1 gain with aggressive
breast tumors phenotypes.
Collapse
Affiliation(s)
- Leandro Tamião Rodrigues Serino
- Departmentamento de Genética, Laboratory of Human Cytogenetics and Oncogenetics, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Tayana Schultz Jucoski
- Departmentamento de Genética, Laboratory of Human Cytogenetics and Oncogenetics, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Stephanie Bath de Morais
- Departmentamento de Genética, Laboratory of Human Cytogenetics and Oncogenetics, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Cíntia Callegari Coêlho Fernandes
- Departmentamento de Genética, Laboratory of Human Cytogenetics and Oncogenetics, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | | | | | - Iglenir João Cavalli
- Departmentamento de Genética, Laboratory of Human Cytogenetics and Oncogenetics, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | |
Collapse
|
15
|
Zhang M, Wang T, Sirianni R, Shaul PW, Xie Y. Identifying genes with tri-modal association with survival and tumor grade in cancer patients. BMC Bioinformatics 2019; 20:13. [PMID: 30621577 PMCID: PMC6323748 DOI: 10.1186/s12859-018-2582-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/11/2018] [Indexed: 01/25/2023] Open
Abstract
Background Previous cancer genomics studies focused on searching for novel oncogenes and tumor suppressor genes whose abundance is positively or negatively correlated with end-point observation, such as survival or tumor grade. This approach may potentially miss some truly functional genes if both its low and high modes have associations with end-point observation. Such genes act as both oncogenes and tumor suppressor genes, a scenario that is unlikely but theoretically possible. Results We invented an Expectation-Maximization (EM) algorithm to divide patients into low-, middle- and high-expressing groups according to the expression level of a certain gene in both tumor and normal patients. We found one gene, ORMDL3, whose low and high modes were both associated with worse survival and higher tumor grade in breast cancer patients in multiple patient cohorts. We speculate that its tumor suppressor gene role may be real, while its high expression correlating with worse end-point outcome is probably due to the passenger event of the nearby ERBB2’s amplification. Conclusions The proposed EM algorithm can effectively detect genes having tri-modal distributed expression in patient groups compared to normal genes, thus rendering a new perspective on dissecting the association between genomic features and end-point observations. Our analysis of breast cancer datasets suggest that the gene ORMDL3 may have an unexploited tumor suppressive function. Electronic supplementary material The online version of this article (10.1186/s12859-018-2582-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minzhe Zhang
- Department of Clinical Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Tao Wang
- Department of Clinical Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.,Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Rosa Sirianni
- Department of Pediatrics, Division of Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Philip W Shaul
- Department of Pediatrics, Division of Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Yang Xie
- Department of Clinical Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA. .,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA. .,Department of Bioinformatics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.
| |
Collapse
|
16
|
Vermeulen MA, Doebar SC, van Deurzen CHM, Martens JWM, van Diest PJ, Moelans CB. Copy number profiling of oncogenes in ductal carcinoma in situ of the male breast. Endocr Relat Cancer 2018; 25:173-184. [PMID: 29203614 DOI: 10.1530/erc-17-0338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023]
Abstract
Characterizing male breast cancer (BC) and unraveling male breast carcinogenesis is challenging because of the rarity of this disease. We investigated copy number status of 22 BC-related genes in 18 cases of pure ductal carcinoma in situ (DCIS) and in 49 cases of invasive carcinoma (IC) with adjacent DCIS (DCIS-AIC) in males using multiplex ligation-dependent probe amplification (MLPA). Results were compared to female BC and correlated with survival. Overall, copy number ratio and aberration frequency including all 22 genes showed no significant difference between the 3 groups. Individual unpaired analysis revealed a significantly higher MTDH copy number ratio in IC compared to DCIS-AIC and pure DCIS (P = 0.009 and P = 0.038, respectively). ADAM9 showed a significantly lower copy number aberration frequency in male BC, compared to female BC (P = 0.020). In DCIS-AIC, MTDH, CPD, CDC6 and TOP2A showed a lower frequency of copy number increase in males compared to females (P < 0.001 for all 4 genes). In IC, CPD gain and CCNE1 gain were independent predictors of poor overall survival. In conclusion, male DCIS and IC showed a similar copy number profile for 21 out of 22 interrogated BC-related genes, illustrating their clonal relation and the genetically advanced state of male DCIS. MTDH showed a higher copy number ratio in IC compared to adjacent and pure DCIS and may therefore play a role in male breast carcinogenesis. Differences were detected between male and female DCIS for 4 genes pointing to differences in breast carcinogenesis between the sexes.
Collapse
Affiliation(s)
- Marijn A Vermeulen
- Department of PathologyUniversity Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Shusma C Doebar
- Department of PathologyErasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Carolien H M van Deurzen
- Department of PathologyErasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- BOOG Study Center/Dutch Breast Cancer Research GroupAmsterdam, The Netherlands
| | - John W M Martens
- BOOG Study Center/Dutch Breast Cancer Research GroupAmsterdam, The Netherlands
- Department of Medical Oncology and Cancer Genomics NetherlandsErasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paul J van Diest
- Department of PathologyUniversity Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cathy B Moelans
- Department of PathologyUniversity Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
17
|
Nogués L, Palacios-García J, Reglero C, Rivas V, Neves M, Ribas C, Penela P, Mayor F. G protein-coupled receptor kinases (GRKs) in tumorigenesis and cancer progression: GPCR regulators and signaling hubs. Semin Cancer Biol 2018; 48:78-90. [DOI: 10.1016/j.semcancer.2017.04.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/22/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022]
|
18
|
Zhu Y, Bradic J. Significance testing in non-sparse high-dimensional linear models. Electron J Stat 2018. [DOI: 10.1214/18-ejs1443] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Ortiz AB, Garcia D, Vicente Y, Palka M, Bellas C, Martin P. Prognostic significance of cyclin D1 protein expression and gene amplification in invasive breast carcinoma. PLoS One 2017; 12:e0188068. [PMID: 29140993 PMCID: PMC5687747 DOI: 10.1371/journal.pone.0188068] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023] Open
Abstract
The oncogenic capacity of cyclin D1 has long been established in breast cancer. CCND1 amplification has been identified in a subset of patients with poor prognosis, but there are conflicting data regarding the predictive value of cyclin D1 protein overexpression. This study was designed to analyze the expression of cyclin D1 and its correlation with CCND1 amplification and their prognostic implications in invasive breast cancer. By using the tissue microarray technique, we performed an immunohistochemical study of ER, PR, HER2, p53, cyclin D1, Ki67 and p16 in 179 invasive breast carcinoma cases. The FISH method was performed to detect HER2/Neu and CCND1 amplification. High cyclin D1 expression was identified in 94/179 (52%) of invasive breast cancers. Cyclin D1 overexpression and CCND1 amplification were significantly associated (p = 0.010). Overexpression of cyclin D1 correlated with ER expression, PR expression and Luminal subtypes (p<0.001), with a favorable impact on overall survival in the whole series. However, in the Luminal A group, high expression of cyclin D1 correlated with shorter disease-free survival, suggesting that the prognostic role of cyclin D1 depends on the molecular subtype. CCND1 gene amplification was detected in 17 cases (9%) and correlated significantly with high tumor grade (p = 0.038), high Ki-67 protein expression (p = 0.002), and the Luminal B subtype (p = 0.002). Patients with tumors with high amplification of CCND1 had an increased risk of recurrence (HR = 2.5; 95% CI, 1.2-4.9, p = 0.01). These findings suggest that CCND1 amplification could be useful for predicting recurrence in invasive breast cancer.
Collapse
Affiliation(s)
- Angela B. Ortiz
- Pathology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Majadahonda (IDIPHIM) Majadahonda, Madrid, Spain
| | - Diego Garcia
- Pathology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Majadahonda (IDIPHIM) Majadahonda, Madrid, Spain
| | - Yolanda Vicente
- Pathology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Majadahonda (IDIPHIM) Majadahonda, Madrid, Spain
| | - Magda Palka
- Medical Oncology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Majadahonda (IDIPHIM) Majadahonda, Madrid, Spain
| | - Carmen Bellas
- Pathology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Majadahonda (IDIPHIM) Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Paloma Martin
- Pathology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Majadahonda (IDIPHIM) Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- * E-mail:
| |
Collapse
|
20
|
Prognostic Importance of Cell Cycle Regulators Cyclin D1 ( CCND1) and Cyclin-Dependent Kinase Inhibitor 1B ( CDKN1B/p27) in Sporadic Gastric Cancers. Gastroenterol Res Pract 2016; 2016:9408190. [PMID: 27781065 PMCID: PMC5066010 DOI: 10.1155/2016/9408190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/01/2016] [Indexed: 12/14/2022] Open
Abstract
Background. Gastric cancer is known for a notable variety in the course of the disease. Clinical factors, such as tumor stage, grade, and localization, are key in patient survival. It is expected that molecular factors such as somatic mutations and gene amplifications are also underlying tumor biological behavior and may serve as factors for prognosis estimation. Aim. The purpose of this study was to examine gene amplifications from a panel of genes to uncover potential prognostic marker candidates. Methods. A panel of gene amplifications including 71 genes was tested by multiplex ligation-dependent probe amplification (MLPA) technique in 76 gastric cancer samples from a Caucasian population. The correlation of gene amplification status with patient survival was determined by the Kaplan-Meier method. Results. The amplification of two cell cycle regulators, CCND1 and CDKN1B, was identified to have a negative prognostic role. The medial survival of patients with gastric cancer displaying amplification compared to patients without amplification was 192 versus 725 days for CCND1 (P = 0.0012) and 165 versus 611 days for CDKN1B (P = 0.0098). Conclusion. Gene amplifications of CCND1 and CDKN1B are potential candidates to serve as prognostic markers for the stratification of patients based on the estimate of survival in the management of gastric cancer patients.
Collapse
|
21
|
Smid M, Rodríguez-González FG, Sieuwerts AM, Salgado R, Prager-Van der Smissen WJC, Vlugt-Daane MVD, van Galen A, Nik-Zainal S, Staaf J, Brinkman AB, van de Vijver MJ, Richardson AL, Fatima A, Berentsen K, Butler A, Martin S, Davies HR, Debets R, Gelder MEMV, van Deurzen CHM, MacGrogan G, Van den Eynden GGGM, Purdie C, Thompson AM, Caldas C, Span PN, Simpson PT, Lakhani SR, Van Laere S, Desmedt C, Ringnér M, Tommasi S, Eyford J, Broeks A, Vincent-Salomon A, Futreal PA, Knappskog S, King T, Thomas G, Viari A, Langerød A, Børresen-Dale AL, Birney E, Stunnenberg HG, Stratton M, Foekens JA, Martens JWM. Breast cancer genome and transcriptome integration implicates specific mutational signatures with immune cell infiltration. Nat Commun 2016; 7:12910. [PMID: 27666519 PMCID: PMC5052682 DOI: 10.1038/ncomms12910] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022] Open
Abstract
A recent comprehensive whole genome analysis of a large breast cancer cohort was used to link known and novel drivers and substitution signatures to the transcriptome of 266 cases. Here, we validate that subtype-specific aberrations show concordant expression changes for, for example, TP53, PIK3CA, PTEN, CCND1 and CDH1. We find that CCND3 expression levels do not correlate with amplification, while increased GATA3 expression in mutant GATA3 cancers suggests GATA3 is an oncogene. In luminal cases the total number of substitutions, irrespective of type, associates with cell cycle gene expression and adverse outcome, whereas the number of mutations of signatures 3 and 13 associates with immune-response specific gene expression, increased numbers of tumour-infiltrating lymphocytes and better outcome. Thus, while earlier reports imply that the sheer number of somatic aberrations could trigger an immune-response, our data suggests that substitutions of a particular type are more effective in doing so than others.
Collapse
Affiliation(s)
- Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Erasmus University Medical Center, 3015CN Rotterdam, The Netherlands
| | - F. Germán Rodríguez-González
- Department of Medical Oncology, Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Erasmus University Medical Center, 3015CN Rotterdam, The Netherlands
| | - Anieta M. Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Erasmus University Medical Center, 3015CN Rotterdam, The Netherlands
| | - Roberto Salgado
- Breast Cancer Translational Research Laboratory, Université Libre de Bruxelles, Institut Jules Bordet, Bd de Waterloo 121, B-1000 Brussels, Belgium
- Department of Pathology/TCRU GZA, 2610 Antwerp, Belgium
| | - Wendy J. C. Prager-Van der Smissen
- Department of Medical Oncology, Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Erasmus University Medical Center, 3015CN Rotterdam, The Netherlands
| | - Michelle van der Vlugt-Daane
- Department of Medical Oncology, Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Erasmus University Medical Center, 3015CN Rotterdam, The Netherlands
| | - Anne van Galen
- Department of Medical Oncology, Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Erasmus University Medical Center, 3015CN Rotterdam, The Netherlands
| | - Serena Nik-Zainal
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridge, UK
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 9NB, UK
| | - Johan Staaf
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, SE-223 81 Lund, Sweden
| | - Arie B. Brinkman
- Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6525GA, Nijmegen, The Netherlands
| | - Marc J. van de Vijver
- Department of Pathology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Andrea L. Richardson
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Aquila Fatima
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015CN Rotterdam, The Netherlands
| | - Kim Berentsen
- Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6525GA, Nijmegen, The Netherlands
| | - Adam Butler
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridge, UK
| | - Sancha Martin
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridge, UK
| | - Helen R. Davies
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridge, UK
| | - Reno Debets
- Department of Medical Oncology, Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Erasmus University Medical Center, 3015CN Rotterdam, The Netherlands
| | - Marion E. Meijer-Van Gelder
- Department of Medical Oncology, Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Erasmus University Medical Center, 3015CN Rotterdam, The Netherlands
| | - Carolien H. M. van Deurzen
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015CN Rotterdam, The Netherlands
| | - Gaëtan MacGrogan
- Département de Biopathologie,Institut Bergonié, CS 61283 33076 Bordeaux, France
| | - Gert G. G. M. Van den Eynden
- Department of Pathology/TCRU GZA, 2610 Antwerp, Belgium
- Molecular Immunology Unit, Jules Bordet Institute, B-1000 Brussels, Belgium
| | - Colin Purdie
- Department of Pathology, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK
| | - Alastair M. Thompson
- Department of Pathology, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Paul N. Span
- Department of Radiation Oncology, Radboud University Medical Center, 6525GA, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, 6525GA, Nijmegen, The Netherlands
| | - Peter T. Simpson
- The University of Queensland: UQ Centre for Clinical Research and School of Medicine, Brisbane 4029, Australia
| | - Sunil R. Lakhani
- The University of Queensland: UQ Centre for Clinical Research and School of Medicine, Brisbane 4029, Australia
- Pathology Queensland, The Royal Brisbane and Women's Hospital, Brisbane 4029, Australia
| | - Steven Van Laere
- Center for Oncological Research, University of Antwerp & GZA Hospitals Sint-Augustinus, 2610 Wilrijk, Belgium
| | - Christine Desmedt
- Breast Cancer Translational Research Laboratory, Université Libre de Bruxelles, Institut Jules Bordet, Bd de Waterloo 121, B-1000 Brussels, Belgium
| | - Markus Ringnér
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, SE-223 81 Lund, Sweden
| | | | - Jorunn Eyford
- Cancer Research Laboratory, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Annegien Broeks
- The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Anne Vincent-Salomon
- Department of Pathology and INSERM U934, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - P. Andrew Futreal
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX, 77230, USA
| | - Stian Knappskog
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Department of Oncology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Tari King
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, New York 10065, USA
| | - Gilles Thomas
- Synergie Lyon Cancer,Centre Léon Bérard, 28 rue Laënnec, Cedex 08 Lyon, France
| | - Alain Viari
- Synergie Lyon Cancer,Centre Léon Bérard, 28 rue Laënnec, Cedex 08 Lyon, France
- Equipe Erable, INRIA Grenoble-Rhône-Alpes, 655, Av. de l'Europe, 38330 Montbonnot-Saint Martin, France
| | - Anita Langerød
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital The Norwegian Radiumhospital, 0310, Oslo, Norway
- K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, 0310 Oslo, Norway
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital The Norwegian Radiumhospital, 0310, Oslo, Norway
- K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, 0310 Oslo, Norway
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus,Hinxton CB10 1SD, Cambridgeshire, UK
| | - Hendrik G. Stunnenberg
- Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6525GA, Nijmegen, The Netherlands
| | - Mike Stratton
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridge, UK
| | - John A. Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Erasmus University Medical Center, 3015CN Rotterdam, The Netherlands
| | - John W. M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Erasmus University Medical Center, 3015CN Rotterdam, The Netherlands
| |
Collapse
|
22
|
Tabarestani S, Ghaderian SMH, Rezvani H. Detection of Gene Amplification by Multiplex Ligation-Dependent Probe Amplification in Comparison with In Situ Hybridization and Immunohistochemistry. Asian Pac J Cancer Prev 2016; 16:7997-8002. [PMID: 26625832 DOI: 10.7314/apjcp.2015.16.17.7997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Gene amplification is an important mechanism in the development and progression of cancer. Currently, gene amplification status is generally determined by in situ hybridization (ISH). Multiplex ligation-dependent probe amplification (MLPA) is a PCR-based method that allows copy number detection of up to 50 nucleic acid sequences in one reaction. The aim of the present study was to compare results for HER2, CCND1, MYC and ESR1 gene amplification detected by MLPA with fluorescent in situ hybridization (FISH) and chromogenic in situ hybridization (CISH) as clinically approved methods. Tissue samples of 170 invasive breast cancers were collected. All were ER positive. Tissue samples had previously been tested for HER2 using immunohistochemistry. Amplification of the selected genes were assessed using MLPA, FISH and CISH and results were compared. HER2 MLPA and ISH results were also compared with HER2 immunohistochemistry (IHC) which detects protein overexpression. Amplification of HER2, CCND1, MYC and ESR1 by MLPA were found in 9%, 19%, 20% and 2% of samples, respectively. Amplification of HER2, CCND1, MYC and ESR1 by FISH was noted in 7%, 16%, 16% and 1% of samples, respectively. A high level of concordance was found between MLPA/ FISH (HER2: 88%, CCND1: 88%, MYC: 86%, ESR1: 92%) and MLPA/ CISH (HER2: 84%). Of all IHC 3+ cases, 91% were amplified by MLPA. In IHC 2+ group, 31% were MLPA amplified. In IHC 1+ group, 2% were MLPA amplified. None of the IHC 0 cases were amplified by MLPA. Our results indicate that there is a good correlation between MLPA, IHC and ISH results. Therefore, MLPA can serve as an alternative to ISH for detection of gene amplification.
Collapse
Affiliation(s)
- Sanaz Tabarestani
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran E-mail :
| | | | | |
Collapse
|
23
|
Callegari CC, Cavalli IJ, Lima RS, Jucoski TS, Torresan C, Urban CA, Kuroda F, Anselmi KF, Cavalli LR, Ribeiro EM. Copy number and expression analysis of FOSL1, GSTP1, NTSR1, FADD and CCND1 genes in primary breast tumors with axillary lymph node metastasis. Cancer Genet 2016; 209:331-9. [DOI: 10.1016/j.cancergen.2016.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/02/2016] [Accepted: 06/06/2016] [Indexed: 12/20/2022]
|
24
|
Abstract
Cyclin D1 binds and activates cyclin-dependent kinases 4/6 (Cdk4/6) to phosphorylate the retinoblastoma (RB) family proteins, relieving E2F/DPs from the negative restraint of RB proteins and histone deacetylases. The cyclin D-Cdk4/6 complexes activate cyclin E/Cdk2 through titration of the Cdk inhibitors p21Cip1/p27Kip1. Cyclin E/Cdk2 further phosphorylates RBs, thereby activating E2F/DPs, and cells enter the S phase of the cell cycle. Cyclin D-Cdk4/6 also phosphorylates MEP50 subunit of the protein arginine methyltransferase 5 (PRMT5), which cooperates with cyclin D1 to drive lymphomagenesis in vivo. Activated PRMPT5 causes arginine methylation of p53 to suppress expression of pro-apoptotic and anti-proliferative target genes, explaining the molecular mechanism for tumorigenesis. Cyclin D1 physically interacts with transcription factors such as estrogen receptor, androgen receptor, and Myb family proteins to regulate gene expression in Cdk-independent fashion. Dmp1 is a Myb-like protein that quenches the oncogenic signals from activated Ras or HER2 by inducing Arf/p53-dependent cell cycle arrest. Cyclin D1 binds to Dmp1α to activate both Arf and Ink4a promoters to induce cell cycle arrest or apoptosis in non-transformed cells to prevent them from neoplastic transformation. Dmp1-deficiency significantly accelerates mouse mammary tumorigenesis with reduced apoptosis and increased metastasis. Cyclin D1 interferes with ligand activation of PPARγ involved in cellular differentiation; it also physically interacts with histone deacetylases (HDACs) and p300 to repress gene expression. It has also been shown that cyclin D1 accelerates tumorigenesis through transcriptional activation of miR-17/20 and Dicer1 which, in turn, represses cyclin D1 expression. Identification of cyclin D1-binding proteins/promoters will be essential for further clarification of its biological activities.
Collapse
Affiliation(s)
- Kazushi Inoue
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| | - Elizabeth A Fry
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| |
Collapse
|
25
|
Effects of p21-activated kinase 1 inhibition on 11q13-amplified ovarian cancer cells. Oncogene 2015; 35:2178-85. [PMID: 26257058 PMCID: PMC5125076 DOI: 10.1038/onc.2015.278] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/26/2015] [Accepted: 06/09/2015] [Indexed: 12/14/2022]
Abstract
p21-activated kinases (PAKs) are Cdc42/Rac–activated serine-threonine protein kinases that regulate of several key cancer-relevant signaling pathways, such as the Mek/Erk, PI3K/Akt, and Wnt/b-catenin signaling pathways. Pak1 is frequently overexpressed and/or hyperactivated in different human cancers, including human breast, ovary, prostate, and brain cancer, due to amplification of the PAK1 gene in an 11q13 amplicon. Genetic or pharmacological inactivation of Pak1 has been shown to reduce proliferation of different cancer cells in vitro and reduce tumor progression in vivo. In this work, we examined the roles of Pak1 in cellular and animal models of PAK1-amplified ovarian cancer. We found that inhibition of Pak1 leads to decreased proliferation and migration in PAK1 amplified/overexpressed ovarian cancer cells, and has no effect in cell that lack such amplification/overexpression. Further, we observed that loss of Pak1 function causes 11q13 amplified ovarian cancer cells to arrest in the G2/M phase of the cell cycle. This arrest correlates with activation of p53 and p21Cip and decreased expression of cyclin B1. These findings suggest that small molecule inhibitors of Pak1 may play a therapeutic role in the ~25% of ovarian cancers characterized by PAK1 gene amplification.
Collapse
|
26
|
Leiserson MDM, Wu HT, Vandin F, Raphael BJ. CoMEt: a statistical approach to identify combinations of mutually exclusive alterations in cancer. Genome Biol 2015; 16:160. [PMID: 26253137 PMCID: PMC4531541 DOI: 10.1186/s13059-015-0700-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022] Open
Abstract
Cancer is a heterogeneous disease with different combinations of genetic alterations driving its development in different individuals. We introduce CoMEt, an algorithm to identify combinations of alterations that exhibit a pattern of mutual exclusivity across individuals, often observed for alterations in the same pathway. CoMEt includes an exact statistical test for mutual exclusivity and techniques to perform simultaneous analysis of multiple sets of mutually exclusive and subtype-specific alterations. We demonstrate that CoMEt outperforms existing approaches on simulated and real data. We apply CoMEt to five different cancer types, identifying both known cancer genes and pathways, and novel putative cancer genes.
Collapse
Affiliation(s)
- Mark D M Leiserson
- Department of Computer Science, Brown University, 115 Waterman Street, Providence, 02912, RI, USA.
- Center for Computational Molecular Biology, Brown University, Providence, Box 1910, 02912, RI, USA.
| | - Hsin-Ta Wu
- Department of Computer Science, Brown University, 115 Waterman Street, Providence, 02912, RI, USA.
- Center for Computational Molecular Biology, Brown University, Providence, Box 1910, 02912, RI, USA.
| | - Fabio Vandin
- Department of Computer Science, Brown University, 115 Waterman Street, Providence, 02912, RI, USA.
- Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, Odense M, Denmark.
| | - Benjamin J Raphael
- Department of Computer Science, Brown University, 115 Waterman Street, Providence, 02912, RI, USA.
- Center for Computational Molecular Biology, Brown University, Providence, Box 1910, 02912, RI, USA.
| |
Collapse
|
27
|
Liu Z, Zhang S. Tumor characterization and stratification by integrated molecular profiles reveals essential pan-cancer features. BMC Genomics 2015; 16:503. [PMID: 26148869 PMCID: PMC4491878 DOI: 10.1186/s12864-015-1687-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 06/05/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Identification of tumor heterogeneity and genomic similarities across different cancer types is essential to the design of effective stratified treatments and for the discovery of treatments that can be extended to different types of tumors. However, systematic investigations on comprehensive molecular profiles have not been fully explored to achieve this goal. RESULTS Here, we performed a network-based integrative pan-cancer genomic analysis on >3000 samples from 12 cancer types to uncover novel stratifications among tumors. Our study not only revealed recurrently reported cross-cancer similarities, but also identified novel ones. The macro-scale stratification demonstrates strong clinical relevance and reveals consistent risk tendency among cancer types. The micro-scale stratification shows essential pan-cancer heterogeneity with subgroup-specific gene network characteristics and biological functions. CONCLUSIONS In summary, our comprehensive network-based pan-cancer stratification provides valuable information about inter- and intra- cancer stratification for patient clinical assessments and therapeutic strategies.
Collapse
Affiliation(s)
- Zhaoqi Liu
- National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Shihua Zhang
- National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
28
|
Yang XR, Killian JK, Hammond S, Burke LS, Bennett H, Wang Y, Davis SR, Strong LC, Neglia J, Stovall M, Weathers RE, Robison LL, Bhatia S, Mabuchi K, Inskip PD, Meltzer P. Characterization of genomic alterations in radiation-associated breast cancer among childhood cancer survivors, using comparative genomic hybridization (CGH) arrays. PLoS One 2015; 10:e0116078. [PMID: 25764003 PMCID: PMC4357472 DOI: 10.1371/journal.pone.0116078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/05/2014] [Indexed: 11/20/2022] Open
Abstract
Ionizing radiation is an established risk factor for breast cancer. Epidemiologic studies of radiation-exposed cohorts have been primarily descriptive; molecular events responsible for the development of radiation-associated breast cancer have not been elucidated. In this study, we used array comparative genomic hybridization (array-CGH) to characterize genome-wide copy number changes in breast tumors collected in the Childhood Cancer Survivor Study (CCSS). Array-CGH data were obtained from 32 cases who developed a second primary breast cancer following chest irradiation at early ages for the treatment of their first cancers, mostly Hodgkin lymphoma. The majority of these cases developed breast cancer before age 45 (91%, n = 29), had invasive ductal tumors (81%, n = 26), estrogen receptor (ER)-positive staining (68%, n = 19 out of 28), and high proliferation as indicated by high Ki-67 staining (77%, n = 17 out of 22). Genomic regions with low-copy number gains and losses and high-level amplifications were similar to what has been reported in sporadic breast tumors, however, the frequency of amplifications of the 17q12 region containing human epidermal growth factor receptor 2 (HER2) was much higher among CCSS cases (38%, n = 12). Our findings suggest that second primary breast cancers in CCSS were enriched for an “amplifier” genomic subgroup with highly proliferative breast tumors. Future investigation in a larger irradiated cohort will be needed to confirm our findings.
Collapse
Affiliation(s)
- Xiaohong R. Yang
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - J. Keith Killian
- Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sue Hammond
- Department of Laboratory Medicine and Pathology, Children's Hospital and Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Laura S. Burke
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hunter Bennett
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yonghong Wang
- Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sean R. Davis
- Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Louise C. Strong
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Joseph Neglia
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, Minnesota, United States of America
| | - Marilyn Stovall
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Rita E. Weathers
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Leslie L. Robison
- Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Smita Bhatia
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kiyohiko Mabuchi
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Inskip
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul Meltzer
- Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
29
|
Yun H, Shi R, Yang Q, Zhang X, Wang Y, Zhou X, Mu K. Over expression of hRad9 protein correlates with reduced chemosensitivity in breast cancer with administration of neoadjuvant chemotherapy. Sci Rep 2014; 4:7548. [PMID: 25520248 PMCID: PMC5378947 DOI: 10.1038/srep07548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 12/01/2014] [Indexed: 02/04/2023] Open
Abstract
Human Rad 9 (hRad9), part of the Rad9-Hus1-Rad1 complex plays an important role in DNA damage repair as an up-stream regulator of checkpoint signaling, however little is known about its role in response to chemotherapy of breast cancer and whether hRad9 inhibition can potentiate the cytotoxic effects of chemotherapy on breast cancer cells remains to be elucidated. Fifty cases of breast cancer receiving neoadjuvant therapy were collected. All these cases were revised and classified into chemotherapy sensitive (CS) or chemotherapy resistant (CR) group according to the Miller and Payne (MP) grading system. Immunohistochemically, hRad9 positive tumours showed nuclear and/or cytoplasmic staining. hRad9 over-expression was associated with an impaired neoadjuvant chemotherapy response. A significant correlation was found between expression of hRad9 and Cyclin D1. In vitro, hRad9 was knocked down using siRNA in breast cancer cell line MCF-7 and MDA-MB-231. Deregulated expression of Rad9 accompanied by down expression of chk1 enhanced the sensitivity of human breast cancer cells to doxorubicin. Our work suggests that hRad9 might be a potential predictor for the response to chemotherapy in patients with breast cancer and its clinical value as a target for improving chemosensitivity needs further exploration.
Collapse
Affiliation(s)
- Haiqin Yun
- Department of Pathology, Shandong University School of Medicine, Jinan 250012, China
| | - Ranran Shi
- Department of Pathology, Shandong University School of Medicine, Jinan 250012, China
| | - Qingrui Yang
- Department of Rheumatology and Immunology, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Xiaofang Zhang
- Department of Pathology, Shandong University School of Medicine, Jinan 250012, China
| | - Yan Wang
- Department of Pathology, Shandong University School of Medicine, Jinan 250012, China
| | - Xingchen Zhou
- Department of Pathology, Shandong University School of Medicine, Jinan 250012, China
| | - Kun Mu
- Department of Pathology, Shandong University School of Medicine, Jinan 250012, China
| |
Collapse
|
30
|
Roy D, Calaf GM. Allelic loss at chromosome 11q13 alters FGF3 gene expression in a human breast cancer progression model. Oncol Rep 2014; 32:2445-52. [PMID: 25333703 DOI: 10.3892/or.2014.3502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/26/2014] [Indexed: 11/06/2022] Open
Abstract
Identification of markers with the potential to predict tumorigenic behavior is important in breast cancer, due to the variability in clinical disease progression. Genetic alterations during neoplastic progression may appear as changes in total DNA content, single genes, or gene expression. Oncogenic alterations are thought to be prognostic indices for patients with breast cancer. Breast cancer deregulation can occur in the normal cellular process and can be measured by microsatellite instability (MSI)/loss of heterozygosity (LOH). Chromosome 11 is unique in this respect, as three regions of MSI/LOH have been identified (11p15-p15.5, 11q13-q13.3 and 11q23-q24). There are many important families of genes, such as FGF, CCND1, FADD, BAD and GAD2, that are located on chromosome 11 and these play a crucial role in breast cancer progression. Among them, different members of the fibroblast growth factor (FGF) family of genes are clustered around human chromosome 11q13 amplicon, which are constantly altering during breast cancer progression. Therefore, in this study, locus 11q13 and FGF3 gene (11q13) function were investigated in a radiation and estrogen breast cancer model induced by high-LET (α-particle) radiation and estrogen exposure. To assess the effect of ionizing radiation and estrogen at chromosome 11q13 loci and the subsequent role of FGF3 gene expression, various microsatellite markers were chosen in this region, and allelic loses (~20-45%) were identified by PCR-SSCP analysis. Results showed an increase in FGF3 protein expression and a 6- to 8-fold change in gene expression of FGF3 and associated genes. These deregulations could be utilized as an appropriate target for therapeutic intervention in breast cancer.
Collapse
Affiliation(s)
- Debasish Roy
- Department of Natural Sciences, Hostos College of the City University of New York, Bronx, NY, USA
| | - Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| |
Collapse
|
31
|
Abstract
Around 70% of all breast cancers are estrogen receptor alpha positive and hence their development is highly dependent on estradiol. While the invention of endocrine therapies has revolusioned the treatment of the disease, resistance to therapy eventually occurs in a large number of patients. This paper seeks to illustrate and discuss the complexity and heterogeneity of the mechanisms which underlie resistance and the approaches proposed to combat them. It will also focus on the use and development of methods for predicting which patients are likely to develop resistance.
Collapse
|
32
|
Lindqvist BM, Wingren S, Motlagh PB, Nilsson TK. Whole genome DNA methylation signature of HER2-positive breast cancer. Epigenetics 2014; 9:1149-62. [PMID: 25089541 DOI: 10.4161/epi.29632] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In order to obtain a comprehensive DNA methylation signature of HER2-positive breast cancer (HER2+ breast cancer), we performed a genome-wide methylation analysis on 17 HER2+ breast cancer and compared with ten normal breast tissue samples using the Illumina Infinium HumanMethylation450 BeadChip (450K). In HER2+ breast cancer, we found altered DNA methylation in genes involved in multicellular development, differentiation and transcription. Within these genes, we observed an overrepresentation of homeobox family genes, including several genes that have not been previously reported in relation to cancer (DBX1, NKX2-6, SIX6). Other affected genes included several belonging to the PI3K and Wnt signaling pathways. Notably, HER2, AKT3, HK1, and PFKP, genes for which altered methylation has not been previously reported, were also identified in this analysis. In total, we report 69 candidate biomarker genes with maximum differential methylation in HER2+ breast cancer. External validation of gene expression in a selected group of these genes (n = 13) revealed lowered mean gene expression in HER2+ breast cancer. We analyzed DNA methylation in six top candidate genes (AKR1B1, INA, FOXC2, NEUROD1, CDKL2, IRF4) using EpiTect Methyl II Custom PCR Array and confirmed the 450K array findings. Future clinical studies focusing on these genes, as well as on homeobox-containing genes and HER2, AKT3, HK1, and PFKP, are warranted which could provide further insights into the biology of HER2+ breast cancer.
Collapse
Affiliation(s)
- Breezy M Lindqvist
- School of Health and Medical Sciences; Örebro University; Örebro, Sweden
| | - Sten Wingren
- School of Health and Medical Sciences; Örebro University; Örebro, Sweden
| | - Parviz B Motlagh
- Department of Medical Biosciences/Clinical Chemistry; Umeå University; Umeå, Sweden
| | - Torbjörn K Nilsson
- Department of Medical Biosciences/Clinical Chemistry; Umeå University; Umeå, Sweden
| |
Collapse
|
33
|
Chaturvedi N, Goeman JJ, Boer JM, van Wieringen WN, de Menezes RX. A test for comparing two groups of samples when analyzing multiple omics profiles. BMC Bioinformatics 2014; 15:236. [PMID: 25004928 PMCID: PMC4227098 DOI: 10.1186/1471-2105-15-236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A number of statistical models has been proposed for studying the association between gene expression and copy number data in integrated analysis. The next step is to compare association patterns between different groups of samples. RESULTS We propose a method, named dSIM, to find differences in association between copy number and gene expression, when comparing two groups of samples. Firstly, we use ridge regression to correct for the baseline associations between copy number and gene expression. Secondly, the global test is applied to the corrected data in order to find differences in association patterns between two groups of samples. We show that dSIM detects differences even in small genomic regions in a simulation study. We also apply dSIM to two publicly available breast cancer datasets and identify chromosome arms where copy number led gene expression regulation differs between positive and negative estrogen receptor samples. In spite of differing genomic coverage, some selected arms are identified in both datasets. CONCLUSION We developed a flexible and robust method for studying association differences between two groups of samples while integrating genomic data from different platforms. dSIM can be used with most types of microarray/sequencing data, including methylation and microRNA expression. The method is implemented in R and will be made part of the BioConductor package SIM.
Collapse
Affiliation(s)
- Nimisha Chaturvedi
- Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
34
|
Tabarestani S, Ghaderian SMH, Rezvani H, Mirfakhraie R, Ebrahimi A, Attarian H, Rafat J, Ghadyani M, Alavi HA, Kamalian N, Rakhsha A, Azargashb E. Prognostic and predictive value of copy number alterations in invasive breast cancer as determined by multiplex ligation-dependent probe amplification. Cell Oncol (Dordr) 2014; 37:107-18. [PMID: 24573687 DOI: 10.1007/s13402-013-0165-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Breast cancer is a leading cause of morbidity and mortality in women worldwide. About 70 % of breast cancers are estrogen receptor (ER) positive. Blocking estrogen action by tamoxifen has been the treatment of choice in ER positive breast cancers for more than 30 years. In the past, several studies have revealed associations between gene copy number alterations and responsiveness to tamoxifen therapy, but so far no single gene copy number alteration could completely explain the response variation observed between individual breast cancer patients. Here, we set out to perform a simultaneous analysis of copy number alterations of several genes involved in the prognosis and response to therapy by multiplex ligation-dependent probe amplification (MLPA). METHODS A case-control study was designed encompassing 170 non-metastatic ER positive breast cancer patients (case group = 85, control group = 85). All patients in the control group had received standard adjuvant tamoxifen treatment for 5 years without any evidence of recurrence. Patients in the case group had experienced early recurrences while receiving tamoxifen treatment. 76 % of the patients of the case group and 73 % of the patients of the control group had received anthracycline-based adjuvant chemotherapy. Gene copy number alterations detected by MLPA in both groups were compared. RESULTS Amplification of CCND1 (OR = 3.13; 95 % CI = 1.35 to 7.26; p = 0.006) and TOP2A (OR = 3.05; 95 % CI = 1.13 to 8.24; p = 0.022) were significantly more prevalent in the case group, compared to the control group. In a multivariate analysis CCND1 (p = 0.01) and TOP2A (p = 0.041) amplifications remained significant predictors of recurrence. CONCLUSIONS Our results indicate that CCND1 amplification may serve as a useful biomarker for hormone responsiveness, and that TOP2A amplification may serve as a useful prognostic biomarker.
Collapse
Affiliation(s)
- Sanaz Tabarestani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lehn S, Tobin NP, Sims AH, Stål O, Jirström K, Axelson H, Landberg G. Decreased expression of Yes-associated protein is associated with outcome in the luminal A breast cancer subgroup and with an impaired tamoxifen response. BMC Cancer 2014; 14:119. [PMID: 24559095 PMCID: PMC3937431 DOI: 10.1186/1471-2407-14-119] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Yes-associated protein (YAP1) is frequently reported to function as an oncogene in many types of cancer, but in breast cancer results remain controversial. We set out to clarify the role of YAP1 in breast cancer by examining gene and protein expression in subgroups of patient material and by downregulating YAP1 in vitro and studying its role in response to the widely used anti-estrogen tamoxifen. METHODS YAP1 protein intensity was scored as absent, weak, intermediate or strong in two primary breast cancer cohorts (n = 144 and n = 564) and mRNA expression of YAP1 was evaluated in a gene expression dataset (n = 1107). Recurrence-free survival was analysed using the log-rank test and Cox multivariate analysis was used to test for independence. WST-1 assay was employed to measure cell viability and a luciferase ERE (estrogen responsive element) construct was used to study the effect of tamoxifen, following downregulation of YAP1 using siRNAs. RESULTS In the ER+ (Estrogen Receptor α positive) subgroup of the randomised cohort, YAP1 expression was inversely correlated to histological grade and proliferation (p = 0.001 and p = 0.016, respectively) whereas in the ER- (Estrogen Receptor α negative) subgroup YAP1 expression correlated positively to proliferation (p = 0.005). Notably, low YAP1 mRNA was independently associated with decreased recurrence-free survival in the gene expression dataset, specifically for the luminal A subgroup (p < 0.001) which includes low proliferating tumours of lower grade, usually associated with a good prognosis. This subgroup specificity led us to hypothesize that YAP1 may be important for response to endocrine therapies, such as tamoxifen, extensively used for luminal A breast cancers. In a tamoxifen randomised patient material, absent YAP1 protein expression was associated with impaired tamoxifen response which was significant upon interaction analysis (p = 0.042). YAP1 downregulation resulted in increased progesterone receptor (PgR) expression and a delayed and weaker tamoxifen in support of the clinical data. CONCLUSIONS Decreased YAP1 expression is an independent prognostic factor for recurrence in the less aggressive luminal A breast cancer subgroup, likely due to the decreased tamoxifen sensitivity conferred by YAP1 downregulation.
Collapse
Affiliation(s)
- Sophie Lehn
- Center for Molecular Pathology, Department of Laboratory Medicine, Lund University, Skåne University Hospital, 205 02 Malmö, Sweden.
| | | | | | | | | | | | | |
Collapse
|
36
|
Identification of putative target genes for amplification within 11q13.2 and 3q27.1 in esophageal squamous cell carcinoma. Clin Transl Oncol 2013; 16:606-15. [PMID: 24203761 DOI: 10.1007/s12094-013-1124-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 10/14/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Genomic aberration is a common feature of human cancers and also is one of the basic mechanisms that lead to overexpression of oncogenes and underexpression of tumor suppressor genes. Our study aims to identify frequent genomic changes and candidate copy number driving genes in esophageal squamous cell carcinoma (ESCC). METHODS We used array comparative genomic hybridization to identify recurrent genomic alterations and screened the candidate targets of selected amplification regions by quantitative and semi-quantitative RT-PCR. RESULTS Thirty-four gains and 16 losses occurred in more than 50 % of ESCCs. High-level amplifications at 7p11.2, 8p12, 8q24.21, 11q13.2-q13.3, 12p11.21, 12q12 and homozygous deletions at 2q22.1, 8p23.1-p21.2, 9p21.3 and 14q11.2 were also identified. 11q13.2 was a frequent amplification region, in which five genes including CHKA, GAL, KIAA1394, LRP5 and PTPRCAP were overexpressed in tumor tissues than paracancerous normal tissues. The expression of ALG3 at 3q27.1 was higher in ESCCs, especially in patients with lymph node metastasis. CONCLUSIONS Target gene identification of amplifications or homozygous deletions will help to reveal the mechanism of tumor formation and explore new therapy method.
Collapse
|
37
|
Calcium-activated chloride channel ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling. Proc Natl Acad Sci U S A 2013; 110:E1026-34. [PMID: 23431153 DOI: 10.1073/pnas.1217072110] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The calcium-activated chloride channel anoctamin 1 (ANO1) is located within the 11q13 amplicon, one of the most frequently amplified chromosomal regions in human cancer, but its functional role in tumorigenesis has remained unclear. The 11q13 region is amplified in ∼15% of breast cancers. Whether ANO1 is amplified in breast tumors, the extent to which gene amplification contributes to ANO1 overexpression, and whether overexpression of ANO1 is important for tumor maintenance have remained unknown. We have found that ANO1 is amplified and highly expressed in breast cancer cell lines and primary tumors. Amplification of ANO1 correlated with disease grade and poor prognosis. Knockdown of ANO1 in ANO1-amplified breast cancer cell lines and other cancers bearing 11q13 amplification inhibited proliferation, induced apoptosis, and reduced tumor growth in established cancer xenografts. Moreover, ANO1 chloride channel activity was important for cell viability. Mechanistically, ANO1 knockdown or pharmacological inhibition of its chloride-channel activity reduced EGF receptor (EGFR) and calmodulin-dependent protein kinase II (CAMKII) signaling, which subsequently attenuated AKT, v-src sarcoma viral oncogene homolog (SRC), and extracellular signal-regulated kinase (ERK) activation in vitro and in vivo. Our results highlight the involvement of the ANO1 chloride channel in tumor progression and provide insights into oncogenic signaling in human cancers with 11q13 amplification, thereby establishing ANO1 as a promising target for therapy in these highly prevalent tumor types.
Collapse
|
38
|
Abstract
Over the last decade, our knowledge in somatic genetic events related to breast cancer has increased -enormously. Through usage of various genome-wide molecular approaches, it has become increasingly clear that breast cancer is a vastly heterogeneous disease. Microarray-based gene expression profiling has divided breast cancer into five distinct intrinsic subtypes termed basal-like, HER2-enriched, normal-like, luminal A, and luminal B. Importantly, these subtypes are closely correlated to clinical variables as well as different outcomes, with luminal A tumors as the good prognostic group. Initial studies using genome-wide DNA copy number data broadly partitioned breast cancers into three types, complex, amplifier, and simple, and moreover associated distinct copy number changes with the intrinsic subtypes defined by gene expression profiles. More recently, this genomic classification was refined into six genomic subtypes demonstrating strong resemblance to the intrinsic gene expression classification. Additionally, inherited BRCA1- and BRCA2-mutated tumors were significantly correlated to specific subtypes. In this chapter, we will review the current status regarding genomic subtypes of nonfamilial breast cancer.
Collapse
Affiliation(s)
- Markus Ringnér
- Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | | | | |
Collapse
|
39
|
Wilkerson PM, Reis-Filho JS. the 11q13-q14 amplicon: Clinicopathological correlations and potential drivers. Genes Chromosomes Cancer 2012; 52:333-55. [DOI: 10.1002/gcc.22037] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 11/01/2012] [Indexed: 01/04/2023] Open
|